Repostiory containing DAPLink source code with Reset Pin workaround for HANI_IOT board.
Upstream: https://github.com/ARMmbed/DAPLink
source/hic_hal/nuvoton/m48ssidae/uart.c
- Committer:
- Pawel Zarembski
- Date:
- 2020-04-07
- Revision:
- 0:01f31e923fe2
File content as of revision 0:01f31e923fe2:
/** * @file uart.c * @brief * * DAPLink Interface Firmware * Copyright (c) 2009-2016, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "string.h" #include "uart.h" #include "gpio.h" #include "util.h" #include "circ_buf.h" #include "NuMicro.h" #define RX_OVRF_MSG "<DAPLink:Overflow>\n" #define RX_OVRF_MSG_SIZE (sizeof(RX_OVRF_MSG) - 1) #define BUFFER_SIZE (512) #define TX_FIFO_SIZE 16 /* TX Hardware FIFO size */ circ_buf_t write_buffer; uint8_t write_buffer_data[BUFFER_SIZE]; circ_buf_t read_buffer; uint8_t read_buffer_data[BUFFER_SIZE]; static UART_Configuration configuration = { .Baudrate = 9600, .DataBits = UART_DATA_BITS_8, .Parity = UART_PARITY_NONE, .StopBits = UART_STOP_BITS_1, .FlowControl = UART_FLOW_CONTROL_NONE, }; static void clear_buffers(void) { circ_buf_init(&write_buffer, write_buffer_data, sizeof(write_buffer_data)); circ_buf_init(&read_buffer, read_buffer_data, sizeof(read_buffer_data)); } int32_t uart_initialize(void) { clear_buffers(); UART_Open(UART0, 115200); UART_ENABLE_INT(UART0, (UART_INTEN_RDAIEN_Msk | UART_INTEN_THREIEN_Msk | UART_INTEN_RXTOIEN_Msk)); NVIC_EnableIRQ(UART0_IRQn); return 1; } int32_t uart_uninitialize(void) { NVIC_DisableIRQ(UART0_IRQn); UART_Close(UART0); clear_buffers(); return 1; } int32_t uart_reset(void) { UART_Configuration backup_configuration = configuration; uart_set_configuration(&backup_configuration); return 1; } int32_t uart_set_configuration(UART_Configuration *config) { uint32_t u32Reg; uint32_t u32Baud_Div; NVIC_DisableIRQ(UART0_IRQn); /* Reset hardware fifo */ UART0->FIFO |= (UART_FIFO_TXRST_Msk | UART_FIFO_RXRST_Msk); /* Reset software fifo */ clear_buffers(); /* Set parity */ configuration.Parity = config->Parity; if (config->Parity == UART_PARITY_ODD) { u32Reg = 0x08; } else if (config->Parity == UART_PARITY_EVEN) { u32Reg = 0x18; } else if (config->Parity == UART_PARITY_NONE) { u32Reg = 0; } else { u32Reg = 0; } /* Stop bit */ configuration.StopBits = config->StopBits; if (config->StopBits == UART_STOP_BITS_2) { u32Reg |= 0x4; } else if (config->StopBits == UART_STOP_BITS_1_5) { u32Reg |= 0x4; } else if (config->StopBits == UART_STOP_BITS_1) ; /* Bit width */ configuration.DataBits = config->DataBits; if (config->DataBits == UART_DATA_BITS_5) { u32Reg |= 0; } else if (config->DataBits == UART_DATA_BITS_6) { u32Reg |= 1; } else if (config->DataBits == UART_DATA_BITS_7) { u32Reg |= 2; } else if (config->DataBits == UART_DATA_BITS_8) { u32Reg |= 3; } configuration.FlowControl = UART_FLOW_CONTROL_NONE; /* Set baudrate */ configuration.Baudrate = config->Baudrate; u32Baud_Div = UART_BAUD_MODE2_DIVIDER(__HXT, configuration.Baudrate); if (u32Baud_Div > 0xFFFF) { UART0->BAUD = (UART_BAUD_MODE0 | UART_BAUD_MODE0_DIVIDER(__HXT, configuration.Baudrate)); } else { UART0->BAUD = (UART_BAUD_MODE2 | u32Baud_Div); } UART0->LINE = u32Reg; NVIC_EnableIRQ(UART0_IRQn); return 1; } int32_t uart_get_configuration(UART_Configuration *config) { config->Baudrate = configuration.Baudrate; config->DataBits = configuration.DataBits; config->Parity = configuration.Parity; config->StopBits = configuration.StopBits; config->FlowControl = UART_FLOW_CONTROL_NONE; return 1; } int32_t uart_write_free(void) { return circ_buf_count_free(&write_buffer); } int32_t uart_write_data(uint8_t *data, uint16_t size) { uint8_t bInChar; uint32_t u32Size = circ_buf_write(&write_buffer, data, size); if (circ_buf_count_used(&write_buffer) > 0) { if ((UART0->INTEN & UART_INTEN_THREIEN_Msk) == 0) { bInChar = circ_buf_pop(&write_buffer); /* Send one bytes out */ UART_WRITE(UART0, bInChar); /* Enable Tx Empty Interrupt. (Trigger first one) */ UART0->INTEN |= UART_INTEN_THREIEN_Msk; } } return u32Size; } int32_t uart_read_data(uint8_t *data, uint16_t size) { return circ_buf_read(&read_buffer, data, size); } void UART0_IRQHandler(void) { uint8_t bInChar; int32_t u32Size; uint32_t u32IntStatus; u32IntStatus = UART0->INTSTS; if ((u32IntStatus & UART_INTSTS_RDAINT_Msk) || (u32IntStatus & UART_INTSTS_RXTOINT_Msk)) { /* Receiver FIFO threshold level is reached or Rx time out */ /* Get all the input characters */ while ((!UART_GET_RX_EMPTY(UART0))) { /* Get the character from UART Buffer */ bInChar = UART_READ(UART0); /* Rx trigger level is 1 byte*/ /* Check if buffer full */ uint32_t u32Free = circ_buf_count_free(&read_buffer); if (u32Free > RX_OVRF_MSG_SIZE) { circ_buf_push(&read_buffer, bInChar); } else if (RX_OVRF_MSG_SIZE == u32Free) { circ_buf_write(&read_buffer, (uint8_t *)RX_OVRF_MSG, RX_OVRF_MSG_SIZE); } else { // Drop character } } } if (u32IntStatus & UART_INTSTS_THREINT_Msk) { if (circ_buf_count_used(&write_buffer) > 0) { /* Fill the Tx FIFO */ u32Size = circ_buf_count_used(&write_buffer); if (u32Size >= TX_FIFO_SIZE) { u32Size = TX_FIFO_SIZE; } while (u32Size) { bInChar = circ_buf_pop(&write_buffer); UART_WRITE(UART0, bInChar); u32Size--; } } else { /* No more data, just stop Tx (Stop work) */ UART0->INTEN &= ~UART_INTEN_THREIEN_Msk; } } }