This program connects to a few sensors via I2C and sends the data collected to a WNC Cellular Module which is located on an Avnet WNC-Shield card.

Dependencies:   FXOS8700CQ MODSERIAL mbed

/media/uploads/kevinkeryk/avnet_logo_tagline_rgb.png

Avnet Cellular IoT Instructions

  • One problematic area is setting the MY_SERVER_URL. When you copy the URL from the flow, you must make sure the MY_SERVER_URL is also set to the appropriate server. It can be either "run-east.att.io" or "run-west.att.io".

Useful Links

Adding Additional Sensors

The FLOW_DEVICE_NAME field must contain the name of the instance of the Virtual Starter Kit in FLOW you will be communicating with. Usually this is "vstarterkit001", but if you have problems communicating you can verify this is correct. Note: This device will not be created until you click the “Initialize” input on the Virtual Device tab of the Starter Kit project in FLOW. At that point, it becomes available in M2X and you can see it as the DEVICE SERIAL field under Devices as in the image below. /media/uploads/JMF/vstarterkit.png

Sensors: When executing, the FRDM-K64F board uploads sensor measurements to AT&T’s Flow environment every 5 seconds, using the Cellular shield board. You can adjust how often you want to do this by editing the SENSOR_UPDATE_INTERVAL_MS value in the header file.

Temperature and humidity: By default, the board reports readings from the HTS221 temperature and humidity sensor. These two values are sent to the HTTP IN /climate port in FLOW with field names “temp” and “humidity”. Temperature is in degrees Fahrenheit and humidity is a %. This default assignment is: iSensorsToReport = TEMP_HUMIDITY_ONLY;

Accelerometer: If you want to expand and use the onboard motion sensor, you can also send 3-axis accelerometer information from the board as “accelX”, “accelY”, and “accelZ”. This is useful if you want to know the stationary position of the board with regards to gravity, or whether it is in motion. These readings are in g’s. To send these values, change the assignment to: iSensorsToReport = TEMP_HUMIDITY_ACCELEROMETER;

PMOD Sensors: If you have a Silicon Labs sensor module that can plug into the PMOD connector on the Cellular shield, you are able to measure proximity, UV light, ambient visible and infrared light from the Si1145 sensor. This PMOD also has a temperature and humidity sensor, but in this case it is redundant. When enabled, the fields “proximity”, “light_uv”, “light_vis” and “light_ir” are also sent. To enable all these sensors, change the assignment to: iSensorsToReport = TEMP_HUMIDITY_ACCELEROMETER_PMODSENSORS;

Connecting the PMOD sensors: Because the pinouts do not align, the SiLabs PMOD sensor board cannot be plugged into the J10 PMOD receptacle on the shield directly. The following wiring instructions must be followed:

SignalJ10ShieldPMOD Color in the image below
VCCPin 6Pin 6Red
GNDPin 5Pin 5Black
SDAPin4Pin 3Green
SCLPin3Pin 2Yellow

/media/uploads/JMF/xyz.jpg

AT&T M2X and FLOW Instructions

M2X & FLOW Instructions

Link to AT&T M2X

M2X

Link to AT&T Flow

FLOW

Avnet WNC-Shield Information

Getting Started with the Avnet WNC-Shield Software

  • This project uses Revision 119 of the MBED library because of I2C implementation differences with the tip (Revision 121).
  • This project uses Revision 4 of the FXOS8700CQ library for sensors.

Easily Modifiable Parameters

Inside the mbed Avnet_ATT_Cellular_IOT project, the parameters needed to customize your board are in the config_me.h file.

  • FLOW parameters: This project assumes you are using a fork of the Starter Kit Base project, which is a reference design created using AT&T’s FLOW (https://flow.att.com) that allows the creation of online virtualization and other IoT functionality. The default parameters in the config_me.h file are done for a specific instance of this project. When you fork the original project, you get your own instance and it will have its own base address. At the bottom of the FLOW environment, when you click on the Endpoints tab, URL information that is specific to your instance is displayed. Of note is the Base URL. In the example below (as in the default mbed project), the Base URL is: https://run-west.att.io/1e464b19cdcde/774c88d68202/86694923d5bf28a/in/flow You have to take note of two parts of this address. The run-west.att.io part is the server URL, and you have to make sure the
  • MY_SERVER_URL field in config_me.h matches this. The rest of the base URL, in green above, needs to be pasted into the FLOW_BASE_URL field.

There is also a FLOW_INPUT_NAME field. This should match the name of the HTTP IN port in the FLOW project that you want to send sensor data to. The default is "/climate", as in the FLOW image below.

/media/uploads/JMF/sf.png

Where is the Binary I compiled

When the COMPILE button is pressed, it compiles your project and links it. The result is placed in the DOWNLOAD folder you use when downloading files from the Internet. It will be called AvnetATT_shape_hackathon_K64F.bin.

Additional Information on Compiling/Configuring

Comprehensive instructions can be found at: Quick Start Instructions

Committer:
stefanrousseau
Date:
Thu Jul 28 23:55:06 2016 +0000
Revision:
57:d184175b6b03
Parent:
56:cb42ff383dab
Child:
61:f6b93129f954
Found that a merge at some point used an older version of sensors.cpp.  Replacing the omitted changes...

Who changed what in which revision?

