Repostiory containing DAPLink source code with Reset Pin workaround for HANI_IOT board.

Upstream: https://github.com/ARMmbed/DAPLink

source/hic_hal/freescale/iap/fsl_flash.c

Committer:
Pawel Zarembski
Date:
2020-04-07
Revision:
0:01f31e923fe2

File content as of revision 0:01f31e923fe2:

/*
 * Copyright (c) 2015, Freescale Semiconductor, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of Freescale Semiconductor, Inc. nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "fsl_flash.h"

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/*!
 * @name Misc utility defines
 * @{
 */
#ifndef ALIGN_DOWN
#define ALIGN_DOWN(x, a) ((x) & (uint32_t)(-((int32_t)(a))))
#endif
#ifndef ALIGN_UP
#define ALIGN_UP(x, a) (-((int32_t)((uint32_t)(-((int32_t)(x))) & (uint32_t)(-((int32_t)(a))))))
#endif

#define BYTES_JOIN_TO_WORD_1_3(x, y) ((((uint32_t)(x)&0xFFU) << 24) | ((uint32_t)(y)&0xFFFFFFU))
#define BYTES_JOIN_TO_WORD_2_2(x, y) ((((uint32_t)(x)&0xFFFFU) << 16) | ((uint32_t)(y)&0xFFFFU))
#define BYTES_JOIN_TO_WORD_3_1(x, y) ((((uint32_t)(x)&0xFFFFFFU) << 8) | ((uint32_t)(y)&0xFFU))
#define BYTES_JOIN_TO_WORD_1_1_2(x, y, z) \
    ((((uint32_t)(x)&0xFFU) << 24) | (((uint32_t)(y)&0xFFU) << 16) | ((uint32_t)(z)&0xFFFFU))
#define BYTES_JOIN_TO_WORD_1_2_1(x, y, z) \
    ((((uint32_t)(x)&0xFFU) << 24) | (((uint32_t)(y)&0xFFFFU) << 8) | ((uint32_t)(z)&0xFFU))
#define BYTES_JOIN_TO_WORD_2_1_1(x, y, z) \
    ((((uint32_t)(x)&0xFFFFU) << 16) | (((uint32_t)(y)&0xFFU) << 8) | ((uint32_t)(z)&0xFFU))
#define BYTES_JOIN_TO_WORD_1_1_1_1(x, y, z, w)                                                      \
    ((((uint32_t)(x)&0xFFU) << 24) | (((uint32_t)(y)&0xFFU) << 16) | (((uint32_t)(z)&0xFFU) << 8) | \
     ((uint32_t)(w)&0xFFU))
/*@}*/

/*! @brief Data flash IFR map Field*/
#if defined(FSL_FEATURE_FLASH_IS_FTFE) && FSL_FEATURE_FLASH_IS_FTFE
#define DFLASH_IFR_READRESOURCE_START_ADDRESS 0x8003F8U
#else /* FSL_FEATURE_FLASH_IS_FTFL == 1 or FSL_FEATURE_FLASH_IS_FTFA = =1 */
#define DFLASH_IFR_READRESOURCE_START_ADDRESS 0x8000F8U
#endif

/*!
 * @name Reserved FlexNVM size (For a variety of purposes) defines
 * @{
 */
#define FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED 0xFFFFFFFFU
#define FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED 0xFFFFU
/*@}*/

/*!
 * @name Flash Program Once Field defines
 * @{
 */
#if defined(FSL_FEATURE_FLASH_IS_FTFA) && FSL_FEATURE_FLASH_IS_FTFA
/* FTFA parts(eg. K80, KL80, L5K) support both 4-bytes and 8-bytes unit size */
#define FLASH_PROGRAM_ONCE_MIN_ID_8BYTES \
    0x10U /* Minimum Index indcating one of Progam Once Fields which is accessed in 8-byte records */
#define FLASH_PROGRAM_ONCE_MAX_ID_8BYTES \
    0x13U /* Maximum Index indcating one of Progam Once Fields which is accessed in 8-byte records */
#define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 1
#define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 1
#elif defined(FSL_FEATURE_FLASH_IS_FTFE) && FSL_FEATURE_FLASH_IS_FTFE
/* FTFE parts(eg. K65, KE18) only support 8-bytes unit size */
#define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 0
#define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 1
#elif defined(FSL_FEATURE_FLASH_IS_FTFL) && FSL_FEATURE_FLASH_IS_FTFL
/* FTFL parts(eg. K20) only support 4-bytes unit size */
#define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 1
#define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 0
#endif
/*@}*/

