This program connects to a few sensors via I2C and sends the data collected to a WNC Cellular Module which is located on an Avnet WNC-Shield card.

Dependencies:   FXOS8700CQ MODSERIAL mbed

/media/uploads/kevinkeryk/avnet_logo_tagline_rgb.png

Avnet Cellular IoT Instructions

  • One problematic area is setting the MY_SERVER_URL. When you copy the URL from the flow, you must make sure the MY_SERVER_URL is also set to the appropriate server. It can be either "run-east.att.io" or "run-west.att.io".

Useful Links

Adding Additional Sensors

The FLOW_DEVICE_NAME field must contain the name of the instance of the Virtual Starter Kit in FLOW you will be communicating with. Usually this is "vstarterkit001", but if you have problems communicating you can verify this is correct. Note: This device will not be created until you click the “Initialize” input on the Virtual Device tab of the Starter Kit project in FLOW. At that point, it becomes available in M2X and you can see it as the DEVICE SERIAL field under Devices as in the image below. /media/uploads/JMF/vstarterkit.png

Sensors: When executing, the FRDM-K64F board uploads sensor measurements to AT&T’s Flow environment every 5 seconds, using the Cellular shield board. You can adjust how often you want to do this by editing the SENSOR_UPDATE_INTERVAL_MS value in the header file.

Temperature and humidity: By default, the board reports readings from the HTS221 temperature and humidity sensor. These two values are sent to the HTTP IN /climate port in FLOW with field names “temp” and “humidity”. Temperature is in degrees Fahrenheit and humidity is a %. This default assignment is: iSensorsToReport = TEMP_HUMIDITY_ONLY;

Accelerometer: If you want to expand and use the onboard motion sensor, you can also send 3-axis accelerometer information from the board as “accelX”, “accelY”, and “accelZ”. This is useful if you want to know the stationary position of the board with regards to gravity, or whether it is in motion. These readings are in g’s. To send these values, change the assignment to: iSensorsToReport = TEMP_HUMIDITY_ACCELEROMETER;

PMOD Sensors: If you have a Silicon Labs sensor module that can plug into the PMOD connector on the Cellular shield, you are able to measure proximity, UV light, ambient visible and infrared light from the Si1145 sensor. This PMOD also has a temperature and humidity sensor, but in this case it is redundant. When enabled, the fields “proximity”, “light_uv”, “light_vis” and “light_ir” are also sent. To enable all these sensors, change the assignment to: iSensorsToReport = TEMP_HUMIDITY_ACCELEROMETER_PMODSENSORS;

Connecting the PMOD sensors: Because the pinouts do not align, the SiLabs PMOD sensor board cannot be plugged into the J10 PMOD receptacle on the shield directly. The following wiring instructions must be followed:

SignalJ10ShieldPMOD Color in the image below
VCCPin 6Pin 6Red
GNDPin 5Pin 5Black
SDAPin4Pin 3Green
SCLPin3Pin 2Yellow

/media/uploads/JMF/xyz.jpg

AT&T M2X and FLOW Instructions

M2X & FLOW Instructions

Link to AT&T M2X

M2X

Link to AT&T Flow

FLOW

Avnet WNC-Shield Information

Getting Started with the Avnet WNC-Shield Software

  • This project uses Revision 119 of the MBED library because of I2C implementation differences with the tip (Revision 121).
  • This project uses Revision 4 of the FXOS8700CQ library for sensors.

Easily Modifiable Parameters

Inside the mbed Avnet_ATT_Cellular_IOT project, the parameters needed to customize your board are in the config_me.h file.

  • FLOW parameters: This project assumes you are using a fork of the Starter Kit Base project, which is a reference design created using AT&T’s FLOW (https://flow.att.com) that allows the creation of online virtualization and other IoT functionality. The default parameters in the config_me.h file are done for a specific instance of this project. When you fork the original project, you get your own instance and it will have its own base address. At the bottom of the FLOW environment, when you click on the Endpoints tab, URL information that is specific to your instance is displayed. Of note is the Base URL. In the example below (as in the default mbed project), the Base URL is: https://run-west.att.io/1e464b19cdcde/774c88d68202/86694923d5bf28a/in/flow You have to take note of two parts of this address. The run-west.att.io part is the server URL, and you have to make sure the
  • MY_SERVER_URL field in config_me.h matches this. The rest of the base URL, in green above, needs to be pasted into the FLOW_BASE_URL field.

There is also a FLOW_INPUT_NAME field. This should match the name of the HTTP IN port in the FLOW project that you want to send sensor data to. The default is "/climate", as in the FLOW image below.

/media/uploads/JMF/sf.png

Where is the Binary I compiled

When the COMPILE button is pressed, it compiles your project and links it. The result is placed in the DOWNLOAD folder you use when downloading files from the Internet. It will be called AvnetATT_shape_hackathon_K64F.bin.

Additional Information on Compiling/Configuring

Comprehensive instructions can be found at: Quick Start Instructions

Committer:
stefanrousseau
Date:
Mon Aug 01 18:29:04 2016 +0000
Revision:
61:f6b93129f954
Parent:
57:d184175b6b03
Child:
64:09004cd610df
Moved cellular modem routines from main.cpp to cell_modem.cpp; Moved HTS221 routines from main.cpp to sensors.cpp

Who changed what in which revision?