UserRevisionLine numberNew contents of line
stefanrousseau 4:f83bedd9cab4 1 #include "mbed.h"
stefanrousseau 57:d184175b6b03 2 #include "sensors.h"
stefanrousseau 55:3abf9e3f42e6 3 #include "hardware.h"
stefanrousseau 57:d184175b6b03 4 #include "FXOS8700CQ.h"
stefanrousseau 4:f83bedd9cab4 5
stefanrousseau 4:f83bedd9cab4 6 //I2C for pmod sensors:
stefanrousseau 4:f83bedd9cab4 7 #define Si1145_PMOD_I2C_ADDR 0xC0 //this is for 7-bit addr 0x60 for the Si7020
stefanrousseau 4:f83bedd9cab4 8 #define Si7020_PMOD_I2C_ADDR 0x80 //this is for 7-bit addr 0x4 for the Si7020
stefanrousseau 4:f83bedd9cab4 9
stefanrousseau 57:d184175b6b03 10 // Storage for the data from the motion sensor
stefanrousseau 4:f83bedd9cab4 11 SRAWDATA accel_data;
stefanrousseau 4:f83bedd9cab4 12 SRAWDATA magn_data;
stefanrousseau 4:f83bedd9cab4 13 //InterruptIn fxos_int1(PTC6); // unused, common with SW2 on FRDM-K64F
stefanrousseau 4:f83bedd9cab4 14 InterruptIn fxos_int2(PTC13); // should just be the Data-Ready interrupt
stefanrousseau 4:f83bedd9cab4 15 bool fxos_int2_triggered = false;
stefanrousseau 4:f83bedd9cab4 16 void trigger_fxos_int2(void)
stefanrousseau 4:f83bedd9cab4 17 {
stefanrousseau 4:f83bedd9cab4 18 fxos_int2_triggered = true;
stefanrousseau 57:d184175b6b03 19
stefanrousseau 4:f83bedd9cab4 20 }
stefanrousseau 4:f83bedd9cab4 21
stefanrousseau 4:f83bedd9cab4 22 /*------------------------------------------------------------------------------
stefanrousseau 4:f83bedd9cab4 23 * Perform I2C single read.
stefanrousseau 4:f83bedd9cab4 24 *------------------------------------------------------------------------------*/
stefanrousseau 4:f83bedd9cab4 25 unsigned char I2C_ReadSingleByte(unsigned char ucDeviceAddress)
stefanrousseau 4:f83bedd9cab4 26 {
stefanrousseau 4:f83bedd9cab4 27 char rxbuffer [1];
stefanrousseau 11:e6602513730f 28 i2c.read(ucDeviceAddress, rxbuffer, 1 );
stefanrousseau 4:f83bedd9cab4 29 return (unsigned char)rxbuffer[0];
stefanrousseau 4:f83bedd9cab4 30 } //I2C_ReadSingleByte()
stefanrousseau 4:f83bedd9cab4 31
stefanrousseau 4:f83bedd9cab4 32 /*------------------------------------------------------------------------------
stefanrousseau 4:f83bedd9cab4 33 * Perform I2C single read from address.
stefanrousseau 4:f83bedd9cab4 34 *------------------------------------------------------------------------------*/
stefanrousseau 4:f83bedd9cab4 35 unsigned char I2C_ReadSingleByteFromAddr(unsigned char ucDeviceAddress, unsigned char Addr)
stefanrousseau 4:f83bedd9cab4 36 {
stefanrousseau 4:f83bedd9cab4 37 char txbuffer [1];
stefanrousseau 4:f83bedd9cab4 38 char rxbuffer [1];
stefanrousseau 4:f83bedd9cab4 39 txbuffer[0] = (char)Addr;
stefanrousseau 11:e6602513730f 40 i2c.write(ucDeviceAddress, txbuffer, 1 );
stefanrousseau 11:e6602513730f 41 i2c.read(ucDeviceAddress, rxbuffer, 1 );
stefanrousseau 4:f83bedd9cab4 42 return (unsigned char)rxbuffer[0];
stefanrousseau 4:f83bedd9cab4 43 } //I2C_ReadSingleByteFromAddr()
stefanrousseau 4:f83bedd9cab4 44
stefanrousseau 4:f83bedd9cab4 45 /*------------------------------------------------------------------------------
stefanrousseau 4:f83bedd9cab4 46 * Perform I2C read of more than 1 byte.
stefanrousseau 4:f83bedd9cab4 47 *------------------------------------------------------------------------------*/
stefanrousseau 4:f83bedd9cab4 48 int I2C_ReadMultipleBytes(unsigned char ucDeviceAddress, char *ucData, unsigned char ucLength)
stefanrousseau 4:f83bedd9cab4 49 {
stefanrousseau 4:f83bedd9cab4 50 int status;
stefanrousseau 11:e6602513730f 51 status = i2c.read(ucDeviceAddress, ucData, ucLength);
stefanrousseau 4:f83bedd9cab4 52 return status;
stefanrousseau 4:f83bedd9cab4 53 } //I2C_ReadMultipleBytes()
stefanrousseau 4:f83bedd9cab4 54
stefanrousseau 4:f83bedd9cab4 55 /*------------------------------------------------------------------------------
stefanrousseau 4:f83bedd9cab4 56 * Perform I2C write of a single byte.
stefanrousseau 4:f83bedd9cab4 57 *------------------------------------------------------------------------------*/
stefanrousseau 4:f83bedd9cab4 58 int I2C_WriteSingleByte(unsigned char ucDeviceAddress, unsigned char Data, bool bSendStop)
stefanrousseau 4:f83bedd9cab4 59 {
stefanrousseau 4:f83bedd9cab4 60 int status;
stefanrousseau 4:f83bedd9cab4 61 char txbuffer [1];
stefanrousseau 4:f83bedd9cab4 62 txbuffer[0] = (char)Data; //data
stefanrousseau 11:e6602513730f 63 status = i2c.write(ucDeviceAddress, txbuffer, 1, !bSendStop); //true: do not send stop
stefanrousseau 4:f83bedd9cab4 64 return status;
stefanrousseau 4:f83bedd9cab4 65 } //I2C_WriteSingleByte()
stefanrousseau 4:f83bedd9cab4 66
stefanrousseau 4:f83bedd9cab4 67 /*------------------------------------------------------------------------------
stefanrousseau 4:f83bedd9cab4 68 * Perform I2C write of 1 byte to an address.
stefanrousseau 4:f83bedd9cab4 69 *------------------------------------------------------------------------------*/
stefanrousseau 4:f83bedd9cab4 70 int I2C_WriteSingleByteToAddr(unsigned char ucDeviceAddress, unsigned char Addr, unsigned char Data, bool bSendStop)
stefanrousseau 4:f83bedd9cab4 71 {
stefanrousseau 4:f83bedd9cab4 72 int status;
stefanrousseau 4:f83bedd9cab4 73 char txbuffer [2];
stefanrousseau 4:f83bedd9cab4 74 txbuffer[0] = (char)Addr; //address
stefanrousseau 4:f83bedd9cab4 75 txbuffer[1] = (char)Data; //data
