BA
/
BaBoRo_test2
Backup 1
Motion.cpp
- Committer:
- borlanic
- Date:
- 2018-04-24
- Revision:
- 0:02dd72d1d465
File content as of revision 0:02dd72d1d465:
/* * Motion.cpp * Copyright (c) 2018, ZHAW * All rights reserved. */ #include <cmath> #include <algorithm> #include "Motion.h" using namespace std; const float Motion::DEFAULT_LIMIT = 1.0f; // default value for limits const float Motion::MINIMUM_LIMIT = 1.0e-9f; // smallest value allowed for limits /** * Creates a <code>Motion</code> object. * The values for position, velocity and acceleration are set to 0. */ Motion::Motion() { position = 0.0; velocity = 0.0f; profileVelocity = DEFAULT_LIMIT; profileAcceleration = DEFAULT_LIMIT; profileDeceleration = DEFAULT_LIMIT; } /** * Creates a <code>Motion</code> object with given values for position and velocity. * @param position the initial position value of this motion, given in [m] or [rad]. * @param velocity the initial velocity value of this motion, given in [m/s] or [rad/s]. */ Motion::Motion(double position, float velocity) { this->position = position; this->velocity = velocity; profileVelocity = DEFAULT_LIMIT; profileAcceleration = DEFAULT_LIMIT; profileDeceleration = DEFAULT_LIMIT; } /** * Creates a <code>Motion</code> object with given values for position and velocity. * @param motion another <code>Motion</code> object to copy the values from. */ Motion::Motion(const Motion& motion) { position = motion.position; velocity = motion.velocity; profileVelocity = motion.profileVelocity; profileAcceleration = motion.profileAcceleration; profileDeceleration = motion.profileDeceleration; } /** * Deletes the Motion object. */ Motion::~Motion() {} /** * Sets the values for position and velocity. * @param position the desired position value of this motion, given in [m] or [rad]. * @param velocity the desired velocity value of this motion, given in [m/s] or [rad/s]. */ void Motion::set(double position, float velocity) { this->position = position; this->velocity = velocity; } /** * Sets the values for position and velocity. * @param motion another <code>Motion</code> object to copy the values from. */ void Motion::set(const Motion& motion) { position = motion.position; velocity = motion.velocity; } /** * Sets the position value. * @param position the desired position value of this motion, given in [m] or [rad]. */ void Motion::setPosition(double position) { this->position = position; } /** * Gets the position value. * @return the position value of this motion, given in [m] or [rad]. */ double Motion::getPosition() { return position; } /** * Sets the velocity value. * @param velocity the desired velocity value of this motion, given in [m/s] or [rad/s]. */ void Motion::setVelocity(float velocity) { this->velocity = velocity; } /** * Gets the velocity value. * @return the velocity value of this motion, given in [m/s] or [rad/s]. */ float Motion::getVelocity() { return velocity; } /** * Sets the limit for the velocity value. * @param profileVelocity the limit of the velocity. */ void Motion::setProfileVelocity(float profileVelocity) { if (profileVelocity > MINIMUM_LIMIT) this->profileVelocity = profileVelocity; else this->profileVelocity = MINIMUM_LIMIT; } /** * Sets the limit for the acceleration value. * @param profileAcceleration the limit of the acceleration. */ void Motion::setProfileAcceleration(float profileAcceleration) { if (profileAcceleration > MINIMUM_LIMIT) this->profileAcceleration = profileAcceleration; else this->profileAcceleration = MINIMUM_LIMIT; } /** * Sets the limit for the deceleration value. * @param profileDeceleration the limit of the