UserRevisionLine numberNew contents of line
stefanrousseau 4:f83bedd9cab4 1 #include "mbed.h"
stefanrousseau 57:d184175b6b03 2 #include "sensors.h"
stefanrousseau 55:3abf9e3f42e6 3 #include "hardware.h"
stefanrousseau 57:d184175b6b03 4 #include "FXOS8700CQ.h"
stefanrousseau 61:f6b93129f954 5 #include "HTS221.h"
stefanrousseau 61:f6b93129f954 6 #include <string>
stefanrousseau 4:f83bedd9cab4 7
stefanrousseau 4:f83bedd9cab4 8 //I2C for pmod sensors:
stefanrousseau 4:f83bedd9cab4 9 #define Si1145_PMOD_I2C_ADDR 0xC0 //this is for 7-bit addr 0x60 for the Si7020
stefanrousseau 4:f83bedd9cab4 10 #define Si7020_PMOD_I2C_ADDR 0x80 //this is for 7-bit addr 0x4 for the Si7020
stefanrousseau 4:f83bedd9cab4 11
stefanrousseau 57:d184175b6b03 12 // Storage for the data from the motion sensor
stefanrousseau 4:f83bedd9cab4 13 SRAWDATA accel_data;
stefanrousseau 4:f83bedd9cab4 14 SRAWDATA magn_data;
stefanrousseau 4:f83bedd9cab4 15 //InterruptIn fxos_int1(PTC6); // unused, common with SW2 on FRDM-K64F
stefanrousseau 4:f83bedd9cab4 16 InterruptIn fxos_int2(PTC13); // should just be the Data-Ready interrupt
stefanrousseau 4:f83bedd9cab4 17 bool fxos_int2_triggered = false;
stefanrousseau 4:f83bedd9cab4 18 void trigger_fxos_int2(void)
stefanrousseau 4:f83bedd9cab4 19 {
stefanrousseau 4:f83bedd9cab4 20 fxos_int2_triggered = true;
stefanrousseau 57:d184175b6b03 21
stefanrousseau 4:f83bedd9cab4 22 }
stefanrousseau 4:f83bedd9cab4 23
stefanrousseau 4:f83bedd9cab4 24 /*------------------------------------------------------------------------------
stefanrousseau 4:f83bedd9cab4 25 * Perform I2C single read.
stefanrousseau 4:f83bedd9cab4 26 *------------------------------------------------------------------------------*/
stefanrousseau 4:f83bedd9cab4 27 unsigned char I2C_ReadSingleByte(unsigned char ucDeviceAddress)
stefanrousseau 4:f83bedd9cab4 28 {
stefanrousseau 4:f83bedd9cab4 29 char rxbuffer [1];
stefanrousseau 11:e6602513730f 30 i2c.read(ucDeviceAddress, rxbuffer, 1 );
stefanrousseau 4:f83bedd9cab4 31 return (unsigned char)rxbuffer[0];
stefanrousseau 4:f83bedd9cab4 32 } //I2C_ReadSingleByte()
stefanrousseau 4:f83bedd9cab4 33
stefanrousseau 4:f83bedd9cab4 34 /*------------------------------------------------------------------------------
stefanrousseau 4:f83bedd9cab4 35 * Perform I2C single read from address.
stefanrousseau 4:f83bedd9cab4 36 *------------------------------------------------------------------------------*/
stefanrousseau 4:f83bedd9cab4 37 unsigned char I2C_ReadSingleByteFromAddr(unsigned char ucDeviceAddress, unsigned char Addr)
stefanrousseau 4:f83bedd9cab4 38 {
stefanrousseau 4:f83bedd9cab4 39 char txbuffer [1];
stefanrousseau 4:f83bedd9cab4 40 char rxbuffer [1];
stefanrousseau 4:f83bedd9cab4 41 txbuffer[0] = (char)Addr;
stefanrousseau 11:e6602513730f 42 i2c.write(ucDeviceAddress, txbuffer, 1 );
stefanrousseau 11:e6602513730f 43 i2c.read(ucDeviceAddress, rxbuffer, 1 );
stefanrousseau 4:f83bedd9cab4 44 return (unsigned char)rxbuffer[0];
stefanrousseau 4:f83bedd9cab4 45 } //I2C_ReadSingleByteFromAddr()
stefanrousseau 4:f83bedd9cab4 46
stefanrousseau 4:f83bedd9cab4 47 /*------------------------------------------------------------------------------
stefanrousseau 4:f83bedd9cab4 48 * Perform I2C read of more than 1 byte.
stefanrousseau 4:f83bedd9cab4 49 *------------------------------------------------------------------------------*/
stefanrousseau 4:f83bedd9cab4 50 int I2C_ReadMultipleBytes(unsigned char ucDeviceAddress, char *ucData, unsigned char ucLength)
stefanrousseau 4:f83bedd9cab4 51 {
stefanrousseau 4:f83bedd9cab4 52 int status;
stefanrousseau 11:e6602513730f 53 status = i2c.read(ucDeviceAddress, ucData, ucLength);
stefanrousseau 4:f83bedd9cab4 54 return status;
stefanrousseau 4:f83bedd9cab4 55 } //I2C_ReadMultipleBytes()
stefanrousseau 4:f83bedd9cab4 56
stefanrousseau 4:f83bedd9cab4 57 /*------------------------------------------------------------------------------
stefanrousseau 4:f83bedd9cab4 58 * Perform I2C write of a single byte.
stefanrousseau 4:f83bedd9cab4 59 *------------------------------------------------------------------------------*/
stefanrousseau 4:f83bedd9cab4 60 int I2C_WriteSingleByte(unsigned char ucDeviceAddress, unsigned char Data, bool bSendStop)
stefanrousseau 4:f83bedd9cab4 61 {
stefanrousseau 4:f83bedd9cab4 62 int status;
stefanrousseau 4:f83bedd9cab4 63 char txbuffer [1];
stefanrousseau 4:f83bedd9cab4 64 txbuffer[0] = (char)Data; //data
stefanrousseau 11:e6602513730f 65 status = i2c.write(ucDeviceAddress, txbuffer, 1, !bSendStop); //true: do not send stop
stefanrousseau 4:f83bedd9cab4 66 return status;
stefanrousseau 4:f83bedd9cab4 67 } //I2C_WriteSingleByte()
stefanrousseau 4:f83bedd9cab4 68
stefanrousseau 4:f83bedd9cab4 69 /*------------------------------------------------------------------------------
stefanrousseau 4:f83bedd9cab4 70 * Perform I2C write of 1 byte to an address.
stefanrousseau 4:f83bedd9cab4 71 *------------------------------------------------------------------------------*/
stefanrousseau 4:f83bedd9cab4 72 int I2C_WriteSingleByteToAddr(unsigned char ucDeviceAddress, unsigned char Addr, unsigned char Data, bool bSendStop)
stefanrousseau 4:f83bedd9cab4 73 {
stefanrousseau 4:f83bedd9cab4 74 int status;
stefanrousseau 4:f83bedd9cab4 75 char txbuffer [2];
stefanrousseau 4:f83bedd9cab4 76 txbuffer[0] = (char)Addr; //address
stefanrousseau 4:f83bedd9cab4 77 txbuffer[1] = (char)Data; //data
stefanrousseau 11:e6602513730f 78 //status = i2c.write(ucDeviceAddress, txbuffer, 2, false); //stop at end
stefanrousseau 11:e6602513730f 79 status = i2c.write(ucDeviceAddress, txbuffer, 2, !bSendStop); //true: do not send stop
stefanrousseau 4:f83bedd9cab4 80 return status;