stefanrousseau 11:e6602513730f 76 //status = i2c.write(ucDeviceAddress, txbuffer, 2, false); //stop at end
stefanrousseau 11:e6602513730f 77 status = i2c.write(ucDeviceAddress, txbuffer, 2, !bSendStop); //true: do not send stop
stefanrousseau 4:f83bedd9cab4 78 return status;
stefanrousseau 4:f83bedd9cab4 79 } //I2C_WriteSingleByteToAddr()
stefanrousseau 4:f83bedd9cab4 80
stefanrousseau 4:f83bedd9cab4 81 /*------------------------------------------------------------------------------
stefanrousseau 4:f83bedd9cab4 82 * Perform I2C write of more than 1 byte.
stefanrousseau 4:f83bedd9cab4 83 *------------------------------------------------------------------------------*/
stefanrousseau 4:f83bedd9cab4 84 int I2C_WriteMultipleBytes(unsigned char ucDeviceAddress, char *ucData, unsigned char ucLength, bool bSendStop)
stefanrousseau 4:f83bedd9cab4 85 {
stefanrousseau 4:f83bedd9cab4 86 int status;
stefanrousseau 11:e6602513730f 87 status = i2c.write(ucDeviceAddress, ucData, ucLength, !bSendStop); //true: do not send stop
stefanrousseau 4:f83bedd9cab4 88 return status;
stefanrousseau 4:f83bedd9cab4 89 } //I2C_WriteMultipleBytes()
stefanrousseau 4:f83bedd9cab4 90
stefanrousseau 4:f83bedd9cab4 91 bool bSi7020_present = false;
stefanrousseau 4:f83bedd9cab4 92 void Init_Si7020(void)
stefanrousseau 4:f83bedd9cab4 93 {
stefanrousseau 4:f83bedd9cab4 94 char SN_7020 [8];
stefanrousseau 4:f83bedd9cab4 95 //SN part 1:
stefanrousseau 4:f83bedd9cab4 96 I2C_WriteSingleByteToAddr(Si7020_PMOD_I2C_ADDR, 0xFA, 0x0F, false);
stefanrousseau 4:f83bedd9cab4 97 I2C_ReadMultipleBytes(Si7020_PMOD_I2C_ADDR, &SN_7020[0], 4);
stefanrousseau 4:f83bedd9cab4 98
stefanrousseau 4:f83bedd9cab4 99 //SN part 1:
stefanrousseau 4:f83bedd9cab4 100 I2C_WriteSingleByteToAddr(Si7020_PMOD_I2C_ADDR, 0xFC, 0xC9, false);
stefanrousseau 4:f83bedd9cab4 101 I2C_ReadMultipleBytes(Si7020_PMOD_I2C_ADDR, &SN_7020[4], 4);
stefanrousseau 4:f83bedd9cab4 102
stefanrousseau 4:f83bedd9cab4 103 char Ver_7020 [2];
stefanrousseau 4:f83bedd9cab4 104 //FW version:
stefanrousseau 4:f83bedd9cab4 105 I2C_WriteSingleByteToAddr(Si7020_PMOD_I2C_ADDR, 0x84, 0xB8, false);
stefanrousseau 4:f83bedd9cab4 106 I2C_ReadMultipleBytes(Si7020_PMOD_I2C_ADDR, &Ver_7020[0], 2);
stefanrousseau 4:f83bedd9cab4 107
stefanrousseau 4:f83bedd9cab4 108 if (SN_7020[4] != 0x14)
stefanrousseau 4:f83bedd9cab4 109 {
stefanrousseau 4:f83bedd9cab4 110 bSi7020_present = false;
stefanrousseau 4:f83bedd9cab4 111 printf("Si7020 sensor not found\n");
stefanrousseau 4:f83bedd9cab4 112 }
stefanrousseau 4:f83bedd9cab4 113 else
stefanrousseau 4:f83bedd9cab4 114 {
stefanrousseau 4:f83bedd9cab4 115 bSi7020_present = true;
stefanrousseau 4:f83bedd9cab4 116 printf("Si7020 SN = 0x%02X%02X%02X%02X%02X%02X%02X%02X\n", SN_7020[0], SN_7020[1], SN_7020[2], SN_7020[3], SN_7020[4], SN_7020[5], SN_7020[6], SN_7020[7]);
stefanrousseau 4:f83bedd9cab4 117 printf("Si7020 Version# = 0x%02X\n", Ver_7020[0]);
stefanrousseau 4:f83bedd9cab4 118 } //bool bSi7020_present = true
stefanrousseau 4:f83bedd9cab4 119
stefanrousseau 4:f83bedd9cab4 120 } //Init_Si7020()
stefanrousseau 4:f83bedd9cab4 121
stefanrousseau 4:f83bedd9cab4 122 void Read_Si7020(void)
stefanrousseau 4:f83bedd9cab4 123 {
stefanrousseau 4:f83bedd9cab4 124 if (bSi7020_present)
stefanrousseau 4:f83bedd9cab4 125 {
stefanrousseau 4:f83bedd9cab4 126 char Humidity [2];
stefanrousseau 4:f83bedd9cab4 127 char Temperature [2];
stefanrousseau 4:f83bedd9cab4 128 //Command to measure humidity (temperature also gets measured):
stefanrousseau 4:f83bedd9cab4 129 I2C_WriteSingleByte(Si7020_PMOD_I2C_ADDR, 0xF5, false); //no hold, must do dummy read
stefanrousseau 4:f83bedd9cab4 130 I2C_ReadMultipleBytes(Si7020_PMOD_I2C_ADDR, &Humidity[0], 1); //dummy read, should get an nack until it is done
stefanrousseau 4:f83bedd9cab4 131 wait (0.05); //wait for measurement. Can also keep reading until no NACK is received
stefanrousseau 4:f83bedd9cab4 132 //I2C_WriteSingleByte(Si7020_PMOD_I2C_ADDR, 0xE5, false); //Hold mod, the device does a clock stretch on the read until it is done (crashes the I2C bus...
stefanrousseau 4:f83bedd9cab4 133 I2C_ReadMultipleBytes(Si7020_PMOD_I2C_ADDR, &Humidity[0], 2); //read humidity
stefanrousseau 4:f83bedd9cab4 134 //printf("Read Si7020 Humidity = 0x%02X%02X\n", Humidity[0], Humidity[1]);
stefanrousseau 4:f83bedd9cab4 135 int rh_code = (Humidity[0] << 8) + Humidity[1];
stefanrousseau 4:f83bedd9cab4 136 float fRh = (125.0*rh_code/65536.0) - 6.0; //from datasheet
stefanrousseau 4:f83bedd9cab4 137 //printf("Si7020 Humidity = %*.*f %%\n", 4, 2, fRh); //double % sign for escape //printf("%*.*f\n", myFieldWidth, myPrecision, myFloatValue);
stefanrousseau 4:f83bedd9cab4 138 sprintf(SENSOR_DATA.Humidity_Si7020, "%0.2f", fRh);
stefanrousseau 4:f83bedd9cab4 139
stefanrousseau 4:f83bedd9cab4 140 //Command to read temperature when humidity is already done:
stefanrousseau 4:f83bedd9cab4 141 I2C_WriteSingleByte(Si7020_PMOD_I2C_ADDR, 0xE0, false);
stefanrousseau 4:f83bedd9cab4 142 I2C_ReadMultipleBytes(Si7020_PMOD_I2C_ADDR, &Temperature[0], 2); //read temperature
stefanrousseau 4:f83bedd9cab4 143 //printf("Read Si7020 Temperature = 0x%02X%02X\n", Temperature[0], Temperature[1]);
stefanrousseau 4:f83bedd9cab4 144 int temp_code = (Temperature[0] << 8) + Temperature[1];