/*!
 * @name Flash security status defines
 * @{
 */
#define FLASH_SECURITY_STATE_KEYEN 0x80U
#define FLASH_SECURITY_STATE_UNSECURED 0x02U
#define FLASH_NOT_SECURE 0x01U
#define FLASH_SECURE_BACKDOOR_ENABLED 0x02U
#define FLASH_SECURE_BACKDOOR_DISABLED 0x04U
/*@}*/

/*!
 * @name Flash controller command numbers
 * @{
 */
#define FTFx_VERIFY_BLOCK 0x00U                    /*!< RD1BLK*/
#define FTFx_VERIFY_SECTION 0x01U                  /*!< RD1SEC*/
#define FTFx_PROGRAM_CHECK 0x02U                   /*!< PGMCHK*/
#define FTFx_READ_RESOURCE 0x03U                   /*!< RDRSRC*/
#define FTFx_PROGRAM_LONGWORD 0x06U                /*!< PGM4*/
#define FTFx_PROGRAM_PHRASE 0x07U                  /*!< PGM8*/
#define FTFx_ERASE_BLOCK 0x08U                     /*!< ERSBLK*/
#define FTFx_ERASE_SECTOR 0x09U                    /*!< ERSSCR*/
#define FTFx_PROGRAM_SECTION 0x0BU                 /*!< PGMSEC*/
#define FTFx_VERIFY_ALL_BLOCK 0x40U                /*!< RD1ALL*/
#define FTFx_READ_ONCE 0x41U                       /*!< RDONCE or RDINDEX*/
#define FTFx_PROGRAM_ONCE 0x43U                    /*!< PGMONCE or PGMINDEX*/
#define FTFx_ERASE_ALL_BLOCK 0x44U                 /*!< ERSALL*/
#define FTFx_SECURITY_BY_PASS 0x45U                /*!< VFYKEY*/
#define FTFx_SWAP_CONTROL 0x46U                    /*!< SWAP*/
#define FTFx_ERASE_ALL_BLOCK_UNSECURE 0x49U        /*!< ERSALLU*/
#define FTFx_VERIFY_ALL_EXECUTE_ONLY_SEGMENT 0x4AU /*!< RD1XA*/
#define FTFx_ERASE_ALL_EXECUTE_ONLY_SEGMENT 0x4BU  /*!< ERSXA*/
#define FTFx_PROGRAM_PARTITION 0x80U               /*!< PGMPART)*/
#define FTFx_SET_FLEXRAM_FUNCTION 0x81U            /*!< SETRAM*/
                                                   /*@}*/

