Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of OmniWheels by
Diff: mbed-os/rtos/Thread.cpp
- Revision:
- 1:9c5af431a1f1
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed-os/rtos/Thread.cpp Tue May 01 15:47:08 2018 +0000 @@ -0,0 +1,421 @@ +/* mbed Microcontroller Library + * Copyright (c) 2006-2012 ARM Limited + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#include "rtos/Thread.h" + +#include "mbed.h" +#include "rtos/rtos_idle.h" +#include "mbed_assert.h" + +#define ALIGN_UP(pos, align) ((pos) % (align) ? (pos) + ((align) - (pos) % (align)) : (pos)) +MBED_STATIC_ASSERT(ALIGN_UP(0, 8) == 0, "ALIGN_UP macro error"); +MBED_STATIC_ASSERT(ALIGN_UP(1, 8) == 8, "ALIGN_UP macro error"); + +#define ALIGN_DOWN(pos, align) ((pos) - ((pos) % (align))) +MBED_STATIC_ASSERT(ALIGN_DOWN(7, 8) == 0, "ALIGN_DOWN macro error"); +MBED_STATIC_ASSERT(ALIGN_DOWN(8, 8) == 8, "ALIGN_DOWN macro error"); + +static void (*terminate_hook)(osThreadId_t id) = 0; +extern "C" void thread_terminate_hook(osThreadId_t id) +{ + if (terminate_hook != (void (*)(osThreadId_t))NULL) { + terminate_hook(id); + } +} + +namespace rtos { + +void Thread::constructor(osPriority priority, + uint32_t stack_size, unsigned char *stack_mem, const char *name) { + + const uintptr_t unaligned_mem = reinterpret_cast<uintptr_t>(stack_mem); + const uintptr_t aligned_mem = ALIGN_UP(unaligned_mem, 8); + const uint32_t offset = aligned_mem - unaligned_mem; + const uint32_t aligned_size = ALIGN_DOWN(stack_size - offset, 8); + + _tid = 0; + _dynamic_stack = (stack_mem == NULL); + _finished = false; + memset(&_obj_mem, 0, sizeof(_obj_mem)); + memset(&_attr, 0, sizeof(_attr)); + _attr.priority = priority; + _attr.stack_size = aligned_size; + _attr.name = name ? name : "application_unnamed_thread"; + _attr.stack_mem = reinterpret_cast<uint32_t*>(aligned_mem); +} + +void Thread::constructor(Callback<void()> task, + osPriority priority, uint32_t stack_size, unsigned char *stack_mem, const char *name) { + constructor(priority, stack_size, stack_mem, name); + + switch (start(task)) { + case osErrorResource: + error("OS ran out of threads!\n"); + break; + case osErrorParameter: + error("Thread already running!\n"); + break; + case osErrorNoMemory: + error("Error allocating the stack memory\n"); + default: + break; + } +} + +osStatus Thread::start(Callback<void()> task) { + _mutex.lock(); + + if ((_tid != 0) || _finished) { + _mutex.unlock(); + return osErrorParameter; + } + + if (_attr.stack_mem == NULL) { + _attr.stack_mem = new uint32_t[_attr.stack_size/sizeof(uint32_t)]; + MBED_ASSERT(_attr.stack_mem != NULL); + } + + //Fill the stack with a magic word for maximum usage checking + for (uint32_t i = 0; i < (_attr.stack_size / sizeof(uint32_t)); i++) { + ((uint32_t *)_attr.stack_mem)[i] = 0xE25A2EA5; + } + + memset(&_obj_mem, 0, sizeof(_obj_mem)); + _attr.cb_size = sizeof(_obj_mem); + _attr.cb_mem = &_obj_mem; + _task = task; + _tid = osThreadNew(Thread::_thunk, this, &_attr); + if (_tid == NULL) { + if (_dynamic_stack) { + delete[] (uint32_t *)(_attr.stack_mem); + _attr.stack_mem = (uint32_t*)NULL; + } + _mutex.unlock(); + _join_sem.release(); + return osErrorResource; + } + + _mutex.unlock(); + return osOK; +} + +osStatus Thread::terminate() { + osStatus_t ret = osOK; + _mutex.lock(); + + // Set the Thread's tid to NULL and + // release the semaphore before terminating + // since this thread could be terminating itself + osThreadId_t local_id = _tid; + _join_sem.release(); + _tid = (osThreadId_t)NULL; + if (!