This program connects to a few sensors via I2C and sends the data collected to a WNC Cellular Module which is located on an Avnet WNC-Shield card.

Dependencies:   FXOS8700CQ MODSERIAL mbed

/media/uploads/kevinkeryk/avnet_logo_tagline_rgb.png

Avnet Cellular IoT Instructions

  • One problematic area is setting the MY_SERVER_URL. When you copy the URL from the flow, you must make sure the MY_SERVER_URL is also set to the appropriate server. It can be either "run-east.att.io" or "run-west.att.io".

Useful Links

Adding Additional Sensors

The FLOW_DEVICE_NAME field must contain the name of the instance of the Virtual Starter Kit in FLOW you will be communicating with. Usually this is "vstarterkit001", but if you have problems communicating you can verify this is correct. Note: This device will not be created until you click the “Initialize” input on the Virtual Device tab of the Starter Kit project in FLOW. At that point, it becomes available in M2X and you can see it as the DEVICE SERIAL field under Devices as in the image below. /media/uploads/JMF/vstarterkit.png

Sensors: When executing, the FRDM-K64F board uploads sensor measurements to AT&T’s Flow environment every 5 seconds, using the Cellular shield board. You can adjust how often you want to do this by editing the SENSOR_UPDATE_INTERVAL_MS value in the header file.

Temperature and humidity: By default, the board reports readings from the HTS221 temperature and humidity sensor. These two values are sent to the HTTP IN /climate port in FLOW with field names “temp” and “humidity”. Temperature is in degrees Fahrenheit and humidity is a %. This default assignment is: iSensorsToReport = TEMP_HUMIDITY_ONLY;

Accelerometer: If you want to expand and use the onboard motion sensor, you can also send 3-axis accelerometer information from the board as “accelX”, “accelY”, and “accelZ”. This is useful if you want to know the stationary position of the board with regards to gravity, or whether it is in motion. These readings are in g’s. To send these values, change the assignment to: iSensorsToReport = TEMP_HUMIDITY_ACCELEROMETER;

PMOD Sensors: If you have a Silicon Labs sensor module that can plug into the PMOD connector on the Cellular shield, you are able to measure proximity, UV light, ambient visible and infrared light from the Si1145 sensor. This PMOD also has a temperature and humidity sensor, but in this case it is redundant. When enabled, the fields “proximity”, “light_uv”, “light_vis” and “light_ir” are also sent. To enable all these sensors, change the assignment to: iSensorsToReport = TEMP_HUMIDITY_ACCELEROMETER_PMODSENSORS;

Connecting the PMOD sensors: Because the pinouts do not align, the SiLabs PMOD sensor board cannot be plugged into the J10 PMOD receptacle on the shield directly. The following wiring instructions must be followed:

SignalJ10ShieldPMOD Color in the image below
VCCPin 6Pin 6Red
GNDPin 5Pin 5Black
SDAPin4Pin 3Green
SCLPin3Pin 2Yellow

/media/uploads/JMF/xyz.jpg

AT&T M2X and FLOW Instructions

M2X & FLOW Instructions

Link to AT&T M2X

M2X

Link to AT&T Flow

FLOW

Avnet WNC-Shield Information

Getting Started with the Avnet WNC-Shield Software

  • This project uses Revision 119 of the MBED library because of I2C implementation differences with the tip (Revision 121).
  • This project uses Revision 4 of the FXOS8700CQ library for sensors.

Easily Modifiable Parameters

Inside the mbed Avnet_ATT_Cellular_IOT project, the parameters needed to customize your board are in the config_me.h file.

  • FLOW parameters: This project assumes you are using a fork of the Starter Kit Base project, which is a reference design created using AT&T’s FLOW (https://flow.att.com) that allows the creation of online virtualization and other IoT functionality. The default parameters in the config_me.h file are done for a specific instance of this project. When you fork the original project, you get your own instance and it will have its own base address. At the bottom of the FLOW environment, when you click on the Endpoints tab, URL information that is specific to your instance is displayed. Of note is the Base URL. In the example below (as in the default mbed project), the Base URL is: https://run-west.att.io/1e464b19cdcde/774c88d68202/86694923d5bf28a/in/flow You have to take note of two parts of this address. The run-west.att.io part is the server URL, and you have to make sure the
  • MY_SERVER_URL field in config_me.h matches this. The rest of the base URL, in green above, needs to be pasted into the FLOW_BASE_URL field.