/*!
 * @name Common flash register info defines
 * @{
 */
#if defined(FTFA)
#define FTFx FTFA
#define FTFx_BASE FTFA_BASE
#define FTFx_FSTAT_CCIF_MASK FTFA_FSTAT_CCIF_MASK
#define FTFx_FSTAT_RDCOLERR_MASK FTFA_FSTAT_RDCOLERR_MASK
#define FTFx_FSTAT_ACCERR_MASK FTFA_FSTAT_ACCERR_MASK
#define FTFx_FSTAT_FPVIOL_MASK FTFA_FSTAT_FPVIOL_MASK
#define FTFx_FSTAT_MGSTAT0_MASK FTFA_FSTAT_MGSTAT0_MASK
#define FTFx_FSEC_SEC_MASK FTFA_FSEC_SEC_MASK
#define FTFx_FSEC_KEYEN_MASK FTFA_FSEC_KEYEN_MASK
#if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM
#define FTFx_FCNFG_RAMRDY_MASK FTFA_FCNFG_RAMRDY_MASK
#endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */
#if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM
#define FTFx_FCNFG_EEERDY_MASK FTFA_FCNFG_EEERDY_MASK
#endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */
#elif defined(FTFE)
#define FTFx FTFE
#define FTFx_BASE FTFE_BASE
#define FTFx_FSTAT_CCIF_MASK FTFE_FSTAT_CCIF_MASK
#define FTFx_FSTAT_RDCOLERR_MASK FTFE_FSTAT_RDCOLERR_MASK
#define FTFx_FSTAT_ACCERR_MASK FTFE_FSTAT_ACCERR_MASK
#define FTFx_FSTAT_FPVIOL_MASK FTFE_FSTAT_FPVIOL_MASK
#define FTFx_FSTAT_MGSTAT0_MASK FTFE_FSTAT_MGSTAT0_MASK
#define FTFx_FSEC_SEC_MASK FTFE_FSEC_SEC_MASK
#define FTFx_FSEC_KEYEN_MASK FTFE_FSEC_KEYEN_MASK
#if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM
#define FTFx_FCNFG_RAMRDY_MASK FTFE_FCNFG_RAMRDY_MASK
#endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */
#if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM
#define FTFx_FCNFG_EEERDY_MASK FTFE_FCNFG_EEERDY_MASK
#endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */
#elif defined(FTFL)
#define FTFx FTFL
#define FTFx_BASE FTFL_BASE
#define FTFx_FSTAT_CCIF_MASK FTFL_FSTAT_CCIF_MASK
#define FTFx_FSTAT_RDCOLERR_MASK FTFL_FSTAT_RDCOLERR_MASK
#define FTFx_FSTAT_ACCERR_MASK FTFL_FSTAT_ACCERR_MASK
#define FTFx_FSTAT_FPVIOL_MASK FTFL_FSTAT_FPVIOL_MASK
#define FTFx_FSTAT_MGSTAT0_MASK FTFL_FSTAT_MGSTAT0_MASK
#define FTFx_FSEC_SEC_MASK FTFL_FSEC_SEC_MASK
#define FTFx_FSEC_KEYEN_MASK FTFL_FSEC_KEYEN_MASK
#if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM
#define FTFx_FCNFG_RAMRDY_MASK FTFL_FCNFG_RAMRDY_MASK
#endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */
#if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM
#define FTFx_FCNFG_EEERDY_MASK FTFL_FCNFG_EEERDY_MASK
#endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */
#else
#error "Unknown flash controller"
#endif
/*@}*/

/*!
 * @brief Enumeration for access segment property.
 */
enum _flash_access_segment_property
{
    kFLASH_accessSegmentBase = 256UL,
};

/*!
 * @brief Enumeration for acceleration ram property.
 */
enum _flash_acceleration_ram_property
{
    kFLASH_accelerationRamSize = 0x400U
};

/*!
 * @brief Enumeration for flash config area.
 */
enum _flash_config_area_range
{
    kFLASH_configAreaStart = 0x400U,
    kFLASH_configAreaEnd = 0x40FU
};

/*! @brief program Flash block base address*/
#define PFLASH_BLOCK_BASE 0x00U

/*! @brief Total flash region count*/
#define FSL_FEATURE_FTFx_REGION_COUNT (32U)

/*!
 * @name Flash register access type defines
 * @{
 */
#if FLASH_DRIVER_IS_FLASH_RESIDENT
#define FTFx_REG_ACCESS_TYPE volatile uint8_t *
#define FTFx_REG32_ACCESS_TYPE volatile uint32_t *
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
       /*@}*/

/*******************************************************************************
 * Prototypes
 ******************************************************************************/

#if FLASH_DRIVER_IS_FLASH_RESIDENT
/*! @brief Copy flash_run_command() to RAM*/
static void copy_flash_run_command(uint8_t *flashRunCommand);
/*! @brief Copy flash_cache_clear_command() to RAM*/
static void copy_flash_cache_clear_command(uint8_t *flashCacheClearCommand);
/*! @brief Check whether flash execute-in-ram functions are ready*/
static status_t flash_check_execute_in_ram_function_info(flash_config_t *config);
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */

/*! @brief Internal function Flash command sequence. Called by driver APIs only*/
static status_t flash_command_sequence(flash_config_t *config);

/*! @brief Perform the cache clear to the flash*/
void flash_cache_clear(flash_config_t *config);