stefanrousseau 4:f83bedd9cab4 145 float fTemp = (175.72*temp_code/65536.0) - 46.85; //from datasheet in Celcius
stefanrousseau 4:f83bedd9cab4 146 //printf("Si7020 Temperature = %*.*f deg C\n", 4, 2, fTemp);
stefanrousseau 4:f83bedd9cab4 147 sprintf(SENSOR_DATA.Temperature_Si7020, "%0.2f", fTemp);
stefanrousseau 4:f83bedd9cab4 148 } //bool bSi7020_present = true
stefanrousseau 4:f83bedd9cab4 149
stefanrousseau 4:f83bedd9cab4 150 } //Read_Si7020()
stefanrousseau 4:f83bedd9cab4 151
stefanrousseau 4:f83bedd9cab4 152 /*------------------------------------------------------------------------------
stefanrousseau 4:f83bedd9cab4 153 * The following are aliases so that the Si1145 coding examples can be used as-is.
stefanrousseau 4:f83bedd9cab4 154 *------------------------------------------------------------------------------*/
stefanrousseau 4:f83bedd9cab4 155 unsigned char ReadFrom_Si1145_Register(unsigned char reg) //returns byte from I2C Register 'reg'
stefanrousseau 4:f83bedd9cab4 156 {
stefanrousseau 4:f83bedd9cab4 157 unsigned char result = I2C_ReadSingleByteFromAddr(Si1145_PMOD_I2C_ADDR, reg);
stefanrousseau 4:f83bedd9cab4 158 return (result);
stefanrousseau 4:f83bedd9cab4 159 } //ReadFrom_Si1145_Register()
stefanrousseau 4:f83bedd9cab4 160
stefanrousseau 4:f83bedd9cab4 161 void WriteTo_Si1145_Register(unsigned char reg, unsigned char value) //writes 'value' into I2C Register reg'
stefanrousseau 4:f83bedd9cab4 162 {
stefanrousseau 4:f83bedd9cab4 163 I2C_WriteSingleByteToAddr(Si1145_PMOD_I2C_ADDR, reg, value, true);
stefanrousseau 4:f83bedd9cab4 164 } //WriteTo_Si1145_Register()
stefanrousseau 4:f83bedd9cab4 165
stefanrousseau 4:f83bedd9cab4 166 #define REG_PARAM_WR 0x17
stefanrousseau 4:f83bedd9cab4 167 #define REG_PARAM_RD 0x2E
stefanrousseau 4:f83bedd9cab4 168 #define REG_COMMAND 0x18
stefanrousseau 4:f83bedd9cab4 169 #define REG_RESPONSE 0x20
stefanrousseau 4:f83bedd9cab4 170 #define REG_HW_KEY 0x07
stefanrousseau 4:f83bedd9cab4 171 #define HW_KEY_VAL0 0x17
stefanrousseau 4:f83bedd9cab4 172 #define REG_MEAS_RATE_LSB 0x08
stefanrousseau 4:f83bedd9cab4 173 #define REG_MEAS_RATE_MSB 0x09
stefanrousseau 4:f83bedd9cab4 174 #define REG_PS_LED21 0x0F
stefanrousseau 4:f83bedd9cab4 175 #define REG_PS_LED3 0x10
stefanrousseau 4:f83bedd9cab4 176 #define MAX_LED_CURRENT 0xF
stefanrousseau 4:f83bedd9cab4 177 #define PARAM_CH_LIST 0x01
stefanrousseau 4:f83bedd9cab4 178 #define REG_ALS_VIS_DATA0 0x22
stefanrousseau 4:f83bedd9cab4 179 #define REG_ALS_VIS_DATA1 0x23
stefanrousseau 4:f83bedd9cab4 180 #define REG_ALS_IR_DATA0 0x24
stefanrousseau 4:f83bedd9cab4 181 #define REG_ALS_IR_DATA1 0x25
stefanrousseau 4:f83bedd9cab4 182 #define REG_PS1_DATA0 0x26
stefanrousseau 4:f83bedd9cab4 183 #define REG_PS1_DATA1 0x27
stefanrousseau 4:f83bedd9cab4 184 #define REG_PS2_DATA0 0x28
stefanrousseau 4:f83bedd9cab4 185 #define REG_PS2_DATA1 0x29
stefanrousseau 4:f83bedd9cab4 186 #define REG_PS3_DATA0 0x2A
stefanrousseau 4:f83bedd9cab4 187 #define REG_PS3_DATA1 0x2B
stefanrousseau 4:f83bedd9cab4 188 #define REG_UVINDEX0 0x2C
stefanrousseau 4:f83bedd9cab4 189 #define REG_UVINDEX1 0x2D
stefanrousseau 4:f83bedd9cab4 190 int Si1145_ParamSet(unsigned char address, unsigned char value) //writes 'value' into Parameter 'address'
stefanrousseau 4:f83bedd9cab4 191 {
stefanrousseau 4:f83bedd9cab4 192 char txbuffer [3];
stefanrousseau 4:f83bedd9cab4 193 txbuffer[0] = (char)REG_PARAM_WR; //destination
stefanrousseau 4:f83bedd9cab4 194 txbuffer[1] = (char)value;
stefanrousseau 4:f83bedd9cab4 195 txbuffer[2] = (char)(0xA0 + (address & 0x1F));
stefanrousseau 4:f83bedd9cab4 196 int retval;
stefanrousseau 4:f83bedd9cab4 197 //if((retval = _waitUntilSleep(si114x_handle))!=0) return retval;
stefanrousseau 4:f83bedd9cab4 198 retval = I2C_WriteMultipleBytes(Si1145_PMOD_I2C_ADDR, &txbuffer[0], 3, true);
stefanrousseau 4:f83bedd9cab4 199 if(retval!=0) return retval;
stefanrousseau 4:f83bedd9cab4 200 while(1)
stefanrousseau 4:f83bedd9cab4 201 {
stefanrousseau 4:f83bedd9cab4 202 retval=ReadFrom_Si1145_Register(REG_PARAM_RD);
stefanrousseau 4:f83bedd9cab4 203 if (retval==value) break;
stefanrousseau 4:f83bedd9cab4 204 }
stefanrousseau 4:f83bedd9cab4 205 return (0);
stefanrousseau 4:f83bedd9cab4 206 } //Si1145_ParamSet()
stefanrousseau 4:f83bedd9cab4 207
stefanrousseau 4:f83bedd9cab4 208 void PsAlsForce(void) //equivalent to WriteTo_Si1145_Register(REG_COMMAND,0x07). This forces PS and ALS measurements
stefanrousseau 4:f83bedd9cab4 209 {
stefanrousseau 4:f83bedd9cab4 210 WriteTo_Si1145_Register(REG_COMMAND,0x07);
stefanrousseau 4:f83bedd9cab4 211 } //PsAlsForce()
stefanrousseau 4:f83bedd9cab4 212
stefanrousseau 4:f83bedd9cab4 213 bool bSi1145_present = false;
stefanrousseau 4:f83bedd9cab4 214 void Init_Si1145(void)
stefanrousseau 4:f83bedd9cab4 215 {
stefanrousseau 4:f83bedd9cab4 216 unsigned char readbyte;
stefanrousseau 4:f83bedd9cab4 217 //Read Si1145 part ID:
stefanrousseau 4:f83bedd9cab4 218 readbyte = ReadFrom_Si1145_Register(0x00);
stefanrousseau 4:f83bedd9cab4 219 if (readbyte != 0x45)
stefanrousseau 4:f83bedd9cab4 220 {
stefanrousseau 4:f83bedd9cab4 221 bSi1145_present = false;
stefanrousseau 4:f83bedd9cab4 222 printf("Si1145 sensor not found\n");
stefanrousseau 4:f83bedd9cab4 223 }
stefanrousseau 4:f83bedd9cab4 224 else
stefanrousseau 4:f83bedd9cab4 225 {
stefanrousseau 4:f83bedd9cab4 226 bSi1145_present = true;