There is also a FLOW_INPUT_NAME field. This should match the name of the HTTP IN port in the FLOW project that you want to send sensor data to. The default is "/climate", as in the FLOW image below.

/media/uploads/JMF/sf.png

Where is the Binary I compiled

When the COMPILE button is pressed, it compiles your project and links it. The result is placed in the DOWNLOAD folder you use when downloading files from the Internet. It will be called AvnetATT_shape_hackathon_K64F.bin.

Additional Information on Compiling/Configuring

Comprehensive instructions can be found at: Quick Start Instructions

Committer:
JMF
Date:
Fri Jul 08 23:52:38 2016 +0000
Revision:
0:9d5134074d84
Child:
1:af7a42f7d465
Initial version of AT&T_Avnet Shape Hackathon WNC Shield board

Who changed what in which revision?

UserRevisionLine numberNew contents of line
JMF 0:9d5134074d84 1 #include "mbed.h"
JMF 0:9d5134074d84 2 #include <cctype>
JMF 0:9d5134074d84 3 #include <string>
JMF 0:9d5134074d84 4 #include "SerialBuffered.h"
JMF 0:9d5134074d84 5 #include "HTS221.h"
JMF 0:9d5134074d84 6
JMF 0:9d5134074d84 7 // comment out the following line if color is not supported on the terminal
JMF 0:9d5134074d84 8 #define USE_COLOR
JMF 0:9d5134074d84 9 #ifdef USE_COLOR
JMF 0:9d5134074d84 10 #define BLK "\033[30m"
JMF 0:9d5134074d84 11 #define RED "\033[31m"
JMF 0:9d5134074d84 12 #define GRN "\033[32m"
JMF 0:9d5134074d84 13 #define YEL "\033[33m"
JMF 0:9d5134074d84 14 #define BLU "\033[34m"
JMF 0:9d5134074d84 15 #define MAG "\033[35m"
JMF 0:9d5134074d84 16 #define CYN "\033[36m"
JMF 0:9d5134074d84 17 #define WHT "\033[37m"
JMF 0:9d5134074d84 18 #define DEF "\033[39m"
JMF 0:9d5134074d84 19 #else
JMF 0:9d5134074d84 20 #define BLK
JMF 0:9d5134074d84 21 #define RED
JMF 0:9d5134074d84 22 #define GRN
JMF 0:9d5134074d84 23 #define YEL
JMF 0:9d5134074d84 24 #define BLU
JMF 0:9d5134074d84 25 #define MAG
JMF 0:9d5134074d84 26 #define CYN
JMF 0:9d5134074d84 27 #define WHT
JMF 0:9d5134074d84 28 #define DEF
JMF 0:9d5134074d84 29 #endif
JMF 0:9d5134074d84 30
JMF 0:9d5134074d84 31 #define MDM_DBG_OFF 0
JMF 0:9d5134074d84 32 #define MDM_DBG_AT_CMDS (1 << 0)
JMF 0:9d5134074d84 33 int mdm_dbgmask = MDM_DBG_OFF;
JMF 0:9d5134074d84 34
JMF 0:9d5134074d84 35 Serial pc(USBTX, USBRX);
JMF 0:9d5134074d84 36 SerialBuffered mdm(PTD3, PTD2, 128);
JMF 0:9d5134074d84 37 DigitalOut led_red(LED_RED);
JMF 0:9d5134074d84 38 DigitalOut led_green(LED_GREEN);
JMF 0:9d5134074d84 39
JMF 0:9d5134074d84 40 DigitalOut mdm_uart2_rx_boot_mode_sel(PTC17); // on powerup, 0 = boot mode, 1 = normal boot
JMF 0:9d5134074d84 41 DigitalOut mdm_power_on(PTB9); // 0 = turn modem on, 1 = turn modem off (should be held high for >5 seconds to cycle modem)