stefanrousseau 4:f83bedd9cab4 81 } //I2C_WriteSingleByteToAddr()
stefanrousseau 4:f83bedd9cab4 82
stefanrousseau 4:f83bedd9cab4 83 /*------------------------------------------------------------------------------
stefanrousseau 4:f83bedd9cab4 84 * Perform I2C write of more than 1 byte.
stefanrousseau 4:f83bedd9cab4 85 *------------------------------------------------------------------------------*/
stefanrousseau 4:f83bedd9cab4 86 int I2C_WriteMultipleBytes(unsigned char ucDeviceAddress, char *ucData, unsigned char ucLength, bool bSendStop)
stefanrousseau 4:f83bedd9cab4 87 {
stefanrousseau 4:f83bedd9cab4 88 int status;
stefanrousseau 11:e6602513730f 89 status = i2c.write(ucDeviceAddress, ucData, ucLength, !bSendStop); //true: do not send stop
stefanrousseau 4:f83bedd9cab4 90 return status;
stefanrousseau 4:f83bedd9cab4 91 } //I2C_WriteMultipleBytes()
stefanrousseau 4:f83bedd9cab4 92
stefanrousseau 4:f83bedd9cab4 93 bool bSi7020_present = false;
stefanrousseau 4:f83bedd9cab4 94 void Init_Si7020(void)
stefanrousseau 4:f83bedd9cab4 95 {
stefanrousseau 4:f83bedd9cab4 96 char SN_7020 [8];
stefanrousseau 4:f83bedd9cab4 97 //SN part 1:
stefanrousseau 4:f83bedd9cab4 98 I2C_WriteSingleByteToAddr(Si7020_PMOD_I2C_ADDR, 0xFA, 0x0F, false);
stefanrousseau 4:f83bedd9cab4 99 I2C_ReadMultipleBytes(Si7020_PMOD_I2C_ADDR, &SN_7020[0], 4);
stefanrousseau 4:f83bedd9cab4 100
stefanrousseau 4:f83bedd9cab4 101 //SN part 1:
stefanrousseau 4:f83bedd9cab4 102 I2C_WriteSingleByteToAddr(Si7020_PMOD_I2C_ADDR, 0xFC, 0xC9, false);
stefanrousseau 4:f83bedd9cab4 103 I2C_ReadMultipleBytes(Si7020_PMOD_I2C_ADDR, &SN_7020[4], 4);
stefanrousseau 4:f83bedd9cab4 104
stefanrousseau 4:f83bedd9cab4 105 char Ver_7020 [2];
stefanrousseau 4:f83bedd9cab4 106 //FW version:
stefanrousseau 4:f83bedd9cab4 107 I2C_WriteSingleByteToAddr(Si7020_PMOD_I2C_ADDR, 0x84, 0xB8, false);
stefanrousseau 4:f83bedd9cab4 108 I2C_ReadMultipleBytes(Si7020_PMOD_I2C_ADDR, &Ver_7020[0], 2);
stefanrousseau 4:f83bedd9cab4 109
stefanrousseau 4:f83bedd9cab4 110 if (SN_7020[4] != 0x14)
stefanrousseau 4:f83bedd9cab4 111 {
stefanrousseau 4:f83bedd9cab4 112 bSi7020_present = false;
stefanrousseau 4:f83bedd9cab4 113 printf("Si7020 sensor not found\n");
stefanrousseau 4:f83bedd9cab4 114 }
stefanrousseau 4:f83bedd9cab4 115 else
stefanrousseau 4:f83bedd9cab4 116 {
stefanrousseau 4:f83bedd9cab4 117 bSi7020_present = true;
stefanrousseau 4:f83bedd9cab4 118 printf("Si7020 SN = 0x%02X%02X%02X%02X%02X%02X%02X%02X\n", SN_7020[0], SN_7020[1], SN_7020[2], SN_7020[3], SN_7020[4], SN_7020[5], SN_7020[6], SN_7020[7]);
stefanrousseau 4:f83bedd9cab4 119 printf("Si7020 Version# = 0x%02X\n", Ver_7020[0]);
stefanrousseau 4:f83bedd9cab4 120 } //bool bSi7020_present = true
stefanrousseau 4:f83bedd9cab4 121
stefanrousseau 4:f83bedd9cab4 122 } //Init_Si7020()
stefanrousseau 4:f83bedd9cab4 123
stefanrousseau 4:f83bedd9cab4 124 void Read_Si7020(void)
stefanrousseau 4:f83bedd9cab4 125 {
stefanrousseau 4:f83bedd9cab4 126 if (bSi7020_present)
stefanrousseau 4:f83bedd9cab4 127 {
stefanrousseau 4:f83bedd9cab4 128 char Humidity [2];
stefanrousseau 4:f83bedd9cab4 129 char Temperature [2];
stefanrousseau 4:f83bedd9cab4 130 //Command to measure humidity (temperature also gets measured):
stefanrousseau 4:f83bedd9cab4 131 I2C_WriteSingleByte(Si7020_PMOD_I2C_ADDR, 0xF5, false); //no hold, must do dummy read
stefanrousseau 4:f83bedd9cab4 132 I2C_ReadMultipleBytes(Si7020_PMOD_I2C_ADDR, &Humidity[0], 1); //dummy read, should get an nack until it is done
stefanrousseau 4:f83bedd9cab4 133 wait (0.05); //wait for measurement. Can also keep reading until no NACK is received
stefanrousseau 4:f83bedd9cab4 134 //I2C_WriteSingleByte(Si7020_PMOD_I2C_ADDR, 0xE5, false); //Hold mod, the device does a clock stretch on the read until it is done (crashes the I2C bus...
stefanrousseau 4:f83bedd9cab4 135 I2C_ReadMultipleBytes(Si7020_PMOD_I2C_ADDR, &Humidity[0], 2); //read humidity
stefanrousseau 4:f83bedd9cab4 136 //printf("Read Si7020 Humidity = 0x%02X%02X\n", Humidity[0], Humidity[1]);
stefanrousseau 4:f83bedd9cab4 137 int rh_code = (Humidity[0] << 8) + Humidity[1];
stefanrousseau 4:f83bedd9cab4 138 float fRh = (125.0*rh_code/65536.0) - 6.0; //from datasheet
stefanrousseau 4:f83bedd9cab4 139 //printf("Si7020 Humidity = %*.*f %%\n", 4, 2, fRh); //double % sign for escape //printf("%*.*f\n", myFieldWidth, myPrecision, myFloatValue);
stefanrousseau 4:f83bedd9cab4 140 sprintf(SENSOR_DATA.Humidity_Si7020, "%0.2f", fRh);
stefanrousseau 4:f83bedd9cab4 141
stefanrousseau 4:f83bedd9cab4 142 //Command to read temperature when humidity is already done:
stefanrousseau 4:f83bedd9cab4 143 I2C_WriteSingleByte(Si7020_PMOD_I2C_ADDR, 0xE0, false);
stefanrousseau 4:f83bedd9cab4 144 I2C_ReadMultipleBytes(Si7020_PMOD_I2C_ADDR, &Temperature[0], 2); //read temperature
stefanrousseau 4:f83bedd9cab4 145 //printf("Read Si7020 Temperature = 0x%02X%02X\n", Temperature[0], Temperature[1]);
stefanrousseau 4:f83bedd9cab4 146 int temp_code = (Temperature[0] << 8) + Temperature[1];
stefanrousseau 4:f83bedd9cab4 147 float fTemp = (175.72*temp_code/65536.0) - 46.85; //from datasheet in Celcius
stefanrousseau 4:f83bedd9cab4 148 //printf("Si7020 Temperature = %*.*f deg C\n", 4, 2, fTemp);
stefanrousseau 4:f83bedd9cab4 149 sprintf(SENSOR_DATA.Temperature_Si7020, "%0.2f", fTemp);
stefanrousseau 4:f83bedd9cab4 150 } //bool bSi7020_present = true
stefanrousseau 4:f83bedd9cab4 151
stefanrousseau 4:f83bedd9cab4 152 } //Read_Si7020()
stefanrousseau 4:f83bedd9cab4 153
stefanrousseau 4:f83bedd9cab4 154 /*------------------------------------------------------------------------------
stefanrousseau 4:f83bedd9cab4 155 * The following are aliases so that the Si1145 coding examples can be used as-is.