_finished) { + _finished = true; + // if local_id == 0 Thread was not started in first place + // and does not have to be terminated + if (local_id != 0) { + ret = osThreadTerminate(local_id); + } + } + _mutex.unlock(); + return ret; +} + +osStatus Thread::join() { + int32_t ret = _join_sem.wait(); + if (ret < 0) { + return osError; + } + + // The semaphore has been released so this thread is being + // terminated or has been terminated. Once the mutex has + // been locked it is ensured that the thread is deleted. + _mutex.lock(); + MBED_ASSERT(NULL == _tid); + _mutex.unlock(); + + // Release sem so any other threads joining this thread wake up + _join_sem.release(); + return osOK; +} + +osStatus Thread::set_priority(osPriority priority) { + osStatus_t ret; + _mutex.lock(); + + ret = osThreadSetPriority(_tid, priority); + + _mutex.unlock(); + return ret; +} + +osPriority Thread::get_priority() { + osPriority_t ret; + _mutex.lock(); + + ret = osThreadGetPriority(_tid); + + _mutex.unlock(); + return ret; +} + +int32_t Thread::signal_set(int32_t flags) { + return osThreadFlagsSet(_tid, flags); +} + +Thread::State Thread::get_state() { + uint8_t state = osThreadTerminated; + + _mutex.lock(); + + if (_tid != NULL) { +#if defined(MBED_OS_BACKEND_RTX5) + state = _obj_mem.state; +#else + state = osThreadGetState(_tid); +#endif + } + + _mutex.unlock(); + + State user_state; + + switch(state) { + case osThreadInactive: + user_state = Inactive; + break; + case osThreadReady: + user_state = Ready; + break; + case osThreadRunning: + user_state = Running; + break; +#if defined(MBED_OS_BACKEND_RTX5) + case osRtxThreadWaitingDelay: + user_state = WaitingDelay; + break; + case osRtxThreadWaitingJoin: + user_state = WaitingJoin; + break; + case osRtxThreadWaitingThreadFlags: + user_state = WaitingThreadFlag; + break; + case osRtxThreadWaitingEventFlags: + user_state = WaitingEventFlag; + break; + case osRtxThreadWaitingMutex: + user_state = WaitingMutex; + break; + case osRtxThreadWaitingSemaphore: + user_state = WaitingSemaphore; + break; + case osRtxThreadWaitingMemoryPool: + user_state = WaitingMemoryPool; + break; + case osRtxThreadWaitingMessageGet: + user_state = WaitingMessageGet; + break; + case osRtxThreadWaitingMessagePut: + user_state = WaitingMessagePut; + break; +#endif + case osThreadTerminated: + default: + user_state = Deleted; + break; + } + + return user_state; +} + +uint32_t Thread::stack_size() { + uint32_t size = 0; + _mutex.lock(); + + if (_tid != NULL) { + size = osThreadGetStackSize(_tid); + } + + _mutex.unlock(); + return size; +} + +uint32_t Thread::free_stack() { + uint32_t size = 0; + _mutex.lock(); + +#if defined(MBED_OS_BACKEND_RTX5) + if (_tid != NULL) { + os_thread_t *thread = (os_thread_t *)_tid; + size = (uint32_t)thread->sp - (uint32_t)thread->stack_mem; + } +#endif + + _mutex.unlock(); + return size; +} + +uint32_t Thread::used_stack() { + uint32_t size = 0; + _mutex.lock(); + +#if defined(MBED_OS_BACKEND_RTX5) + if (_tid != NULL) { + os_thread_t *thread = (os_thread_t *)_tid; + size = ((uint32_t)thread->stack_mem + thread->stack_size) - thread->sp; + } +#endif + + _mutex.unlock(); + return size; +} + +uint32_t