/*! @brief Validates the range and alignment of the given address range.*/
static status_t flash_check_range(flash_config_t *config,
                                  uint32_t startAddress,
                                  uint32_t lengthInBytes,
                                  uint32_t alignmentBaseline);
/*! @brief Gets the right address, sector and block size of current flash type which is indicated by address.*/
static status_t flash_get_matched_operation_info(flash_config_t *config,
                                                 uint32_t address,
                                                 flash_operation_config_t *info);
/*! @brief Validates the given user key for flash erase APIs.*/
static status_t flash_check_user_key(uint32_t key);

// #if FLASH_SSD_IS_FLEXNVM_ENABLED
// /*! @brief Updates FlexNVM memory partition status according to data flash 0 IFR.*/
// static status_t flash_update_flexnvm_memory_partition_status(flash_config_t *config);
// #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */

// #if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
// /*! @brief Validates the range of the given resource address.*/
// static status_t flash_check_resource_range(uint32_t start,
//                                            uint32_t lengthInBytes,
//                                            uint32_t alignmentBaseline,
//                                            flash_read_resource_option_t option);
// #endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */
//
// #if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD
// /*! @brief Validates the gived swap control option.*/
// static status_t flash_check_swap_control_option(flash_swap_control_option_t option);
// #endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */
//
// #if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
// /*! @brief Validates the gived address to see if it is equal to swap indicator address in pflash swap IFR.*/
// static status_t flash_validate_swap_indicator_address(flash_config_t *config, uint32_t address);
// #endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
//
// #if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
// /*! @brief Validates the gived flexram function option.*/
// static inline status_t flasn_check_flexram_function_option_range(flash_flexram_function_option_t option);
// #endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */

/*******************************************************************************
 * Variables
 ******************************************************************************/

/*! @brief Access to FTFx->FCCOB */
#if defined(FSL_FEATURE_FLASH_IS_FTFA) && FSL_FEATURE_FLASH_IS_FTFA
volatile uint32_t *const kFCCOBx = (volatile uint32_t *)&FTFA->FCCOB3;
#elif defined(FSL_FEATURE_FLASH_IS_FTFE) && FSL_FEATURE_FLASH_IS_FTFE
volatile uint32_t *const kFCCOBx = (volatile uint32_t *)&FTFE->FCCOB3;
#elif defined(FSL_FEATURE_FLASH_IS_FTFL) && FSL_FEATURE_FLASH_IS_FTFL
volatile uint32_t *const kFCCOBx = (volatile uint32_t *)&FTFL->FCCOB3;
#else
#error "Unknown flash controller"
#endif

/*! @brief Access to FTFx->FPROT */
#if defined(FSL_FEATURE_FLASH_IS_FTFA) && FSL_FEATURE_FLASH_IS_FTFA
volatile uint32_t *const kFPROT = (volatile uint32_t *)&FTFA->FPROT3;
#elif defined(FSL_FEATURE_FLASH_IS_FTFE) && FSL_FEATURE_FLASH_IS_FTFE
volatile uint32_t *const kFPROT = (volatile uint32_t *)&FTFE->FPROT3;
#elif defined(FSL_FEATURE_FLASH_IS_FTFL) && FSL_FEATURE_FLASH_IS_FTFL
volatile uint32_t *const kFPROT = (volatile uint32_t *)&FTFL->FPROT3;
#else
#error "Unknown flash controller"
#endif

#if FLASH_DRIVER_IS_FLASH_RESIDENT
/*! @brief A function pointer used to point to relocated flash_run_command() */
static void (*callFlashRunCommand)(FTFx_REG_ACCESS_TYPE ftfx_fstat);
/*! @brief A function pointer used to point to relocated flash_cache_clear_command() */
static void (*callFlashCacheClearCommand)(FTFx_REG32_ACCESS_TYPE ftfx_reg);
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */

#if (FLASH_DRIVER_IS_FLASH_RESIDENT && !FLASH_DRIVER_IS_EXPORTED)
/*! @brief A static buffer used to hold flash_run_command() */
static uint8_t s_flashRunCommand[kFLASH_executeInRamFunctionMaxSize];
/*! @brief A static buffer used to hold flash_cache_clear_command() */
static uint8_t s_flashCacheClearCommand[kFLASH_executeInRamFunctionMaxSize];
/*! @brief Flash execute-in-ram function information */
static flash_execute_in_ram_function_config_t s_flashExecuteInRamFunctionInfo;
#endif