stefanrousseau 4:f83bedd9cab4 227 printf("Si1145 Part ID : 0x%02X\n", readbyte);
stefanrousseau 4:f83bedd9cab4 228 //Initialize Si1145 by writing to HW_KEY (I2C Register 0x07 = 0x17)
stefanrousseau 4:f83bedd9cab4 229 WriteTo_Si1145_Register(REG_HW_KEY, HW_KEY_VAL0);
stefanrousseau 4:f83bedd9cab4 230
stefanrousseau 4:f83bedd9cab4 231 // Initialize LED Current
stefanrousseau 4:f83bedd9cab4 232 // I2C Register 0x0F = 0xFF
stefanrousseau 4:f83bedd9cab4 233 // I2C Register 0x10 = 0x0F
stefanrousseau 4:f83bedd9cab4 234 WriteTo_Si1145_Register(REG_PS_LED21,(MAX_LED_CURRENT<<4) + MAX_LED_CURRENT);
stefanrousseau 4:f83bedd9cab4 235 WriteTo_Si1145_Register(REG_PS_LED3, MAX_LED_CURRENT);
stefanrousseau 4:f83bedd9cab4 236
stefanrousseau 4:f83bedd9cab4 237 // Parameter 0x01 = 0x37
stefanrousseau 4:f83bedd9cab4 238 //Si1145_ParamSet(PARAM_CH_LIST, ALS_IR_TASK + ALS_VIS_TASK + PS1_TASK + PS2_TASK + PS3_TASK);
stefanrousseau 4:f83bedd9cab4 239 //Si1145_ParamSet(0x01, 0x37); //CHLIST is address 0x01 in the parameter RAM. It defines which sensors are enabled (here, some)
stefanrousseau 4:f83bedd9cab4 240 Si1145_ParamSet(0x01, 0x7F); //CHLIST is address 0x01 in the parameter RAM. It defines which sensors are enabled (here, all but UV. One can only use AUX or UV but here we use AUX because UV does not work...)
stefanrousseau 4:f83bedd9cab4 241 // I2C Register 0x18 = 0x0x07 //This is PSALS_FORCE to the Command register => Force a single PS (proximity sensor) and ALS (ambient light sensor) reading - The factory code has this as 0x05 which only does PS...
stefanrousseau 4:f83bedd9cab4 242 PsAlsForce(); // can also be written as WriteTo_Si1145_Register(REG_COMMAND,0x07);
stefanrousseau 4:f83bedd9cab4 243 WriteTo_Si1145_Register(REG_COMMAND, 0x0F);//command to put it into auto mode
stefanrousseau 4:f83bedd9cab4 244 //Set MES_RATE to 0x1000. I.e. the device will automatically wake up every 16 * 256* 31.25 us = 0.128 seconds to measure
stefanrousseau 4:f83bedd9cab4 245 WriteTo_Si1145_Register(REG_MEAS_RATE_LSB, 0x00);
stefanrousseau 4:f83bedd9cab4 246 WriteTo_Si1145_Register(REG_MEAS_RATE_MSB, 0x10);
stefanrousseau 4:f83bedd9cab4 247 } //bSi1145_present = true
stefanrousseau 4:f83bedd9cab4 248 } //Init_Si1145()
stefanrousseau 4:f83bedd9cab4 249
stefanrousseau 4:f83bedd9cab4 250 void Read_Si1145(void)
stefanrousseau 4:f83bedd9cab4 251 {
stefanrousseau 4:f83bedd9cab4 252 if (bSi1145_present)
stefanrousseau 4:f83bedd9cab4 253 {
stefanrousseau 4:f83bedd9cab4 254 // Once the measurements are completed, here is how to reconstruct them
stefanrousseau 4:f83bedd9cab4 255 // Note very carefully that 16-bit registers are in the 'Little Endian' byte order
stefanrousseau 4:f83bedd9cab4 256 // It may be more efficient to perform block I2C Reads, but this example shows
stefanrousseau 4:f83bedd9cab4 257 // individual reads of registers
stefanrousseau 4:f83bedd9cab4 258
stefanrousseau 4:f83bedd9cab4 259 int PS1 = ReadFrom_Si1145_Register(REG_PS1_DATA0) + 256 * ReadFrom_Si1145_Register(REG_PS1_DATA1);
stefanrousseau 4:f83bedd9cab4 260 int PS2 = ReadFrom_Si1145_Register(REG_PS2_DATA0) + 256 * ReadFrom_Si1145_Register(REG_PS2_DATA1);
stefanrousseau 4:f83bedd9cab4 261 int PS3 = ReadFrom_Si1145_Register(REG_PS3_DATA0) + 256 * ReadFrom_Si1145_Register(REG_PS3_DATA1);
stefanrousseau 4:f83bedd9cab4 262 //printf("PS1_Data = %d\n", PS1);
stefanrousseau 4:f83bedd9cab4 263 //printf("PS2_Data = %d\n", PS2);
stefanrousseau 4:f83bedd9cab4 264 //printf("PS3_Data = %d\n", PS3);
stefanrousseau 4:f83bedd9cab4 265 //OBJECT PRESENT?
stefanrousseau 57:d184175b6b03 266 #if (0)
stefanrousseau 4:f83bedd9cab4 267 if(PS1 < 22000){
stefanrousseau 4:f83bedd9cab4 268 //printf("Object Far\n");
stefanrousseau 57:d184175b6b03 269 sprintf(SENSOR_DATA.Proximity, "Object Far\0");
stefanrousseau 4:f83bedd9cab4 270 }
stefanrousseau 4:f83bedd9cab4 271 else if(PS1 < 24000)
stefanrousseau 4:f83bedd9cab4 272 {
stefanrousseau 4:f83bedd9cab4 273 //printf("Object in Vicinity\n");
stefanrousseau 57:d184175b6b03 274 sprintf(SENSOR_DATA.Proximity, "Object in Vicinity\0");
stefanrousseau 4:f83bedd9cab4 275 }
stefanrousseau 4:f83bedd9cab4 276 else if (PS1 < 30000)
stefanrousseau 4:f83bedd9cab4 277 {
stefanrousseau 4:f83bedd9cab4 278 //printf("Object Near\n");
stefanrousseau 57:d184175b6b03 279 sprintf(SENSOR_DATA.Proximity, "Object Near\0");
stefanrousseau 4:f83bedd9cab4 280 }
stefanrousseau 4:f83bedd9cab4 281 else
stefanrousseau 4:f83bedd9cab4 282 {
stefanrousseau 4:f83bedd9cab4 283 //printf("Object Very Near\n");
stefanrousseau 57:d184175b6b03 284 sprintf(SENSOR_DATA.Proximity, "Object Very Near\0");
stefanrousseau 4:f83bedd9cab4 285 }
stefanrousseau 57:d184175b6b03 286 #else
stefanrousseau 57:d184175b6b03 287 sprintf(SENSOR_DATA.Proximity, "%d\0", PS1);
stefanrousseau 57:d184175b6b03 288 #endif
stefanrousseau 4:f83bedd9cab4 289
stefanrousseau 4:f83bedd9cab4 290 //Force ALS read:
stefanrousseau 4:f83bedd9cab4 291 //WriteTo_Si1145_Register(REG_COMMAND, 0x06);
stefanrousseau 4:f83bedd9cab4 292 //wait (0.1);
stefanrousseau 4:f83bedd9cab4 293 int ALS_VIS = ReadFrom_Si1145_Register(REG_ALS_VIS_DATA0) + 256 * ReadFrom_Si1145_Register(REG_ALS_VIS_DATA1);
stefanrousseau 4:f83bedd9cab4 294 int ALS_IR = ReadFrom_Si1145_Register(REG_ALS_IR_DATA0) + 256 * ReadFrom_Si1145_Register(REG_ALS_IR_DATA1);