deceleration. */ void Motion::setProfileDeceleration(float profileDeceleration) { if (profileDeceleration > MINIMUM_LIMIT) this->profileDeceleration = profileDeceleration; else this->profileDeceleration = MINIMUM_LIMIT; } /** * Sets the limits for velocity, acceleration and deceleration values. * @param profileVelocity the limit of the velocity. * @param profileAcceleration the limit of the acceleration. * @param profileDeceleration the limit of the deceleration. */ void Motion::setLimits(float profileVelocity, float profileAcceleration, float profileDeceleration) { if (profileVelocity > MINIMUM_LIMIT) this->profileVelocity = profileVelocity; else this->profileVelocity = MINIMUM_LIMIT; if (profileAcceleration > MINIMUM_LIMIT) this->profileAcceleration = profileAcceleration; else this->profileAcceleration = MINIMUM_LIMIT; if (profileDeceleration > MINIMUM_LIMIT) this->profileDeceleration = profileDeceleration; else this->profileDeceleration = MINIMUM_LIMIT; } /** * Gets the time needed to move to a given target position. * @param targetPosition the desired target position given in [m] or [rad]. * @return the time to move to the target position, given in [s]. */ float Motion::getTimeToPosition(double targetPosition) { // calculate position, when velocity is reduced to zero double stopPosition = (velocity > 0.0f) ? position+(double)(velocity*velocity/profileDeceleration*0.5f) : position-(double)(velocity*velocity/profileDeceleration*0.5f); if (targetPosition > stopPosition) { // positive velocity required if (velocity > profileVelocity) { // slow down to profile velocity first float t1 = (velocity-profileVelocity)/profileDeceleration; float t2 = (float)(targetPosition-stopPosition)/profileVelocity; float t3 = profileVelocity/profileDeceleration; return t1+t2+t3; } else if (velocity > 0.0f) { // speed up to profile velocity float t1 = (profileVelocity-velocity)/profileAcceleration; float t3 = profileVelocity/profileDeceleration; float t2 = ((float)(targetPosition-position)-(velocity+profileVelocity)*0.5f*t1)/profileVelocity-0.5f*t3; if (t2 < 0.0f) { float maxVelocity = sqrt((2.0f*(float)(targetPosition-position)*profileAcceleration+velocity*velocity)*profileDeceleration/(profileAcceleration+profileDeceleration)); t1 = (maxVelocity-velocity)/profileAcceleration; t2 = 0.0f; t3 = maxVelocity/profileDeceleration; } return t1+t2+t3; } else { // slow down to zero first, and then speed up to profile velocity float t1 = -velocity/profileDeceleration; float t2 = profileVelocity/profileAcceleration; float t4 = profileVelocity/profileDeceleration; float t3 = ((float)(targetPosition-position)-velocity*0.5f*t1)/profileVelocity-0.5f*(t2+t4); if (t3 < 0.0f) { float maxVelocity = sqrt((2.0f*(float)(targetPosition-position)*profileDeceleration+velocity*velocity)*profileAcceleration/(profileAcceleration+profileDeceleration)); t2 = maxVelocity/profileAcceleration; t3 = 0.0f; t4 = maxVelocity/profileDeceleration; } return t1+t2+t3+t4; } } else { // negative velocity required if (velocity < -profileVelocity) { // slow down to (negative) profile velocity first float t1 = (-profileVelocity-velocity)/profileDeceleration; float t2 = (float)(stopPosition-targetPosition)/profileVelocity; float t3 = profileVelocity/profileDeceleration; return t1+t2+t3; } else if (velocity < 0.0f) { // speed up to (negative) profile velocity float t1 = (velocity+profileVelocity)/profileAcceleration; float t3 = profileVelocity/profileDeceleration; float t2 = ((float)(position-targetPosition)+(velocity-profileVelocity)*0.5f*t1)/profileVelocity-0.5f*t3; if (t2 < 0.0f) { float minVelocity = -sqrt((-2.0f*(float)(targetPosition-position)*profileAcceleration+velocity*velocity)*profileDeceleration/(profileAcceleration+profileDeceleration)); t1 = (velocity-minVelocity)/profileAcceleration; t2 = 0.0f; t3 = -minVelocity/profileDeceleration; } return t1+t2+t3; } else { // slow down to zero first, and then speed up to (negative) profile velocity float t1 = velocity/profileDeceleration; float t2 = profileVelocity/profileAcceleration; float t4 = profileVelocity/profileDeceleration; float t3 = (-(float)(targetPosition-position)+velocity*0.5f*t1)/profileVelocity-0.5f*(t2+t4); if (t3 < 0.0f) { float minVelocity = -sqrt((-2.0f*(float)(targetPosition-position)*profileDeceleration+velocity*velocity)*profileAcceleration/(profileAcceleration+profileDeceleration)); t2 = -minVelocity/profileAcceleration; t3 = 0.0f; t4 = -minVelocity/profileDeceleration; } return t1+t2+t3+t4; } } } /** * Increments the current motion towards a given target velocity. * @param targetVelocity the desired target velocity given in [m/s] or [rad/s]. * @param period the time period to increment the motion values for, given in [s]. */ void Motion::incrementToVelocity(float targetVelocity, float period) { if (targetVelocity < -profileVelocity) targetVelocity = -profileVelocity; else if (targetVelocity > profileVelocity) targetVelocity = profileVelocity; if (targetVelocity > 0.0f) { if (velocity > targetVelocity) { // slow down to target velocity float t1 = (velocity-targetVelocity)/profileDeceleration; if (t1 > period) { position += (double)((velocity-profileDeceleration*0.5f*period)*period); velocity += -profileDeceleration*period; } else { position += (double)((velocity-profileDeceleration*0.5f*t1)*t1); velocity += -profileDeceleration*t1; position += (double)(velocity*(period-t1)); } } else if (velocity > 0.0f) { // speed up to target velocity float t1 = (targetVelocity-velocity)/profileAcceleration; if (t1 > period) { position += (double)((velocity+profileAcceleration*0.5f*period)*period); velocity += profileAcceleration*period; } else { position += (double)((velocity+profileAcceleration*0.5f*t1)*t1); velocity += profileAcceleration*t1; position += (double)(velocity*(period-t1)); } } else { // slow down to zero first, and then speed up to target velocity float t1 = -velocity/profileDeceleration; float t2 = targetVelocity/profileAcceleration; if (t1 > period) { position += (double)((velocity+profileDeceleration*0.5f*period)*period); velocity += profileDeceleration*period; } else if (t1+t2 > period) { position += (double)((velocity+profileDeceleration*0.5f*t1)*t1); velocity += profileDeceleration*t1; position += (double)((velocity+profileAcceleration*0.5f*(period-t1))*(period-t1)); velocity += profileAcceleration*(period-t1); } else { position += (double)((velocity+profileDeceleration*0.5f*t1)*t1); velocity += profileDeceleration*t1; position += (double)((velocity+profileAcceleration*0.5f*t2)*t2); velocity += profileAcceleration*t2; position += (double)(velocity*(period-t1-t2)); } } } else { if (velocity < targetVelocity) { // slow down to (negative) target velocity float t1 = (targetVelocity-velocity)/profileDeceleration; if (t1 > period) { position += (double)((velocity+profileDeceleration*0.5f*period)*period); velocity += profileDeceleration*period; } else { position += (double)((velocity+profileDeceleration*0.5f*t1)*t1); velocity += profileDeceleration*t1; position += (double)(velocity*(period-t1)); } } else if (velocity < 0.0f) { // speed up to (negative) target velocity float t1 = (velocity-targetVelocity)/profileAcceleration; if (t1 > period) { position += (double)((velocity-profileAcceleration*0.5f*period)*period); velocity += -profileAcceleration*period; } else { position += (double)((velocity-profileAcceleration*0.5f*t1)*t1); velocity += -profileAcceleration*t1; position += (double)(velocity*(period-t1)); } } else { // slow down to zero first, and then speed up to (negative) target velocity float t1 = velocity/profileDeceleration; float t2 = -targetVelocity/profileAcceleration; if (t1 > period) { position += (double)((velocity-profileDeceleration*0.5f*period)*period); velocity += -profileDeceleration*period; } else if (t1+t2 > period) { position += (double)((velocity-profileDeceleration*0.5f*t1)*t1); velocity += -profileDeceleration*t1; position += (double)((velocity-profileAcceleration*0.5f*(period-t1))*(period-t1)); velocity += -profileAcceleration*(period-t1); } else { position += (double)((velocity-profileDeceleration*0.5f*t1)*t1); velocity += -profileDeceleration*t1; position += (double)((velocity-profileAcceleration*0.5f*t2)*t2); velocity += -profileAcceleration*t2; position += (double)(velocity*(period-t1-t2)); } } } } /** * Increments the current motion towards a given target position. * @param targetPosition the desired target position given in [m] or [rad]. * @param period the time period to increment the motion values for, given in [s]. */ void Motion::incrementToPosition(double targetPosition, float period) { // calculate position, when velocity is reduced to zero double stopPosition = (velocity > 0.0f) ? position+(double)(velocity*velocity/profileDeceleration*0.5f) : position-(double)(velocity*velocity/profileDeceleration*0.5f); if (targetPosition > stopPosition) { // positive velocity required if (velocity > profileVelocity) { // slow down to profile velocity first float t1 = (velocity-profileVelocity)/profileDeceleration; float t2 = (float)(targetPosition-stopPosition)/profileVelocity; float t3 = profileVelocity/profileDeceleration; if (t1 > period) { position += (double)((velocity-profileDeceleration*0.5f*period)*period); velocity += -profileDeceleration*period; } else if (t1+t2 > period) { position += (double)((velocity-profileDeceleration*0.5f*t1)*t1); velocity += -profileDeceleration*t1; position += (double)(velocity*(period-t1)); } else if (t1+t2+t3 > period) { position += (double)((velocity-profileDeceleration*0.5f*t1)*t1); velocity += -profileDeceleration*t1; position += (double)(velocity*t2); position += (double)((velocity-profileDeceleration*0.5f*(period-t1-t2))*(period-t1-t2)); velocity += -profileDeceleration*(period-t1-t2); } else { position += (double)((velocity-profileDeceleration*0.5f*t1)*t1); velocity += -profileDeceleration*t1; position += (double)(velocity*t2); position += (double)((velocity-profileDeceleration*0.5f*t3)*t3); velocity += -profileDeceleration*t3; } } else if (velocity > 0.0f) { // speed up to profile velocity float t1 = (profileVelocity-velocity)/profileAcceleration; float t3 = profileVelocity/profileDeceleration; float t2 = ((float)(targetPosition-position)-(velocity+profileVelocity)*0.5f*t1)/profileVelocity-0.5f*t3; if (t2 < 0.0f) { float maxVelocity = sqrt((2.0f*(float)(targetPosition-position)*profileAcceleration+velocity*velocity)*profileDeceleration/(profileAcceleration+profileDeceleration)); t1 = (maxVelocity-velocity)/profileAcceleration; t2 = 0.0f; t3 = maxVelocity/profileDeceleration; } if (t1 > period) { position += (double)((velocity+profileAcceleration*0.5f*period)*period); velocity += profileAcceleration*period; } else if (t1+t2 > period) { position += (double)((velocity+profileAcceleration*0.5f*t1)*t1); velocity += profileAcceleration*t1; position += (double)(velocity*(period-t1)); } else if (t1+t2+t3 > period) { position += (double)((velocity+profileAcceleration*0.5f*t1)*t1); velocity += profileAcceleration*t1; position += (double)(velocity*t2); position += (double)((velocity-profileDeceleration*0.5f*(period-t1-t2))*(period-t1-t2)); velocity += -profileDeceleration*(period-t1-t2); } else { position += (double)((velocity+profileAcceleration*0.5f*t1)*t1); velocity += profileAcceleration*t1; position += (double)(velocity*t2); position += (double)((velocity-profileDeceleration*0.5f*t3)*t3); velocity += -profileDeceleration*t3; } } else { // slow down to zero first, and then speed up to profile velocity float t1 = -velocity/profileDeceleration; float t2 = profileVelocity/profileAcceleration; float t4 = profileVelocity/profileDeceleration; float t3 = ((float)(targetPosition-position)-velocity*0.5f*t1)/profileVelocity-0.5f*(t2+t4); if (t3 < 0.0f) { float maxVelocity = sqrt((2.0f*(float)(targetPosition-position)*profileDeceleration+velocity*velocity)*profileAcceleration/(profileAcceleration+profileDeceleration)); t2 = maxVelocity/profileAcceleration; t3 = 0.0f; t4 = maxVelocity/profileDeceleration; } if (t1 > period) { position += (double)((velocity+profileDeceleration*0.5f*period)*period); velocity += profileDeceleration*period; } else if (t1+t2 > period) { position += (double)((velocity+profileDeceleration*0.5f*t1)*t1); velocity += profileDeceleration*t1; position += (double)((velocity+profileAcceleration*0.5f*(period-t1))*(period-t1)); velocity += profileAcceleration*(period-t1); } else if (t1+t2+t3 > period) { position += (double)((velocity+profileDeceleration*0.5f*t1)*t1); velocity += profileDeceleration*t1; position += (double)((velocity+profileAcceleration*0.5f*t2)*t2); velocity += profileAcceleration*t2; position += (double)(velocity*(period-t1-t2)); } else if (t1+t2+t3+t4 > period) { position += (double)((velocity+profileDeceleration*0.5f*t1)*t1); velocity += profileDeceleration*t1; position += (double)((velocity+profileAcceleration*0.5f*t2)*t2); velocity += profileAcceleration*t2; position += (double)(velocity*t3); position += (double)((velocity-profileDeceleration*0.5f*(period-t1-t2-t3))*(period-t1-t2-t3)); velocity += -profileDeceleration*(period-t1-t2-t3); } else { position += (double)((velocity+profileDeceleration*0.5f*t1)*t1); velocity += profileDeceleration*t1; position += (double)((velocity+profileAcceleration*0.5f*t2)*t2); velocity += profileAcceleration*t2; position += (double)(velocity*t3); position += (double)((velocity-profileDeceleration*0.5f*t4)*t4); velocity += -profileDeceleration*t4; } } } else { // negative velocity required if (velocity < -profileVelocity) { // slow down to (negative) profile velocity first float t1 = (-profileVelocity-velocity)/profileDeceleration; float t2 = (float)(stopPosition-targetPosition)/profileVelocity; float t3 = profileVelocity/profileDeceleration; if (t1 > period) { position += (double)((velocity+profileDeceleration*0.5f*period)*period); velocity += profileDeceleration*period; } else if (t1+t2 > period) { position += (double)((velocity+profileDeceleration*0.5f*t1)*t1); velocity += profileDeceleration*t1; position += (double)(velocity*(period-t1)); } else if (t1+t2+t3 > period) { position += (double)((velocity+profileDeceleration*0.5f*t1)*t1); velocity += profileDeceleration*t1; position += (double)(velocity*t2); position += (double)((velocity+profileDeceleration*0.5f*(period-t1-t2))*(period-t1-t2)); velocity += profileDeceleration*(period-t1-t2); } else { position += (double)((velocity+profileDeceleration*0.5f*t1)*t1); velocity += profileDeceleration*t1; position += (double)(velocity*t2); position += (double)((velocity+profileDeceleration*0.5f*t3)*t3); velocity += profileDeceleration*t3; } } else if (velocity < 0.0f) { // speed up to (negative) profile velocity float t1 = (velocity+profileVelocity)/profileAcceleration; float t3 = profileVelocity/profileDeceleration; float t2 = ((float)(position-targetPosition)+(velocity-profileVelocity)*0.5f*t1)/profileVelocity-0.5f*t3; if (t2 < 0.0f) { float minVelocity = -sqrt((-2.0f*(float)(targetPosition-position)*profileAcceleration+velocity*velocity)*profileDeceleration/(profileAcceleration+profileDeceleration)); t1 = (velocity-minVelocity)/profileAcceleration; t2 = 0.0f; t3 = -minVelocity/profileDeceleration; } if (t1 > period) { position += (double)((velocity-profileAcceleration*0.5f*period)*period); velocity += -profileAcceleration*period; } else if (t1+t2 > period) { position += (double)((velocity-profileAcceleration*0.5f*t1)*t1); velocity += -profileAcceleration*t1; position += (double)(velocity*(period-t1)); } else if (t1+t2+t3 > period) { position += (double)((velocity-profileAcceleration*0.5f*t1)*t1); velocity += -profileAcceleration*t1; position += (double)(velocity*t2); position += (double)((velocity+profileDeceleration*0.5f*(period-t1-t2))*(period-t1-t2)); velocity += profileDeceleration*(period-t1-t2); } else { position += (double)((velocity-profileAcceleration*0.5f*t1)*t1); velocity += -profileAcceleration*t1; position += (double)(velocity*t2); position += (double)((velocity+profileDeceleration*0.5f*t3)*t3); velocity += profileDeceleration*t3; } } else { // slow down to zero first, and then speed up to (negative) profile velocity float t1 = velocity/profileDeceleration; float t2 = profileVelocity/profileAcceleration; float t4 = profileVelocity/profileDeceleration; float t3 = (-(float)(targetPosition-position)+velocity*0.5f*t1)/profileVelocity-0.5f*(t2+t4); if (t3 < 0.0f) { float minVelocity = -sqrt((-2.0f*(float)(targetPosition-position)*profileDeceleration+velocity*velocity)*profileAcceleration/(profileAcceleration+profileDeceleration)); t2 = -minVelocity/profileAcceleration; t3 = 0.0f; t4 = -minVelocity/profileDeceleration; } if (t1 > period) { position += (double)((velocity-profileDeceleration*0.5f*period)*period); velocity += -profileDeceleration*period; } else if (t1+t2 > period) { position += (double)((velocity-profileDeceleration*0.5f*t1)*t1); velocity += -profileDeceleration*t1; position += (double)((velocity-profileAcceleration*0.5f*(period-t1))*(period-t1)); velocity += -profileAcceleration*(period-t1); } else if (t1+t2+t3 > period) { position += (double)((velocity-profileDeceleration*0.5f*t1)*t1); velocity += -profileDeceleration*t1; position += (double)((velocity-profileAcceleration*0.5f*t2)*t2); velocity += -profileAcceleration*t2; position += (double)(velocity*(period-t1-t2)); } else if (t1+t2+t3+t4 > period) { position += (double)((velocity-profileDeceleration*0.5f*t1)*t1); velocity += -profileDeceleration*t1; position += (double)((velocity-profileAcceleration*0.5f*t2)*t2); velocity += -profileAcceleration*t2; position += (double)(velocity*t3); position += (double)((velocity+profileDeceleration*0.5f*(period-t1-t2-t3))*(period-t1-t2-t3)); velocity += profileDeceleration*(period-t1-t2-t3); } else { position += (double)((velocity-profileDeceleration*0.5f*t1)*t1); velocity += -profileDeceleration*t1; position += (double)((velocity-profileAcceleration*0.5f*t2)*t2); velocity += -profileAcceleration*t2; position += (double)(velocity*t3); position += (double)((velocity+profileDeceleration*0.5f*t4)*t4); velocity += profileDeceleration*t4; } } } }