stefanrousseau 4:f83bedd9cab4 156 *------------------------------------------------------------------------------*/
stefanrousseau 4:f83bedd9cab4 157 unsigned char ReadFrom_Si1145_Register(unsigned char reg) //returns byte from I2C Register 'reg'
stefanrousseau 4:f83bedd9cab4 158 {
stefanrousseau 4:f83bedd9cab4 159 unsigned char result = I2C_ReadSingleByteFromAddr(Si1145_PMOD_I2C_ADDR, reg);
stefanrousseau 4:f83bedd9cab4 160 return (result);
stefanrousseau 4:f83bedd9cab4 161 } //ReadFrom_Si1145_Register()
stefanrousseau 4:f83bedd9cab4 162
stefanrousseau 4:f83bedd9cab4 163 void WriteTo_Si1145_Register(unsigned char reg, unsigned char value) //writes 'value' into I2C Register reg'
stefanrousseau 4:f83bedd9cab4 164 {
stefanrousseau 4:f83bedd9cab4 165 I2C_WriteSingleByteToAddr(Si1145_PMOD_I2C_ADDR, reg, value, true);
stefanrousseau 4:f83bedd9cab4 166 } //WriteTo_Si1145_Register()
stefanrousseau 4:f83bedd9cab4 167
stefanrousseau 4:f83bedd9cab4 168 #define REG_PARAM_WR 0x17
stefanrousseau 4:f83bedd9cab4 169 #define REG_PARAM_RD 0x2E
stefanrousseau 4:f83bedd9cab4 170 #define REG_COMMAND 0x18
stefanrousseau 4:f83bedd9cab4 171 #define REG_RESPONSE 0x20
stefanrousseau 4:f83bedd9cab4 172 #define REG_HW_KEY 0x07
stefanrousseau 4:f83bedd9cab4 173 #define HW_KEY_VAL0 0x17
stefanrousseau 4:f83bedd9cab4 174 #define REG_MEAS_RATE_LSB 0x08
stefanrousseau 4:f83bedd9cab4 175 #define REG_MEAS_RATE_MSB 0x09
stefanrousseau 4:f83bedd9cab4 176 #define REG_PS_LED21 0x0F
stefanrousseau 4:f83bedd9cab4 177 #define REG_PS_LED3 0x10
stefanrousseau 4:f83bedd9cab4 178 #define MAX_LED_CURRENT 0xF
stefanrousseau 4:f83bedd9cab4 179 #define PARAM_CH_LIST 0x01
stefanrousseau 4:f83bedd9cab4 180 #define REG_ALS_VIS_DATA0 0x22
stefanrousseau 4:f83bedd9cab4 181 #define REG_ALS_VIS_DATA1 0x23
stefanrousseau 4:f83bedd9cab4 182 #define REG_ALS_IR_DATA0 0x24
stefanrousseau 4:f83bedd9cab4 183 #define REG_ALS_IR_DATA1 0x25
stefanrousseau 4:f83bedd9cab4 184 #define REG_PS1_DATA0 0x26
stefanrousseau 4:f83bedd9cab4 185 #define REG_PS1_DATA1 0x27
stefanrousseau 4:f83bedd9cab4 186 #define REG_PS2_DATA0 0x28
stefanrousseau 4:f83bedd9cab4 187 #define REG_PS2_DATA1 0x29
stefanrousseau 4:f83bedd9cab4 188 #define REG_PS3_DATA0 0x2A
stefanrousseau 4:f83bedd9cab4 189 #define REG_PS3_DATA1 0x2B
stefanrousseau 4:f83bedd9cab4 190 #define REG_UVINDEX0 0x2C
stefanrousseau 4:f83bedd9cab4 191 #define REG_UVINDEX1 0x2D
stefanrousseau 4:f83bedd9cab4 192 int Si1145_ParamSet(unsigned char address, unsigned char value) //writes 'value' into Parameter 'address'
stefanrousseau 4:f83bedd9cab4 193 {
stefanrousseau 4:f83bedd9cab4 194 char txbuffer [3];
stefanrousseau 4:f83bedd9cab4 195 txbuffer[0] = (char)REG_PARAM_WR; //destination
stefanrousseau 4:f83bedd9cab4 196 txbuffer[1] = (char)value;
stefanrousseau 4:f83bedd9cab4 197 txbuffer[2] = (char)(0xA0 + (address & 0x1F));
stefanrousseau 4:f83bedd9cab4 198 int retval;
stefanrousseau 4:f83bedd9cab4 199 //if((retval = _waitUntilSleep(si114x_handle))!=0) return retval;
stefanrousseau 4:f83bedd9cab4 200 retval = I2C_WriteMultipleBytes(Si1145_PMOD_I2C_ADDR, &txbuffer[0], 3, true);
stefanrousseau 4:f83bedd9cab4 201 if(retval!=0) return retval;
stefanrousseau 4:f83bedd9cab4 202 while(1)
stefanrousseau 4:f83bedd9cab4 203 {
stefanrousseau 4:f83bedd9cab4 204 retval=ReadFrom_Si1145_Register(REG_PARAM_RD);
stefanrousseau 4:f83bedd9cab4 205 if (retval==value) break;
stefanrousseau 4:f83bedd9cab4 206 }
stefanrousseau 4:f83bedd9cab4 207 return (0);
stefanrousseau 4:f83bedd9cab4 208 } //Si1145_ParamSet()
stefanrousseau 4:f83bedd9cab4 209
stefanrousseau 4:f83bedd9cab4 210 void PsAlsForce(void) //equivalent to WriteTo_Si1145_Register(REG_COMMAND,0x07). This forces PS and ALS measurements
stefanrousseau 4:f83bedd9cab4 211 {
stefanrousseau 4:f83bedd9cab4 212 WriteTo_Si1145_Register(REG_COMMAND,0x07);
stefanrousseau 4:f83bedd9cab4 213 } //PsAlsForce()
stefanrousseau 4:f83bedd9cab4 214
stefanrousseau 4:f83bedd9cab4 215 bool bSi1145_present = false;
stefanrousseau 4:f83bedd9cab4 216 void Init_Si1145(void)
stefanrousseau 4:f83bedd9cab4 217 {
stefanrousseau 4:f83bedd9cab4 218 unsigned char readbyte;
stefanrousseau 4:f83bedd9cab4 219 //Read Si1145 part ID:
stefanrousseau 4:f83bedd9cab4 220 readbyte = ReadFrom_Si1145_Register(0x00);
stefanrousseau 4:f83bedd9cab4 221 if (readbyte != 0x45)
stefanrousseau 4:f83bedd9cab4 222 {
stefanrousseau 4:f83bedd9cab4 223 bSi1145_present = false;
stefanrousseau 4:f83bedd9cab4 224 printf("Si1145 sensor not found\n");
stefanrousseau 4:f83bedd9cab4 225 }
stefanrousseau 4:f83bedd9cab4 226 else
stefanrousseau 4:f83bedd9cab4 227 {
stefanrousseau 4:f83bedd9cab4 228 bSi1145_present = true;
stefanrousseau 4:f83bedd9cab4 229 printf("Si1145 Part ID : 0x%02X\n", readbyte);
stefanrousseau 4:f83bedd9cab4 230 //Initialize Si1145 by writing to HW_KEY (I2C Register 0x07 = 0x17)
stefanrousseau 4:f83bedd9cab4 231 WriteTo_Si1145_Register(REG_HW_KEY, HW_KEY_VAL0);
stefanrousseau 4:f83bedd9cab4 232
stefanrousseau 4:f83bedd9cab4 233 // Initialize LED Current
stefanrousseau 4:f83bedd9cab4 234 // I2C Register 0x0F = 0xFF
stefanrousseau 4:f83bedd9cab4 235 // I2C Register 0x10 = 0x0F
stefanrousseau 4:f83bedd9cab4 236 WriteTo_Si1145_Register(REG_PS_LED21,(MAX_LED_CURRENT<<4) + MAX_LED_CURRENT);
stefanrousseau 4:f83bedd9cab4 237 WriteTo_Si1145_Register(REG_PS_LED3, MAX_LED_CURRENT);
stefanrousseau 4:f83bedd9cab4 238
stefanrousseau 4:f83bedd9cab4 239 // Parameter 0x01 = 0x37
stefanrousseau 4:f83bedd9cab4 240 //Si1145_ParamSet(PARAM_CH_LIST, ALS_IR_TASK + ALS_VIS_TASK + PS1_TASK + PS2_TASK + PS3_TASK);
stefanrousseau 4:f83bedd9cab4 241 //Si1145_ParamSet(0x01, 0x37); //CHLIST is address 0x01 in the parameter RAM. It defines which sensors are enabled (here, some)