JMF 0:9d5134074d84 42 DigitalOut mdm_wakeup_in(PTC2); // 0 = let modem sleep, 1 = keep modem awake -- Note: pulled high on shield
JMF 0:9d5134074d84 43
JMF 0:9d5134074d84 44 DigitalOut shield_3v3_1v8_sig_trans_ena(PTC4); // 0 = disabled (all signals high impedence, 1 = translation active
JMF 0:9d5134074d84 45 DigitalOut mdm_uart1_cts(PTD0);
JMF 0:9d5134074d84 46
JMF 0:9d5134074d84 47 #define TOUPPER(a) (a) //toupper(a)
JMF 0:9d5134074d84 48
JMF 0:9d5134074d84 49 const char ok_str[] = "OK";
JMF 0:9d5134074d84 50 const char error_str[] = "ERROR";
JMF 0:9d5134074d84 51
JMF 0:9d5134074d84 52 #define MDM_OK 0
JMF 0:9d5134074d84 53 #define MDM_ERR_TIMEOUT -1
JMF 0:9d5134074d84 54
JMF 0:9d5134074d84 55 #define MAX_AT_RSP_LEN 255
JMF 0:9d5134074d84 56
JMF 0:9d5134074d84 57 //
JMF 0:9d5134074d84 58 // The modem will return strings of HEX encoded data. This function takes
JMF 0:9d5134074d84 59 // a pointer to a string of HEX ASCII data and converts it into a string
JMF 0:9d5134074d84 60 // of ASCII data. It takes a pointer to the string of HEX ASCII data and
JMF 0:9d5134074d84 61 // a pointer to the destination string. It returns the number of characters
JMF 0:9d5134074d84 62 // it converted.
JMF 0:9d5134074d84 63 //
JMF 0:9d5134074d84 64 int DecodeASCIIstr(string& ins, string& outs) {
JMF 0:9d5134074d84 65 int val, n = 0;
JMF 0:9d5134074d84 66 char ts[2];
JMF 0:9d5134074d84 67
JMF 0:9d5134074d84 68 while(n<ins.length()) {
JMF 0:9d5134074d84 69 val = atoi((const char*)ins[n])*16+atoi((const char*)ins[n+1]);
JMF 0:9d5134074d84 70 sprintf(ts,"%c",val);
JMF 0:9d5134074d84 71 outs.append(ts);
JMF 0:9d5134074d84 72 n += 2;
JMF 0:9d5134074d84 73 }
JMF 0:9d5134074d84 74 return outs.length();
JMF 0:9d5134074d84 75 }
JMF 0:9d5134074d84 76
JMF 0:9d5134074d84 77
JMF 0:9d5134074d84 78 //
JMF 0:9d5134074d84 79 // Modem expects data to be passed to it in the form of HEX encoded strings. This
JMF 0:9d5134074d84 80 // function takes a pointer to a users supplied ASCII string, and converts it into
JMF 0:9d5134074d84 81 // an ASCII string of equivelent HEX numbers encoded as a string. The function takes
JMF 0:9d5134074d84 82 // a pointer to the users input string, and a pointer to the output string. The
JMF 0:9d5134074d84 83 // function returns the number of characters converted or 0 if an error occurs or more
JMF 0:9d5134074d84 84 // than 750 characters were converted. The 750 chacter limit is because the modem
JMF 0:9d5134074d84 85 // will only accept up to 1500 characters, and the converted srings will be 2x the
JMF 0:9d5134074d84 86 // input string since the hex representation of 1 character is a two digit hex value.