Thread::max_stack() { + uint32_t size = 0; + _mutex.lock(); + + if (_tid != NULL) { +#if defined(MBED_OS_BACKEND_RTX5) + os_thread_t *thread = (os_thread_t *)_tid; + uint32_t high_mark = 0; + while (((uint32_t *)(thread->stack_mem))[high_mark] == 0xE25A2EA5) + high_mark++; + size = thread->stack_size - (high_mark * sizeof(uint32_t)); +#else + size = osThreadGetStackSize(_tid) - osThreadGetStackSpace(_tid); +#endif + } + + _mutex.unlock(); + return size; +} + +const char *Thread::get_name() { + return _attr.name; +} + +int32_t Thread::signal_clr(int32_t flags) { + return osThreadFlagsClear(flags); +} + +osEvent Thread::signal_wait(int32_t signals, uint32_t millisec) { + uint32_t res; + osEvent evt; + uint32_t options = osFlagsWaitAll; + if (signals == 0) { + options = osFlagsWaitAny; + signals = 0x7FFFFFFF; + } + res = osThreadFlagsWait(signals, options, millisec); + if (res & osFlagsError) { + switch (res) { + case osFlagsErrorISR: + evt.status = osErrorISR; + break; + case osFlagsErrorResource: + evt.status = osOK; + break; + case osFlagsErrorTimeout: + evt.status = (osStatus)osEventTimeout; + break; + case osFlagsErrorParameter: + default: + evt.status = (osStatus)osErrorValue; + break; + } + } else { + evt.status = (osStatus)osEventSignal; + evt.value.signals = res; + } + + return evt; +} + +osStatus Thread::wait(uint32_t millisec) { + return osDelay(millisec); +} + +osStatus Thread::wait_until(uint64_t millisec) { + // CMSIS-RTOS 2.1.0 and 2.1.1 differ in the time type, which we determine + // by looking at the return type of osKernelGetTickCount. We assume + // our header at least matches the implementation, so we don't try looking + // at the run-time version report. (There's no compile-time version report) + if (sizeof osKernelGetTickCount() == sizeof(uint64_t)) { + // CMSIS-RTOS 2.1.0 has a 64-bit API. The corresponding RTX 5.2.0 can't + // delay more than 0xfffffffe ticks, but there's no limit stated for + // the generic API. + return osDelayUntil(millisec); + } else { + // 64-bit time doesn't wrap (for half a billion years, at last) + uint64_t now = Kernel::get_ms_count(); + // Report being late on entry + if (now >= millisec) { + return osErrorParameter; + } + // We're about to make a 32-bit delay call, so have at least this limit + if (millisec - now > 0xFFFFFFFF) { + return osErrorParameter; + } + // And this may have its own internal limit - we'll find out. + // We hope/assume there's no problem with passing + // osWaitForever = 0xFFFFFFFF - that value is only specified to have + // special meaning for osSomethingWait calls. + return osDelay(millisec - now); + } +} + +osStatus Thread::yield() { + return osThreadYield(); +} + +osThreadId Thread::gettid() { + return osThreadGetId(); +} + +void Thread::attach_idle_hook(void (*fptr)(void)) { + rtos_attach_idle_hook(fptr); +} + +void Thread::attach_terminate_hook(void (*fptr)(osThreadId_t id)) { + terminate_hook = fptr; +} + +Thread::~Thread() { + // terminate is thread safe + terminate(); + if (_dynamic_stack) { + delete[] (uint32_t*)(_attr.stack_mem); + _attr.stack_mem = (uint32_t*)NULL; + } +} + +void Thread::_thunk(void * thread_ptr) +{ + Thread *t = (Thread*)thread_ptr; + t->_task(); + t->_mutex.lock(); + t->_tid = (osThreadId)NULL; + t->_finished = true; + t->_join_sem.release(); + // rtos will release the mutex automatically +} + +}