stefanrousseau 4:f83bedd9cab4 242 Si1145_ParamSet(0x01, 0x7F); //CHLIST is address 0x01 in the parameter RAM. It defines which sensors are enabled (here, all but UV. One can only use AUX or UV but here we use AUX because UV does not work...)
stefanrousseau 4:f83bedd9cab4 243 // I2C Register 0x18 = 0x0x07 //This is PSALS_FORCE to the Command register => Force a single PS (proximity sensor) and ALS (ambient light sensor) reading - The factory code has this as 0x05 which only does PS...
stefanrousseau 4:f83bedd9cab4 244 PsAlsForce(); // can also be written as WriteTo_Si1145_Register(REG_COMMAND,0x07);
stefanrousseau 4:f83bedd9cab4 245 WriteTo_Si1145_Register(REG_COMMAND, 0x0F);//command to put it into auto mode
stefanrousseau 4:f83bedd9cab4 246 //Set MES_RATE to 0x1000. I.e. the device will automatically wake up every 16 * 256* 31.25 us = 0.128 seconds to measure
stefanrousseau 4:f83bedd9cab4 247 WriteTo_Si1145_Register(REG_MEAS_RATE_LSB, 0x00);
stefanrousseau 4:f83bedd9cab4 248 WriteTo_Si1145_Register(REG_MEAS_RATE_MSB, 0x10);
stefanrousseau 4:f83bedd9cab4 249 } //bSi1145_present = true
stefanrousseau 4:f83bedd9cab4 250 } //Init_Si1145()
stefanrousseau 4:f83bedd9cab4 251
stefanrousseau 4:f83bedd9cab4 252 void Read_Si1145(void)
stefanrousseau 4:f83bedd9cab4 253 {
stefanrousseau 4:f83bedd9cab4 254 if (bSi1145_present)
stefanrousseau 4:f83bedd9cab4 255 {
stefanrousseau 4:f83bedd9cab4 256 // Once the measurements are completed, here is how to reconstruct them
stefanrousseau 4:f83bedd9cab4 257 // Note very carefully that 16-bit registers are in the 'Little Endian' byte order
stefanrousseau 4:f83bedd9cab4 258 // It may be more efficient to perform block I2C Reads, but this example shows
stefanrousseau 4:f83bedd9cab4 259 // individual reads of registers
stefanrousseau 4:f83bedd9cab4 260
stefanrousseau 4:f83bedd9cab4 261 int PS1 = ReadFrom_Si1145_Register(REG_PS1_DATA0) + 256 * ReadFrom_Si1145_Register(REG_PS1_DATA1);
stefanrousseau 4:f83bedd9cab4 262 int PS2 = ReadFrom_Si1145_Register(REG_PS2_DATA0) + 256 * ReadFrom_Si1145_Register(REG_PS2_DATA1);
stefanrousseau 4:f83bedd9cab4 263 int PS3 = ReadFrom_Si1145_Register(REG_PS3_DATA0) + 256 * ReadFrom_Si1145_Register(REG_PS3_DATA1);
stefanrousseau 4:f83bedd9cab4 264 //printf("PS1_Data = %d\n", PS1);
stefanrousseau 4:f83bedd9cab4 265 //printf("PS2_Data = %d\n", PS2);
stefanrousseau 4:f83bedd9cab4 266 //printf("PS3_Data = %d\n", PS3);
stefanrousseau 4:f83bedd9cab4 267 //OBJECT PRESENT?
stefanrousseau 57:d184175b6b03 268 #if (0)
stefanrousseau 4:f83bedd9cab4 269 if(PS1 < 22000){
stefanrousseau 4:f83bedd9cab4 270 //printf("Object Far\n");
stefanrousseau 57:d184175b6b03 271 sprintf(SENSOR_DATA.Proximity, "Object Far\0");
stefanrousseau 4:f83bedd9cab4 272 }
stefanrousseau 4:f83bedd9cab4 273 else if(PS1 < 24000)
stefanrousseau 4:f83bedd9cab4 274 {
stefanrousseau 4:f83bedd9cab4 275 //printf("Object in Vicinity\n");
stefanrousseau 57:d184175b6b03 276 sprintf(SENSOR_DATA.Proximity, "Object in Vicinity\0");
stefanrousseau 4:f83bedd9cab4 277 }
stefanrousseau 4:f83bedd9cab4 278 else if (PS1 < 30000)
stefanrousseau 4:f83bedd9cab4 279 {
stefanrousseau 4:f83bedd9cab4 280 //printf("Object Near\n");
stefanrousseau 57:d184175b6b03 281 sprintf(SENSOR_DATA.Proximity, "Object Near\0");
stefanrousseau 4:f83bedd9cab4 282 }
stefanrousseau 4:f83bedd9cab4 283 else
stefanrousseau 4:f83bedd9cab4 284 {
stefanrousseau 4:f83bedd9cab4 285 //printf("Object Very Near\n");
stefanrousseau 57:d184175b6b03 286 sprintf(SENSOR_DATA.Proximity, "Object Very Near\0");
stefanrousseau 4:f83bedd9cab4 287 }
stefanrousseau 57:d184175b6b03 288 #else
stefanrousseau 57:d184175b6b03 289 sprintf(SENSOR_DATA.Proximity, "%d\0", PS1);
stefanrousseau 57:d184175b6b03 290 #endif
stefanrousseau 4:f83bedd9cab4 291
stefanrousseau 4:f83bedd9cab4 292 //Force ALS read:
stefanrousseau 4:f83bedd9cab4 293 //WriteTo_Si1145_Register(REG_COMMAND, 0x06);
stefanrousseau 4:f83bedd9cab4 294 //wait (0.1);
stefanrousseau 4:f83bedd9cab4 295 int ALS_VIS = ReadFrom_Si1145_Register(REG_ALS_VIS_DATA0) + 256 * ReadFrom_Si1145_Register(REG_ALS_VIS_DATA1);
stefanrousseau 4:f83bedd9cab4 296 int ALS_IR = ReadFrom_Si1145_Register(REG_ALS_IR_DATA0) + 256 * ReadFrom_Si1145_Register(REG_ALS_IR_DATA1);
stefanrousseau 4:f83bedd9cab4 297 int UV_INDEX = ReadFrom_Si1145_Register(REG_UVINDEX0) + 256 * ReadFrom_Si1145_Register(REG_UVINDEX1);
stefanrousseau 4:f83bedd9cab4 298 //printf("ALS_VIS_Data = %d\n", ALS_VIS);
stefanrousseau 4:f83bedd9cab4 299 //printf("ALS_IR_Data = %d\n", ALS_IR);
stefanrousseau 4:f83bedd9cab4 300 //printf("UV_INDEX_Data = %d\n", UV_INDEX);
stefanrousseau 4:f83bedd9cab4 301
stefanrousseau 4:f83bedd9cab4 302 //printf("Ambient Light Visible Sensor = %d\n", ALS_VIS);
stefanrousseau 4:f83bedd9cab4 303 sprintf(SENSOR_DATA.AmbientLightVis, "%d", ALS_VIS);
stefanrousseau 4:f83bedd9cab4 304 //printf("Ambient Light Infrared Sensor = %d\n", ALS_IR);
stefanrousseau 4:f83bedd9cab4 305 sprintf(SENSOR_DATA.AmbientLightIr, "%d", ALS_IR);
stefanrousseau 4:f83bedd9cab4 306 //float fUV_value = (UV_INDEX -50.0)/10000.0;
stefanrousseau 4:f83bedd9cab4 307 float fUV_value = (UV_INDEX)/100.0; //this is the aux reading
stefanrousseau 4:f83bedd9cab4 308 //printf("UV_Data = %0.2f\n", fUV_value);
stefanrousseau 4:f83bedd9cab4 309 sprintf(SENSOR_DATA.UVindex, "%0.2f", fUV_value);
stefanrousseau 4:f83bedd9cab4 310 } //bSi1145_present = true
stefanrousseau 4:f83bedd9cab4 311 } //Read_Si1145()
stefanrousseau 4:f83bedd9cab4 312
stefanrousseau 4:f83bedd9cab4 313 //********************************************************************************************************************************************