JMF 0:9d5134074d84 87 //
JMF 0:9d5134074d84 88 int CreateASCIIstr(string& in, string& out) {
JMF 0:9d5134074d84 89 int i = 0;
JMF 0:9d5134074d84 90 char ts[3];
JMF 0:9d5134074d84 91
JMF 0:9d5134074d84 92 if( in.length() > 749 )
JMF 0:9d5134074d84 93 return 0;
JMF 0:9d5134074d84 94
JMF 0:9d5134074d84 95 while(in[i] != 0x00) {
JMF 0:9d5134074d84 96 sprintf(ts,"%02X", in[i]);
JMF 0:9d5134074d84 97 out.append(ts);
JMF 0:9d5134074d84 98 i++;
JMF 0:9d5134074d84 99 }
JMF 0:9d5134074d84 100 return out.length();
JMF 0:9d5134074d84 101 }
JMF 0:9d5134074d84 102
JMF 0:9d5134074d84 103
JMF 0:9d5134074d84 104
JMF 0:9d5134074d84 105 ssize_t mdm_getline(char *buff, size_t size, int timeout_ms) {
JMF 0:9d5134074d84 106 int cin = -1;
JMF 0:9d5134074d84 107 int cin_last;
JMF 0:9d5134074d84 108
JMF 0:9d5134074d84 109 if (NULL == buff || size == 0) {
JMF 0:9d5134074d84 110 return -1;
JMF 0:9d5134074d84 111 }
JMF 0:9d5134074d84 112
JMF 0:9d5134074d84 113 size_t len = 0;
JMF 0:9d5134074d84 114 Timer timer;
JMF 0:9d5134074d84 115 timer.start();
JMF 0:9d5134074d84 116 while ((len < (size-1)) && (timer.read_ms() < timeout_ms)) {
JMF 0:9d5134074d84 117 if (mdm.readable()) {
JMF 0:9d5134074d84 118 cin_last = cin;
JMF 0:9d5134074d84 119 cin = mdm.getc();
JMF 0:9d5134074d84 120 if (isprint(cin)) {
JMF 0:9d5134074d84 121 buff[len++] = (char)cin;
JMF 0:9d5134074d84 122 continue;
JMF 0:9d5134074d84 123 } else if (('\r' == cin_last) && ('\n' == cin)) {
JMF 0:9d5134074d84 124 break;
JMF 0:9d5134074d84 125 }
JMF 0:9d5134074d84 126 }
JMF 0:9d5134074d84 127 wait_ms(1);
JMF 0:9d5134074d84 128 }
JMF 0:9d5134074d84 129 buff[len] = NULL;
JMF 0:9d5134074d84 130
JMF 0:9d5134074d84 131 return len;
JMF 0:9d5134074d84 132 }
JMF 0:9d5134074d84 133
JMF 0:9d5134074d84 134 int mdm_sendAtCmd(const char *cmd, const char **rsp_list, int timeout_ms) {
JMF 0:9d5134074d84 135 if (cmd && strlen(cmd) > 0) {
JMF 0:9d5134074d84 136 if (mdm_dbgmask & MDM_DBG_AT_CMDS) {
JMF 0:9d5134074d84 137 printf(MAG "ATCMD: " DEF "--> " GRN "%s" DEF "\n", cmd);
JMF 0:9d5134074d84 138 }
JMF 0:9d5134074d84 139 mdm.printf("%s\r\n", cmd);
JMF 0:9d5134074d84 140 }
JMF 0:9d5134074d84 141
JMF 0:9d5134074d84 142 if (rsp_list) {
JMF 0:9d5134074d84 143 Timer timer;
JMF 0:9d5134074d84 144 char rsp[MAX_AT_RSP_LEN+1];
JMF 0:9d5134074d84 145 int len;
JMF 0:9d5134074d84 146
JMF 0:9d5134074d84 147 timer.start();
JMF 0:9d5134074d84 148 while (timer.read_ms() < timeout_ms) {
JMF 0:9d5134074d84 149 len = mdm_getline(rsp, sizeof(rsp), timeout_ms - timer.read_ms());
JMF 0:9d5134074d84 150
JMF 0:9d5134074d84 151 if (len < 0)
JMF 0:9d5134074d84 152 return MDM_ERR_TIMEOUT;
JMF 0:9d5134074d84 153