stefanrousseau 4:f83bedd9cab4 295 int UV_INDEX = ReadFrom_Si1145_Register(REG_UVINDEX0) + 256 * ReadFrom_Si1145_Register(REG_UVINDEX1);
stefanrousseau 4:f83bedd9cab4 296 //printf("ALS_VIS_Data = %d\n", ALS_VIS);
stefanrousseau 4:f83bedd9cab4 297 //printf("ALS_IR_Data = %d\n", ALS_IR);
stefanrousseau 4:f83bedd9cab4 298 //printf("UV_INDEX_Data = %d\n", UV_INDEX);
stefanrousseau 4:f83bedd9cab4 299
stefanrousseau 4:f83bedd9cab4 300 //printf("Ambient Light Visible Sensor = %d\n", ALS_VIS);
stefanrousseau 4:f83bedd9cab4 301 sprintf(SENSOR_DATA.AmbientLightVis, "%d", ALS_VIS);
stefanrousseau 4:f83bedd9cab4 302 //printf("Ambient Light Infrared Sensor = %d\n", ALS_IR);
stefanrousseau 4:f83bedd9cab4 303 sprintf(SENSOR_DATA.AmbientLightIr, "%d", ALS_IR);
stefanrousseau 4:f83bedd9cab4 304 //float fUV_value = (UV_INDEX -50.0)/10000.0;
stefanrousseau 4:f83bedd9cab4 305 float fUV_value = (UV_INDEX)/100.0; //this is the aux reading
stefanrousseau 4:f83bedd9cab4 306 //printf("UV_Data = %0.2f\n", fUV_value);
stefanrousseau 4:f83bedd9cab4 307 sprintf(SENSOR_DATA.UVindex, "%0.2f", fUV_value);
stefanrousseau 4:f83bedd9cab4 308 } //bSi1145_present = true
stefanrousseau 4:f83bedd9cab4 309 } //Read_Si1145()
stefanrousseau 4:f83bedd9cab4 310
stefanrousseau 4:f83bedd9cab4 311 //********************************************************************************************************************************************
stefanrousseau 4:f83bedd9cab4 312 //* Read the FXOS8700CQ - 6-axis combo Sensor Accelerometer and Magnetometer
stefanrousseau 4:f83bedd9cab4 313 //********************************************************************************************************************************************
stefanrousseau 11:e6602513730f 314 bool bMotionSensor_present = false;
stefanrousseau 4:f83bedd9cab4 315 void init_motion_sensor()
stefanrousseau 4:f83bedd9cab4 316 {
stefanrousseau 57:d184175b6b03 317 // Note: this class is instantiated here because if it is statically declared, the cellular shield init kills the I2C bus...
stefanrousseau 57:d184175b6b03 318 // Class instantiation with pin names for the motion sensor on the FRDM-K64F board:
stefanrousseau 57:d184175b6b03 319 FXOS8700CQ fxos(PTE25, PTE24, FXOS8700CQ_SLAVE_ADDR1); // SDA, SCL, (addr << 1)
stefanrousseau 11:e6602513730f 320 int iWhoAmI = fxos.get_whoami();
stefanrousseau 57:d184175b6b03 321
stefanrousseau 11:e6602513730f 322 printf("FXOS8700CQ WhoAmI = %X\r\n", iWhoAmI);
stefanrousseau 4:f83bedd9cab4 323 // Iterrupt for active-low interrupt line from FXOS
stefanrousseau 4:f83bedd9cab4 324 // Configured with only one interrupt on INT2 signaling Data-Ready
stefanrousseau 4:f83bedd9cab4 325 //fxos_int2.fall(&trigger_fxos_int2);
stefanrousseau 11:e6602513730f 326 if (iWhoAmI != 0xC7)
stefanrousseau 11:e6602513730f 327 {
stefanrousseau 11:e6602513730f 328 bMotionSensor_present = false;
stefanrousseau 11:e6602513730f 329 printf("FXOS8700CQ motion sensor not found\n");
stefanrousseau 11:e6602513730f 330 }
stefanrousseau 11:e6602513730f 331 else
stefanrousseau 11:e6602513730f 332 {
stefanrousseau 11:e6602513730f 333 bMotionSensor_present = true;
stefanrousseau 11:e6602513730f 334 fxos.enable();
stefanrousseau 11:e6602513730f 335 }
stefanrousseau 4:f83bedd9cab4 336 } //init_motion_sensor
stefanrousseau 4:f83bedd9cab4 337
stefanrousseau 11:e6602513730f 338 void read_motion_sensor()
stefanrousseau 11:e6602513730f 339 {
stefanrousseau 57:d184175b6b03 340 // Note: this class is instantiated here because if it is statically declared, the cellular shield init kills the I2C bus...
stefanrousseau 57:d184175b6b03 341 // Class instantiation with pin names for the motion sensor on the FRDM-K64F board:
stefanrousseau 57:d184175b6b03 342 FXOS8700CQ fxos(PTE25, PTE24, FXOS8700CQ_SLAVE_ADDR1); // SDA, SCL, (addr << 1)
stefanrousseau 11:e6602513730f 343 if (bMotionSensor_present)
stefanrousseau 11:e6602513730f 344 {
stefanrousseau 57:d184175b6b03 345 fxos.enable();
stefanrousseau 11:e6602513730f 346 fxos.get_data(&accel_data, &magn_data);
stefanrousseau 11:e6602513730f 347 //printf("Roll=%5d, Pitch=%5d, Yaw=%5d;\r\n", magn_data.x, magn_data.y, magn_data.z);
stefanrousseau 11:e6602513730f 348 sprintf(SENSOR_DATA.MagnetometerX, "%5d", magn_data.x);
stefanrousseau 11:e6602513730f 349 sprintf(SENSOR_DATA.MagnetometerY, "%5d", magn_data.y);
stefanrousseau 11:e6602513730f 350 sprintf(SENSOR_DATA.MagnetometerZ, "%5d", magn_data.z);
stefanrousseau 11:e6602513730f 351
stefanrousseau 11:e6602513730f 352 //Try to normalize (/2048) the values so they will match the eCompass output:
stefanrousseau 11:e6602513730f 353 float fAccelScaled_x, fAccelScaled_y, fAccelScaled_z;
stefanrousseau 11:e6602513730f 354 fAccelScaled_x = (accel_data.x/2048.0);
stefanrousseau 11:e6602513730f 355 fAccelScaled_y = (accel_data.y/2048.0);
stefanrousseau 11:e6602513730f 356 fAccelScaled_z = (accel_data.z/2048.0);
stefanrousseau 11:e6602513730f 357 //printf("Acc: X=%2.3f Y=%2.3f Z=%2.3f;\r\n", fAccelScaled_x, fAccelScaled_y, fAccelScaled_z);
stefanrousseau 11:e6602513730f 358 sprintf(SENSOR_DATA.AccelX, "%2.3f", fAccelScaled_x);
stefanrousseau 11:e6602513730f 359 sprintf(SENSOR_DATA.AccelY, "%2.3f", fAccelScaled_y);
stefanrousseau 11:e6602513730f 360 sprintf(SENSOR_DATA.AccelZ, "%2.3f", fAccelScaled_z);
stefanrousseau 11:e6602513730f 361 } //bMotionSensor_present
stefanrousseau 11:e6602513730f 362 } //read_motion_sensor