stefanrousseau 4:f83bedd9cab4 314 //* Read the FXOS8700CQ - 6-axis combo Sensor Accelerometer and Magnetometer
stefanrousseau 4:f83bedd9cab4 315 //********************************************************************************************************************************************
stefanrousseau 11:e6602513730f 316 bool bMotionSensor_present = false;
stefanrousseau 61:f6b93129f954 317 void Init_motion_sensor()
stefanrousseau 4:f83bedd9cab4 318 {
stefanrousseau 57:d184175b6b03 319 // Note: this class is instantiated here because if it is statically declared, the cellular shield init kills the I2C bus...
stefanrousseau 57:d184175b6b03 320 // Class instantiation with pin names for the motion sensor on the FRDM-K64F board:
stefanrousseau 57:d184175b6b03 321 FXOS8700CQ fxos(PTE25, PTE24, FXOS8700CQ_SLAVE_ADDR1); // SDA, SCL, (addr << 1)
stefanrousseau 11:e6602513730f 322 int iWhoAmI = fxos.get_whoami();
stefanrousseau 57:d184175b6b03 323
stefanrousseau 11:e6602513730f 324 printf("FXOS8700CQ WhoAmI = %X\r\n", iWhoAmI);
stefanrousseau 4:f83bedd9cab4 325 // Iterrupt for active-low interrupt line from FXOS
stefanrousseau 4:f83bedd9cab4 326 // Configured with only one interrupt on INT2 signaling Data-Ready
stefanrousseau 4:f83bedd9cab4 327 //fxos_int2.fall(&trigger_fxos_int2);
stefanrousseau 11:e6602513730f 328 if (iWhoAmI != 0xC7)
stefanrousseau 11:e6602513730f 329 {
stefanrousseau 11:e6602513730f 330 bMotionSensor_present = false;
stefanrousseau 11:e6602513730f 331 printf("FXOS8700CQ motion sensor not found\n");
stefanrousseau 11:e6602513730f 332 }
stefanrousseau 11:e6602513730f 333 else
stefanrousseau 11:e6602513730f 334 {
stefanrousseau 11:e6602513730f 335 bMotionSensor_present = true;
stefanrousseau 11:e6602513730f 336 fxos.enable();
stefanrousseau 11:e6602513730f 337 }
stefanrousseau 61:f6b93129f954 338 } //Init_motion_sensor()
stefanrousseau 4:f83bedd9cab4 339
stefanrousseau 61:f6b93129f954 340 void Read_motion_sensor()
stefanrousseau 11:e6602513730f 341 {
stefanrousseau 57:d184175b6b03 342 // Note: this class is instantiated here because if it is statically declared, the cellular shield init kills the I2C bus...
stefanrousseau 57:d184175b6b03 343 // Class instantiation with pin names for the motion sensor on the FRDM-K64F board:
stefanrousseau 57:d184175b6b03 344 FXOS8700CQ fxos(PTE25, PTE24, FXOS8700CQ_SLAVE_ADDR1); // SDA, SCL, (addr << 1)
stefanrousseau 11:e6602513730f 345 if (bMotionSensor_present)
stefanrousseau 11:e6602513730f 346 {
stefanrousseau 57:d184175b6b03 347 fxos.enable();
stefanrousseau 11:e6602513730f 348 fxos.get_data(&accel_data, &magn_data);
stefanrousseau 11:e6602513730f 349 //printf("Roll=%5d, Pitch=%5d, Yaw=%5d;\r\n", magn_data.x, magn_data.y, magn_data.z);
stefanrousseau 11:e6602513730f 350 sprintf(SENSOR_DATA.MagnetometerX, "%5d", magn_data.x);
stefanrousseau 11:e6602513730f 351 sprintf(SENSOR_DATA.MagnetometerY, "%5d", magn_data.y);
stefanrousseau 11:e6602513730f 352 sprintf(SENSOR_DATA.MagnetometerZ, "%5d", magn_data.z);
stefanrousseau 11:e6602513730f 353
stefanrousseau 11:e6602513730f 354 //Try to normalize (/2048) the values so they will match the eCompass output:
stefanrousseau 11:e6602513730f 355 float fAccelScaled_x, fAccelScaled_y, fAccelScaled_z;
stefanrousseau 11:e6602513730f 356 fAccelScaled_x = (accel_data.x/2048.0);
stefanrousseau 11:e6602513730f 357 fAccelScaled_y = (accel_data.y/2048.0);
stefanrousseau 11:e6602513730f 358 fAccelScaled_z = (accel_data.z/2048.0);
stefanrousseau 11:e6602513730f 359 //printf("Acc: X=%2.3f Y=%2.3f Z=%2.3f;\r\n", fAccelScaled_x, fAccelScaled_y, fAccelScaled_z);
stefanrousseau 11:e6602513730f 360 sprintf(SENSOR_DATA.AccelX, "%2.3f", fAccelScaled_x);
stefanrousseau 11:e6602513730f 361 sprintf(SENSOR_DATA.AccelY, "%2.3f", fAccelScaled_y);
stefanrousseau 11:e6602513730f 362 sprintf(SENSOR_DATA.AccelZ, "%2.3f", fAccelScaled_z);
stefanrousseau 11:e6602513730f 363 } //bMotionSensor_present
stefanrousseau 61:f6b93129f954 364 } //Read_motion_sensor()
stefanrousseau 61:f6b93129f954 365
stefanrousseau 61:f6b93129f954 366
stefanrousseau 61:f6b93129f954 367 //********************************************************************************************************************************************
stefanrousseau 61:f6b93129f954 368 //* Read the HTS221 temperature & humidity sensor on the Cellular Shield
stefanrousseau 61:f6b93129f954 369 //********************************************************************************************************************************************
stefanrousseau 61:f6b93129f954 370 // These are to be built on the fly
stefanrousseau 61:f6b93129f954 371 string my_temp;
stefanrousseau 61:f6b93129f954 372 string my_humidity;
stefanrousseau 61:f6b93129f954 373 HTS221 hts221;
stefanrousseau 11:e6602513730f 374
stefanrousseau 61:f6b93129f954 375 #define CTOF(x) ((x)*1.8+32)
stefanrousseau 61:f6b93129f954 376 bool bHTS221_present = false;
stefanrousseau 61:f6b93129f954 377 void Init_HTS221()
stefanrousseau 61:f6b93129f954 378 {
stefanrousseau 61:f6b93129f954 379 int i;
stefanrousseau 61:f6b93129f954 380 void hts221_init(void);
stefanrousseau 61:f6b93129f954 381 i = hts221.begin();
stefanrousseau 61:f6b93129f954 382 if (i)
stefanrousseau 61:f6b93129f954 383 {
stefanrousseau 61:f6b93129f954 384 bHTS221_present = true;
stefanrousseau 61:f6b93129f954 385 pc.printf(BLU "HTS221 Detected (0x%02X)\n\r",i);
stefanrousseau 61:f6b93129f954 386 printf(" Temp is: %0.2f F \n\r",CTOF(hts221.readTemperature()));
stefanrousseau 61:f6b93129f954 387 printf(" Humid is: %02d %%\n\r",hts221.readHumidity());
stefanrousseau 61:f6b93129f954 388 }
stefanrousseau 61:f6b93129f954 389 else
stefanrousseau 61:f6b93129f954 390 {
stefanrousseau 61:f6b93129f954 391 bHTS221_present = false;