JMF 0:9d5134074d84 154 if (len == 0)
JMF 0:9d5134074d84 155 continue;
JMF 0:9d5134074d84 156
JMF 0:9d5134074d84 157 if (mdm_dbgmask & MDM_DBG_AT_CMDS) {
JMF 0:9d5134074d84 158 printf(MAG "ATRSP: " DEF "<-- " CYN "%s" DEF "\n", rsp);
JMF 0:9d5134074d84 159 }
JMF 0:9d5134074d84 160
JMF 0:9d5134074d84 161 if (rsp_list) {
JMF 0:9d5134074d84 162 int rsp_idx = 0;
JMF 0:9d5134074d84 163 while (rsp_list[rsp_idx]) {
JMF 0:9d5134074d84 164 if (strcasecmp(rsp, rsp_list[rsp_idx]) == 0) {
JMF 0:9d5134074d84 165 return rsp_idx;
JMF 0:9d5134074d84 166 }
JMF 0:9d5134074d84 167 rsp_idx++;
JMF 0:9d5134074d84 168 }
JMF 0:9d5134074d84 169 }
JMF 0:9d5134074d84 170 }
JMF 0:9d5134074d84 171 return MDM_ERR_TIMEOUT;
JMF 0:9d5134074d84 172 }
JMF 0:9d5134074d84 173 return MDM_OK;
JMF 0:9d5134074d84 174 }
JMF 0:9d5134074d84 175
JMF 0:9d5134074d84 176 int mdm_init(void) {
JMF 0:9d5134074d84 177 // disable signal level translator
JMF 0:9d5134074d84 178 shield_3v3_1v8_sig_trans_ena = 0;
JMF 0:9d5134074d84 179
JMF 0:9d5134074d84 180 // power modem on //off
JMF 0:9d5134074d84 181 mdm_power_on = 0; //1;
JMF 0:9d5134074d84 182
JMF 0:9d5134074d84 183 // insure modem boots into normal operating mode
JMF 0:9d5134074d84 184 // and does not go to sleep when powered on
JMF 0:9d5134074d84 185 mdm_uart2_rx_boot_mode_sel = 1;
JMF 0:9d5134074d84 186 mdm_wakeup_in = 1;
JMF 0:9d5134074d84 187
JMF 0:9d5134074d84 188 // initialze comm with the modem
JMF 0:9d5134074d84 189 mdm.baud(115200);
JMF 0:9d5134074d84 190 mdm_uart1_cts = 0;
JMF 0:9d5134074d84 191
JMF 0:9d5134074d84 192 // enable the signal level translator to start
JMF 0:9d5134074d84 193 // modem reset process (modem will be powered down)
JMF 0:9d5134074d84 194 shield_3v3_1v8_sig_trans_ena = 1;
JMF 0:9d5134074d84 195
JMF 0:9d5134074d84 196 // Give the modem 60 secons to start responding by
JMF 0:9d5134074d84 197 // sending simple 'AT' commands to modem once per second.
JMF 0:9d5134074d84 198 Timer timer;
JMF 0:9d5134074d84 199 timer.start();
JMF 0:9d5134074d84 200 while (timer.read() < 60) {
JMF 0:9d5134074d84 201 const char * rsp_lst[] = { ok_str, error_str, NULL };
JMF 0:9d5134074d84 202 int rc = mdm_sendAtCmd("AT", rsp_lst, 500);
JMF 0:9d5134074d84 203 if (rc == 0)
JMF 0:9d5134074d84 204 return timer.read();
JMF 0:9d5134074d84 205 wait_ms(1000 - (timer.read_ms() % 1000));
JMF 0:9d5134074d84 206 pc.printf("\r%d",timer.read_ms()/1000);
JMF 0:9d5134074d84 207 }
JMF 0:9d5134074d84 208 return false;
JMF 0:9d5134074d84 209 }
JMF 0:9d5134074d84 210
JMF 0:9d5134074d84 211 #define CTOF(x) ((x)*1.8+32)
JMF 0:9d5134074d84 212
JMF 0:9d5134074d84 213 int main() {
JMF 0:9d5134074d84 214 HTS221 hts221;