stefanrousseau 11:e6602513730f 363
stefanrousseau 55:3abf9e3f42e6 364
stefanrousseau 55:3abf9e3f42e6 365 #ifdef USE_VIRTUAL_SENSORS
stefanrousseau 55:3abf9e3f42e6 366 bool bUsbConnected = false;
stefanrousseau 55:3abf9e3f42e6 367 volatile uint8_t usb_uart_rx_buff[256];
stefanrousseau 55:3abf9e3f42e6 368 //volatile uint8_t usb_uart_tx_buff[256];
stefanrousseau 55:3abf9e3f42e6 369 volatile unsigned char usb_uart_rx_buff_putptr = 0;
stefanrousseau 55:3abf9e3f42e6 370 volatile unsigned char usb_uart_rx_buff_getptr = 0;
stefanrousseau 55:3abf9e3f42e6 371 //volatile unsigned char usb_uart_tx_buff_putptr = 0;
stefanrousseau 55:3abf9e3f42e6 372 //volatile unsigned char usb_uart_tx_buff_getptr = 0;
stefanrousseau 55:3abf9e3f42e6 373 char usbhost_rx_string[256];
stefanrousseau 55:3abf9e3f42e6 374 unsigned char usbhost_rxstring_index;
stefanrousseau 55:3abf9e3f42e6 375 char usbhost_tx_string[256];
stefanrousseau 55:3abf9e3f42e6 376
stefanrousseau 55:3abf9e3f42e6 377
stefanrousseau 55:3abf9e3f42e6 378 float f_sensor1_value = 12.3;
stefanrousseau 55:3abf9e3f42e6 379 float f_sensor2_value = 45.6;
stefanrousseau 55:3abf9e3f42e6 380 float f_sensor3_value = 78.9;
stefanrousseau 55:3abf9e3f42e6 381 float f_sensor4_value = 78.9;
stefanrousseau 55:3abf9e3f42e6 382 float f_sensor5_value = 78.9;
stefanrousseau 55:3abf9e3f42e6 383 float f_sensor6_value = 78.9;
stefanrousseau 55:3abf9e3f42e6 384 float f_sensor7_value = 78.9;
stefanrousseau 55:3abf9e3f42e6 385 float f_sensor8_value = 78.9;
stefanrousseau 55:3abf9e3f42e6 386 char usb_sensor_string[110];
stefanrousseau 55:3abf9e3f42e6 387
stefanrousseau 55:3abf9e3f42e6 388
stefanrousseau 55:3abf9e3f42e6 389 //********************************************************************************************************************************************
stefanrousseau 55:3abf9e3f42e6 390 //* Parse the input sensor data from the USB host
stefanrousseau 55:3abf9e3f42e6 391 //********************************************************************************************************************************************
stefanrousseau 55:3abf9e3f42e6 392 int parse_usbhost_message()
stefanrousseau 55:3abf9e3f42e6 393 {
stefanrousseau 55:3abf9e3f42e6 394 //printf("String = %s\n", usbhost_rx_string); //test
stefanrousseau 55:3abf9e3f42e6 395 uint8_t length;
stefanrousseau 55:3abf9e3f42e6 396 uint8_t x ;
stefanrousseau 55:3abf9e3f42e6 397 //It seems that sscanf needs 11 characters to store a 7-character number. There must be some formatting and termination values...
stefanrousseau 55:3abf9e3f42e6 398 char Record[8][11]; //There are 8 sensors with up to 7 characters each
stefanrousseau 55:3abf9e3f42e6 399 char StringRecord[110]; //There are is a sensor "string" with up to 100 characters in it
stefanrousseau 55:3abf9e3f42e6 400
stefanrousseau 55:3abf9e3f42e6 401 // Data format is: "S1:1234,S2:5678,S3:1234,S4:5678,S5:1234,S6:5678,S7:5678,S8:5678,S9:abcde...\n"
stefanrousseau 55:3abf9e3f42e6 402 int args_assigned = sscanf(usbhost_rx_string, "%[^','],%[^','],%[^','],%[^','],%[^','],%[^','],%[^','],%[^','],%[^\n]", Record[0], Record[1], Record[2], Record[3], Record[4], Record[5], Record[6], Record[7], StringRecord);
stefanrousseau 55:3abf9e3f42e6 403
stefanrousseau 55:3abf9e3f42e6 404 //StringRecord[109] = '\0';
stefanrousseau 55:3abf9e3f42e6 405 //printf("Last = %s\n", StringRecord); //test
stefanrousseau 55:3abf9e3f42e6 406
stefanrousseau 55:3abf9e3f42e6 407 if (args_assigned == 9)
stefanrousseau 55:3abf9e3f42e6 408 { //sscanf was able to assign all 9 values
stefanrousseau 55:3abf9e3f42e6 409 for (x=0; x < 8; x++) // loop through the 8 sensors
stefanrousseau 55:3abf9e3f42e6 410 {
stefanrousseau 55:3abf9e3f42e6 411 // Strip the "Sx:" label characters from the field value
stefanrousseau 55:3abf9e3f42e6 412 length = strlen(Record[x]); // max of 7 characters but could be less
stefanrousseau 55:3abf9e3f42e6 413 strncpy(Record[x], Record[x] + 3, length);
stefanrousseau 55:3abf9e3f42e6 414 Record[x][length] = '\0'; // null termination character manually added
stefanrousseau 55:3abf9e3f42e6 415 }
stefanrousseau 55:3abf9e3f42e6 416 length = strlen(StringRecord);
stefanrousseau 55:3abf9e3f42e6 417 strncpy(StringRecord, StringRecord + 3, length);
stefanrousseau 55:3abf9e3f42e6 418 StringRecord[length] = '\0'; // null termination character manually added
stefanrousseau 55:3abf9e3f42e6 419
stefanrousseau 55:3abf9e3f42e6 420 if ((usbhost_rx_string[0] == 'S') && (usbhost_rx_string[1] == '1')) //The message starts with "S1"
stefanrousseau 55:3abf9e3f42e6 421 {
stefanrousseau 55:3abf9e3f42e6 422 f_sensor1_value = atof(Record[0]);
stefanrousseau 55:3abf9e3f42e6 423 f_sensor2_value = atof(Record[1]);
stefanrousseau 55:3abf9e3f42e6 424 f_sensor3_value = atof(Record[2]);
stefanrousseau 55:3abf9e3f42e6 425 f_sensor4_value = atof(Record[3]);
stefanrousseau 55:3abf9e3f42e6 426 f_sensor5_value = atof(Record[4]);
stefanrousseau 55:3abf9e3f42e6 427 f_sensor6_value = atof(Record[5]);
stefanrousseau 55:3abf9e3f42e6 428 f_sensor7_value = atof(Record[6]);
stefanrousseau 55:3abf9e3f42e6 429 f_sensor8_value = atof(Record[7]);
stefanrousseau 55:3abf9e3f42e6 430 sprintf(usb_sensor_string,StringRecord);
stefanrousseau 55:3abf9e3f42e6 431 //printf("Received = %s, %s, %s, %s, %s, %s, %s, %s, %s\n", Record[0], Record[1], Record[2], Record[3], Record[4], Record[5], Record[6], Record[7], usb_sensor_string); //test