stefanrousseau 61:f6b93129f954 392 pc.printf(RED "HTS221 NOT DETECTED!\n\r");
stefanrousseau 61:f6b93129f954 393 }
stefanrousseau 61:f6b93129f954 394 } //Init_HTS221()
stefanrousseau 61:f6b93129f954 395
stefanrousseau 61:f6b93129f954 396 void Read_HTS221()
stefanrousseau 61:f6b93129f954 397 {
stefanrousseau 61:f6b93129f954 398 if (bHTS221_present)
stefanrousseau 61:f6b93129f954 399 {
stefanrousseau 61:f6b93129f954 400 sprintf(SENSOR_DATA.Temperature, "%0.2f", CTOF(hts221.readTemperature()));
stefanrousseau 61:f6b93129f954 401 sprintf(SENSOR_DATA.Humidity, "%02d", hts221.readHumidity());
stefanrousseau 61:f6b93129f954 402 } //bHTS221_present
stefanrousseau 61:f6b93129f954 403 } //Read_HTS221()
stefanrousseau 55:3abf9e3f42e6 404
stefanrousseau 55:3abf9e3f42e6 405 #ifdef USE_VIRTUAL_SENSORS
stefanrousseau 55:3abf9e3f42e6 406 bool bUsbConnected = false;
stefanrousseau 55:3abf9e3f42e6 407 volatile uint8_t usb_uart_rx_buff[256];
stefanrousseau 55:3abf9e3f42e6 408 //volatile uint8_t usb_uart_tx_buff[256];
stefanrousseau 55:3abf9e3f42e6 409 volatile unsigned char usb_uart_rx_buff_putptr = 0;
stefanrousseau 55:3abf9e3f42e6 410 volatile unsigned char usb_uart_rx_buff_getptr = 0;
stefanrousseau 55:3abf9e3f42e6 411 //volatile unsigned char usb_uart_tx_buff_putptr = 0;
stefanrousseau 55:3abf9e3f42e6 412 //volatile unsigned char usb_uart_tx_buff_getptr = 0;
stefanrousseau 55:3abf9e3f42e6 413 char usbhost_rx_string[256];
stefanrousseau 55:3abf9e3f42e6 414 unsigned char usbhost_rxstring_index;
stefanrousseau 55:3abf9e3f42e6 415 char usbhost_tx_string[256];
stefanrousseau 55:3abf9e3f42e6 416
stefanrousseau 55:3abf9e3f42e6 417
stefanrousseau 55:3abf9e3f42e6 418 float f_sensor1_value = 12.3;
stefanrousseau 55:3abf9e3f42e6 419 float f_sensor2_value = 45.6;
stefanrousseau 55:3abf9e3f42e6 420 float f_sensor3_value = 78.9;
stefanrousseau 55:3abf9e3f42e6 421 float f_sensor4_value = 78.9;
stefanrousseau 55:3abf9e3f42e6 422 float f_sensor5_value = 78.9;
stefanrousseau 55:3abf9e3f42e6 423 float f_sensor6_value = 78.9;
stefanrousseau 55:3abf9e3f42e6 424 float f_sensor7_value = 78.9;
stefanrousseau 55:3abf9e3f42e6 425 float f_sensor8_value = 78.9;
stefanrousseau 55:3abf9e3f42e6 426 char usb_sensor_string[110];
stefanrousseau 55:3abf9e3f42e6 427
stefanrousseau 55:3abf9e3f42e6 428
stefanrousseau 55:3abf9e3f42e6 429 //********************************************************************************************************************************************
stefanrousseau 55:3abf9e3f42e6 430 //* Parse the input sensor data from the USB host
stefanrousseau 55:3abf9e3f42e6 431 //********************************************************************************************************************************************
stefanrousseau 55:3abf9e3f42e6 432 int parse_usbhost_message()
stefanrousseau 55:3abf9e3f42e6 433 {
stefanrousseau 55:3abf9e3f42e6 434 //printf("String = %s\n", usbhost_rx_string); //test
stefanrousseau 55:3abf9e3f42e6 435 uint8_t length;
stefanrousseau 55:3abf9e3f42e6 436 uint8_t x ;
stefanrousseau 55:3abf9e3f42e6 437 //It seems that sscanf needs 11 characters to store a 7-character number. There must be some formatting and termination values...
stefanrousseau 55:3abf9e3f42e6 438 char Record[8][11]; //There are 8 sensors with up to 7 characters each
stefanrousseau 55:3abf9e3f42e6 439 char StringRecord[110]; //There are is a sensor "string" with up to 100 characters in it
stefanrousseau 55:3abf9e3f42e6 440
stefanrousseau 55:3abf9e3f42e6 441 // Data format is: "S1:1234,S2:5678,S3:1234,S4:5678,S5:1234,S6:5678,S7:5678,S8:5678,S9:abcde...\n"
stefanrousseau 55:3abf9e3f42e6 442 int args_assigned = sscanf(usbhost_rx_string, "%[^','],%[^','],%[^','],%[^','],%[^','],%[^','],%[^','],%[^','],%[^\n]", Record[0], Record[1], Record[2], Record[3], Record[4], Record[5], Record[6], Record[7], StringRecord);
stefanrousseau 55:3abf9e3f42e6 443
stefanrousseau 55:3abf9e3f42e6 444 //StringRecord[109] = '\0';
stefanrousseau 55:3abf9e3f42e6 445 //printf("Last = %s\n", StringRecord); //test
stefanrousseau 55:3abf9e3f42e6 446
stefanrousseau 55:3abf9e3f42e6 447 if (args_assigned == 9)
stefanrousseau 55:3abf9e3f42e6 448 { //sscanf was able to assign all 9 values
stefanrousseau 55:3abf9e3f42e6 449 for (x=0; x < 8; x++) // loop through the 8 sensors
stefanrousseau 55:3abf9e3f42e6 450 {
stefanrousseau 55:3abf9e3f42e6 451 // Strip the "Sx:" label characters from the field value
stefanrousseau 55:3abf9e3f42e6 452 length = strlen(Record[x]); // max of 7 characters but could be less
stefanrousseau 55:3abf9e3f42e6 453 strncpy(Record[x], Record[x] + 3, length);
stefanrousseau 55:3abf9e3f42e6 454 Record[x][length] = '\0'; // null termination character manually added
stefanrousseau 55:3abf9e3f42e6 455 }
stefanrousseau 55:3abf9e3f42e6 456 length = strlen(StringRecord);
stefanrousseau 55:3abf9e3f42e6 457 strncpy(StringRecord, StringRecord + 3, length);
stefanrousseau 55:3abf9e3f42e6 458 StringRecord[length] = '\0'; // null termination character manually added
stefanrousseau 55:3abf9e3f42e6 459
stefanrousseau 55:3abf9e3f42e6 460 if ((usbhost_rx_string[0] == 'S') && (usbhost_rx_string[1] == '1')) //The message starts with "S1"
stefanrousseau 55:3abf9e3f42e6 461 {
stefanrousseau 55:3abf9e3f42e6 462 f_sensor1_value = atof(Record[0]);
stefanrousseau 55:3abf9e3f42e6 463 f_sensor2_value = atof(Record[1]);
stefanrousseau 55:3abf9e3f42e6 464 f_sensor3_value = atof(Record[2]);
stefanrousseau 55:3abf9e3f42e6 465 f_sensor4_value = atof(Record[3]);
stefanrousseau 55:3abf9e3f42e6 466 f_sensor5_value = atof(Record[4]);
stefanrousseau 55:3abf9e3f42e6 467 f_sensor6_value = atof(Record[5]);
stefanrousseau 55:3abf9e3f42e6 468 f_sensor7_value = atof(Record[6]);