JMF 0:9d5134074d84 215 pc.baud(115200);
JMF 0:9d5134074d84 216 int i,
JMF 0:9d5134074d84 217 CreateASCIIstr(string& in, string& out),
JMF 0:9d5134074d84 218 DecodeASCIIstr(string& ins, string& outs);
JMF 0:9d5134074d84 219 string ins, outs;
JMF 0:9d5134074d84 220
JMF 0:9d5134074d84 221 void hts221_init(void);
JMF 0:9d5134074d84 222
JMF 0:9d5134074d84 223 pc.printf(BLU "Hello World from AT&T Shape!\r\n");
JMF 0:9d5134074d84 224 pc.printf(GRN "Initialize the HTS221\n\r");
JMF 0:9d5134074d84 225
JMF 0:9d5134074d84 226 i = hts221.begin();
JMF 0:9d5134074d84 227 if( i )
JMF 0:9d5134074d84 228 pc.printf(BLU "HTS221 Detected! (0x%02X)\n\r",i);
JMF 0:9d5134074d84 229 else
JMF 0:9d5134074d84 230 pc.printf(RED "HTS221 NOT DETECTED!!\n\r");
JMF 0:9d5134074d84 231
JMF 0:9d5134074d84 232 printf("Temp is: %0.2f F \n\r",CTOF(hts221.readTemperature()));
JMF 0:9d5134074d84 233 printf("Humid is: %02d %%\n\r",hts221.readHumidity());
JMF 0:9d5134074d84 234
JMF 0:9d5134074d84 235 // Initialize the modem
JMF 0:9d5134074d84 236 printf(GRN "Modem initializing... will take up to 60 seconds" DEF "\r\n");
JMF 0:9d5134074d84 237 i=mdm_init();
JMF 0:9d5134074d84 238 if (!i) {
JMF 0:9d5134074d84 239 pc.printf(RED "Modem initialization failed!" DEF "\n");
JMF 0:9d5134074d84 240 while (1);
JMF 0:9d5134074d84 241 }
JMF 0:9d5134074d84 242
JMF 0:9d5134074d84 243 // Now that the modem is up and running, transfer characters
JMF 0:9d5134074d84 244 // between the pc terminal and the modem to give the user
JMF 0:9d5134074d84 245 // a virtual terminal to the modem.
JMF 0:9d5134074d84 246 pc.printf(YEL "\rAT command interface ready, completed in %d seconds. You may now type AT commands" DEF "\r\n",i);
JMF 0:9d5134074d84 247
JMF 0:9d5134074d84 248 while(1) {
JMF 0:9d5134074d84 249 if(pc.readable()) {
JMF 0:9d5134074d84 250 char char_in = TOUPPER(pc.getc());
JMF 0:9d5134074d84 251
JMF 0:9d5134074d84 252 static char last_char_in = 0;
JMF 0:9d5134074d84 253
JMF 0:9d5134074d84 254 if (('\r' == char_in) || ('\n' == char_in))
JMF 0:9d5134074d84 255 {
JMF 0:9d5134074d84 256 if (('\r' == char_in) || ('\r' != last_char_in))
JMF 0:9d5134074d84 257 {
JMF 0:9d5134074d84 258 mdm.puts("\r\n");
JMF 0:9d5134074d84 259 }
JMF 0:9d5134074d84 260 }
JMF 0:9d5134074d84 261 else
JMF 0:9d5134074d84 262 {
JMF 0:9d5134074d84 263 pc.putc(char_in);
JMF 0:9d5134074d84 264 mdm.putc(char_in);
JMF 0:9d5134074d84 265 }
JMF 0:9d5134074d84 266 last_char_in = char_in;
JMF 0:9d5134074d84 267 }
JMF 0:9d5134074d84 268 if(mdm.readable()) {
JMF 0:9d5134074d84 269 char ser_char = mdm.getc();
JMF 0:9d5134074d84 270 pc.putc(ser_char);
JMF 0:9d5134074d84 271 }
JMF 0:9d5134074d84 272 }
JMF 0:9d5134074d84 273 }