stefanrousseau 55:3abf9e3f42e6 432 sprintf(SENSOR_DATA.Virtual_Sensor1, "%s", Record[0]);
stefanrousseau 55:3abf9e3f42e6 433 sprintf(SENSOR_DATA.Virtual_Sensor2, "%s", Record[1]);
stefanrousseau 55:3abf9e3f42e6 434 sprintf(SENSOR_DATA.Virtual_Sensor3, "%s", Record[2]);
stefanrousseau 55:3abf9e3f42e6 435 sprintf(SENSOR_DATA.Virtual_Sensor4, "%s", Record[3]);
stefanrousseau 55:3abf9e3f42e6 436 sprintf(SENSOR_DATA.Virtual_Sensor5, "%s", Record[4]);
stefanrousseau 55:3abf9e3f42e6 437 sprintf(SENSOR_DATA.Virtual_Sensor6, "%s", Record[5]);
stefanrousseau 55:3abf9e3f42e6 438 sprintf(SENSOR_DATA.Virtual_Sensor7, "%s", Record[6]);
stefanrousseau 55:3abf9e3f42e6 439 sprintf(SENSOR_DATA.Virtual_Sensor8, "%s", Record[7]);
stefanrousseau 55:3abf9e3f42e6 440 }
stefanrousseau 55:3abf9e3f42e6 441 } //sscanf was able to assign all values
stefanrousseau 55:3abf9e3f42e6 442 return args_assigned;
stefanrousseau 55:3abf9e3f42e6 443 } //parse_usbhost_message()
stefanrousseau 55:3abf9e3f42e6 444
stefanrousseau 55:3abf9e3f42e6 445 //********************************************************************************************************************************************
stefanrousseau 55:3abf9e3f42e6 446 //* Process any received message from the USB host
stefanrousseau 55:3abf9e3f42e6 447 //********************************************************************************************************************************************
stefanrousseau 55:3abf9e3f42e6 448 void process_usb_rx(unsigned char ucNewRxByte)
stefanrousseau 55:3abf9e3f42e6 449 {
stefanrousseau 55:3abf9e3f42e6 450 if (ucNewRxByte == '?')
stefanrousseau 55:3abf9e3f42e6 451 { //just pinging
stefanrousseau 55:3abf9e3f42e6 452 usbhost_rxstring_index = 0;
stefanrousseau 55:3abf9e3f42e6 453 return;
stefanrousseau 55:3abf9e3f42e6 454 } //just pinging
stefanrousseau 55:3abf9e3f42e6 455 usbhost_rx_string[usbhost_rxstring_index++] = ucNewRxByte;
stefanrousseau 55:3abf9e3f42e6 456 if (ucNewRxByte == '\n')
stefanrousseau 55:3abf9e3f42e6 457 { //end of message
stefanrousseau 55:3abf9e3f42e6 458 usbhost_rx_string[usbhost_rxstring_index] = 0; //null terminate string
stefanrousseau 55:3abf9e3f42e6 459 usbhost_rxstring_index = 0;
stefanrousseau 55:3abf9e3f42e6 460 parse_usbhost_message();
stefanrousseau 55:3abf9e3f42e6 461 } //end of message
stefanrousseau 55:3abf9e3f42e6 462 } //process_usb_rx()
stefanrousseau 55:3abf9e3f42e6 463
stefanrousseau 55:3abf9e3f42e6 464 void ProcessUsbInterface(void)
stefanrousseau 55:3abf9e3f42e6 465 {
stefanrousseau 55:3abf9e3f42e6 466 //Process the USB host UART receive commands:
stefanrousseau 55:3abf9e3f42e6 467 if (usb_uart_rx_buff_getptr != usb_uart_rx_buff_putptr)
stefanrousseau 55:3abf9e3f42e6 468 {
stefanrousseau 55:3abf9e3f42e6 469 bUsbConnected = true;
stefanrousseau 55:3abf9e3f42e6 470 while (usb_uart_rx_buff_getptr != usb_uart_rx_buff_putptr)
stefanrousseau 55:3abf9e3f42e6 471 {
stefanrousseau 55:3abf9e3f42e6 472 unsigned char ucByteFromHost = usb_uart_rx_buff[usb_uart_rx_buff_getptr++]; //Copy latest received byte
stefanrousseau 55:3abf9e3f42e6 473 process_usb_rx(ucByteFromHost);
stefanrousseau 55:3abf9e3f42e6 474 } //while (usb_uart_rx_buff_getptr != usb_uart_rx_buff_putptr)
stefanrousseau 55:3abf9e3f42e6 475 } // if there are USB UART bytes to receive
stefanrousseau 55:3abf9e3f42e6 476 //USB host UART transmit:
stefanrousseau 55:3abf9e3f42e6 477 //while (usb_uart_tx_buff_getptr != usb_uart_tx_buff_putptr)
stefanrousseau 55:3abf9e3f42e6 478 //{
stefanrousseau 55:3abf9e3f42e6 479 //pc.putc(usb_uart_tx_buff[usb_uart_tx_buff_getptr++]);
stefanrousseau 55:3abf9e3f42e6 480 //}
stefanrousseau 55:3abf9e3f42e6 481 } //ProcessUsbInterface()
stefanrousseau 55:3abf9e3f42e6 482
stefanrousseau 56:cb42ff383dab 483 // This function is called when a character goes into the RX buffer.
stefanrousseau 56:cb42ff383dab 484 void UsbUartRxCallback(MODSERIAL_IRQ_INFO *info)
stefanrousseau 55:3abf9e3f42e6 485 {
stefanrousseau 56:cb42ff383dab 486 // Get the pointer to our MODSERIAL object that invoked this callback.
stefanrousseau 56:cb42ff383dab 487 MODSERIAL *pc = info->serial;
stefanrousseau 56:cb42ff383dab 488 while (pc->readable())
stefanrousseau 56:cb42ff383dab 489 {
stefanrousseau 56:cb42ff383dab 490 usb_uart_rx_buff[usb_uart_rx_buff_putptr++] = pc->getcNb();
stefanrousseau 56:cb42ff383dab 491 }
stefanrousseau 55:3abf9e3f42e6 492 }
stefanrousseau 55:3abf9e3f42e6 493 #endif
stefanrousseau 55:3abf9e3f42e6 494
stefanrousseau 4:f83bedd9cab4 495 void sensors_init(void)
stefanrousseau 4:f83bedd9cab4 496 {
stefanrousseau 55:3abf9e3f42e6 497 #ifdef USE_VIRTUAL_SENSORS
stefanrousseau 56:cb42ff383dab 498 pc.attach(&UsbUartRxCallback, MODSERIAL::RxIrq);
stefanrousseau 55:3abf9e3f42e6 499 #endif
stefanrousseau 4:f83bedd9cab4 500 Init_Si7020();
stefanrousseau 4:f83bedd9cab4 501 Init_Si1145();
stefanrousseau 4:f83bedd9cab4 502 init_motion_sensor();
stefanrousseau 4:f83bedd9cab4 503 } //sensors_init
stefanrousseau 4:f83bedd9cab4 504
stefanrousseau 4:f83bedd9cab4 505 void read_sensors(void)
stefanrousseau 4:f83bedd9cab4 506 {
stefanrousseau 4:f83bedd9cab4 507 Read_Si7020();
stefanrousseau 4:f83bedd9cab4 508 Read_Si1145();
stefanrousseau 4:f83bedd9cab4 509 read_motion_sensor();
stefanrousseau 4:f83bedd9cab4 510 } //read_sensors