stefanrousseau 55:3abf9e3f42e6 469 f_sensor8_value = atof(Record[7]);
stefanrousseau 55:3abf9e3f42e6 470 sprintf(usb_sensor_string,StringRecord);
stefanrousseau 55:3abf9e3f42e6 471 //printf("Received = %s, %s, %s, %s, %s, %s, %s, %s, %s\n", Record[0], Record[1], Record[2], Record[3], Record[4], Record[5], Record[6], Record[7], usb_sensor_string); //test
stefanrousseau 55:3abf9e3f42e6 472 sprintf(SENSOR_DATA.Virtual_Sensor1, "%s", Record[0]);
stefanrousseau 55:3abf9e3f42e6 473 sprintf(SENSOR_DATA.Virtual_Sensor2, "%s", Record[1]);
stefanrousseau 55:3abf9e3f42e6 474 sprintf(SENSOR_DATA.Virtual_Sensor3, "%s", Record[2]);
stefanrousseau 55:3abf9e3f42e6 475 sprintf(SENSOR_DATA.Virtual_Sensor4, "%s", Record[3]);
stefanrousseau 55:3abf9e3f42e6 476 sprintf(SENSOR_DATA.Virtual_Sensor5, "%s", Record[4]);
stefanrousseau 55:3abf9e3f42e6 477 sprintf(SENSOR_DATA.Virtual_Sensor6, "%s", Record[5]);
stefanrousseau 55:3abf9e3f42e6 478 sprintf(SENSOR_DATA.Virtual_Sensor7, "%s", Record[6]);
stefanrousseau 55:3abf9e3f42e6 479 sprintf(SENSOR_DATA.Virtual_Sensor8, "%s", Record[7]);
stefanrousseau 55:3abf9e3f42e6 480 }
stefanrousseau 55:3abf9e3f42e6 481 } //sscanf was able to assign all values
stefanrousseau 55:3abf9e3f42e6 482 return args_assigned;
stefanrousseau 55:3abf9e3f42e6 483 } //parse_usbhost_message()
stefanrousseau 55:3abf9e3f42e6 484
stefanrousseau 55:3abf9e3f42e6 485 //********************************************************************************************************************************************
stefanrousseau 55:3abf9e3f42e6 486 //* Process any received message from the USB host
stefanrousseau 55:3abf9e3f42e6 487 //********************************************************************************************************************************************
stefanrousseau 55:3abf9e3f42e6 488 void process_usb_rx(unsigned char ucNewRxByte)
stefanrousseau 55:3abf9e3f42e6 489 {
stefanrousseau 55:3abf9e3f42e6 490 if (ucNewRxByte == '?')
stefanrousseau 55:3abf9e3f42e6 491 { //just pinging
stefanrousseau 55:3abf9e3f42e6 492 usbhost_rxstring_index = 0;
stefanrousseau 55:3abf9e3f42e6 493 return;
stefanrousseau 55:3abf9e3f42e6 494 } //just pinging
stefanrousseau 55:3abf9e3f42e6 495 usbhost_rx_string[usbhost_rxstring_index++] = ucNewRxByte;
stefanrousseau 55:3abf9e3f42e6 496 if (ucNewRxByte == '\n')
stefanrousseau 55:3abf9e3f42e6 497 { //end of message
stefanrousseau 55:3abf9e3f42e6 498 usbhost_rx_string[usbhost_rxstring_index] = 0; //null terminate string
stefanrousseau 55:3abf9e3f42e6 499 usbhost_rxstring_index = 0;
stefanrousseau 55:3abf9e3f42e6 500 parse_usbhost_message();
stefanrousseau 55:3abf9e3f42e6 501 } //end of message
stefanrousseau 55:3abf9e3f42e6 502 } //process_usb_rx()
stefanrousseau 55:3abf9e3f42e6 503
stefanrousseau 55:3abf9e3f42e6 504 void ProcessUsbInterface(void)
stefanrousseau 55:3abf9e3f42e6 505 {
stefanrousseau 55:3abf9e3f42e6 506 //Process the USB host UART receive commands:
stefanrousseau 55:3abf9e3f42e6 507 if (usb_uart_rx_buff_getptr != usb_uart_rx_buff_putptr)
stefanrousseau 55:3abf9e3f42e6 508 {
stefanrousseau 55:3abf9e3f42e6 509 bUsbConnected = true;
stefanrousseau 55:3abf9e3f42e6 510 while (usb_uart_rx_buff_getptr != usb_uart_rx_buff_putptr)
stefanrousseau 55:3abf9e3f42e6 511 {
stefanrousseau 55:3abf9e3f42e6 512 unsigned char ucByteFromHost = usb_uart_rx_buff[usb_uart_rx_buff_getptr++]; //Copy latest received byte
stefanrousseau 55:3abf9e3f42e6 513 process_usb_rx(ucByteFromHost);
stefanrousseau 55:3abf9e3f42e6 514 } //while (usb_uart_rx_buff_getptr != usb_uart_rx_buff_putptr)
stefanrousseau 55:3abf9e3f42e6 515 } // if there are USB UART bytes to receive
stefanrousseau 55:3abf9e3f42e6 516 //USB host UART transmit:
stefanrousseau 55:3abf9e3f42e6 517 //while (usb_uart_tx_buff_getptr != usb_uart_tx_buff_putptr)
stefanrousseau 55:3abf9e3f42e6 518 //{
stefanrousseau 55:3abf9e3f42e6 519 //pc.putc(usb_uart_tx_buff[usb_uart_tx_buff_getptr++]);
stefanrousseau 55:3abf9e3f42e6 520 //}
stefanrousseau 55:3abf9e3f42e6 521 } //ProcessUsbInterface()
stefanrousseau 55:3abf9e3f42e6 522
stefanrousseau 56:cb42ff383dab 523 // This function is called when a character goes into the RX buffer.
stefanrousseau 56:cb42ff383dab 524 void UsbUartRxCallback(MODSERIAL_IRQ_INFO *info)
stefanrousseau 55:3abf9e3f42e6 525 {
stefanrousseau 56:cb42ff383dab 526 // Get the pointer to our MODSERIAL object that invoked this callback.
stefanrousseau 56:cb42ff383dab 527 MODSERIAL *pc = info->serial;
stefanrousseau 56:cb42ff383dab 528 while (pc->readable())
stefanrousseau 56:cb42ff383dab 529 {
stefanrousseau 56:cb42ff383dab 530 usb_uart_rx_buff[usb_uart_rx_buff_putptr++] = pc->getcNb();
stefanrousseau 56:cb42ff383dab 531 }
stefanrousseau 55:3abf9e3f42e6 532 }
stefanrousseau 55:3abf9e3f42e6 533 #endif
stefanrousseau 55:3abf9e3f42e6 534
stefanrousseau 4:f83bedd9cab4 535 void sensors_init(void)
stefanrousseau 4:f83bedd9cab4 536 {
stefanrousseau 55:3abf9e3f42e6 537 #ifdef USE_VIRTUAL_SENSORS
stefanrousseau 56:cb42ff383dab 538 pc.attach(&UsbUartRxCallback, MODSERIAL::RxIrq);
stefanrousseau 55:3abf9e3f42e6 539 #endif
stefanrousseau 61:f6b93129f954 540 Init_HTS221();
stefanrousseau 4:f83bedd9cab4 541 Init_Si7020();
stefanrousseau 4:f83bedd9cab4 542 Init_Si1145();
stefanrousseau 61:f6b93129f954 543 Init_motion_sensor();
stefanrousseau 4:f83bedd9cab4 544 } //sensors_init
stefanrousseau 4:f83bedd9cab4 545
stefanrousseau 4:f83bedd9cab4 546 void read_sensors(void)
stefanrousseau 4:f83bedd9cab4 547 {
stefanrousseau 61:f6b93129f954 548 Read_HTS221();
stefanrousseau 4:f83bedd9cab4 549 Read_Si7020();
stefanrousseau 4:f83bedd9cab4 550 Read_Si1145();
stefanrousseau 61:f6b93129f954 551 Read_motion_sensor();
stefanrousseau 4:f83bedd9cab4 552 } //read_sensors