/*!
 * @brief Table of pflash sizes.
 *
 *  The index into this table is the value of the SIM_FCFG1.PFSIZE bitfield.
 *
 *  The values in this table have been right shifted 10 bits so that they will all fit within
 *  an 16-bit integer. To get the actual flash density, you must left shift the looked up value
 *  by 10 bits.
 *
 *  Elements of this table have a value of 0 in cases where the PFSIZE bitfield value is
 *  reserved.
 *
 *  Code to use the table:
 *  @code
 *      uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_PFSIZE_MASK) >> SIM_FCFG1_PFSIZE_SHIFT;
 *      flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10;
 *  @endcode
 */
const uint16_t kPFlashDensities[] = {
    8,    /* 0x0 - 8192, 8KB */
    16,   /* 0x1 - 16384, 16KB */
    24,   /* 0x2 - 24576, 24KB */
    32,   /* 0x3 - 32768, 32KB */
    48,   /* 0x4 - 49152, 48KB */
    64,   /* 0x5 - 65536, 64KB */
    96,   /* 0x6 - 98304, 96KB */
    128,  /* 0x7 - 131072, 128KB */
    192,  /* 0x8 - 196608, 192KB */
    256,  /* 0x9 - 262144, 256KB */
    384,  /* 0xa - 393216, 384KB */
    512,  /* 0xb - 524288, 512KB */
    768,  /* 0xc - 786432, 768KB */
    1024, /* 0xd - 1048576, 1MB */
    1536, /* 0xe - 1572864, 1.5MB */
    /* 2048,  0xf - 2097152, 2MB */
};

/*******************************************************************************
 * Code
 ******************************************************************************/

status_t FLASH_Init(flash_config_t *config)
{
    uint32_t flashDensity;

    if (config == NULL)
    {
        return kStatus_FLASH_InvalidArgument;
    }

    /* calculate the flash density from SIM_FCFG1.PFSIZE */
    uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_PFSIZE_MASK) >> SIM_FCFG1_PFSIZE_SHIFT;
    /* PFSIZE=0xf means that on customer parts the IFR was not correctly programmed.
     * We just use the pre-defined flash size in feature file here to support pre-production parts */
    if (pfsize == 0xf)
    {
        flashDensity = FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_BLOCK_SIZE;
    }
    else
    {
        flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10;
    }

    /* fill out a few of the structure members */
    config->PFlashBlockBase = PFLASH_BLOCK_BASE;
    config->PFlashTotalSize = flashDensity;
    config->PFlashBlockCount = FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT;
    config->PFlashSectorSize = FSL_FEATURE_FLASH_PFLASH_BLOCK_SECTOR_SIZE;

#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL
    config->PFlashAccessSegmentSize = kFLASH_accessSegmentBase << FTFx->FACSS;
    config->PFlashAccessSegmentCount = FTFx->FACSN;
#else
    config->PFlashAccessSegmentSize = 0;
    config->PFlashAccessSegmentCount = 0;
#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */

    config->PFlashCallback = NULL;

/* copy required flash commands to RAM */
#if (FLASH_DRIVER_IS_FLASH_RESIDENT && !FLASH_DRIVER_IS_EXPORTED)
    if (kStatus_FLASH_Success != flash_check_execute_in_ram_function_info(config))
    {
        s_flashExecuteInRamFunctionInfo.activeFunctionCount = 0;
        s_flashExecuteInRamFunctionInfo.flashRunCommand = s_flashRunCommand;
        s_flashExecuteInRamFunctionInfo.flashCacheClearCommand = s_flashCacheClearCommand;
        config->flashExecuteInRamFunctionInfo = &s_flashExecuteInRamFunctionInfo.activeFunctionCount;
        FLASH_PrepareExecuteInRamFunctions(config);
    }
#endif

    config->FlexRAMBlockBase = FSL_FEATURE_FLASH_FLEX_RAM_START_ADDRESS;
    config->FlexRAMTotalSize = FSL_FEATURE_FLASH_FLEX_RAM_SIZE;

#if FLASH_SSD_IS_FLEXNVM_ENABLED
    {
        status_t returnCode;
        config->DFlashBlockBase = FSL_FEATURE_FLASH_FLEX_NVM_START_ADDRESS;
        returnCode = flash_update_flexnvm_memory_partition_status(config);
        if (returnCode != kStatus_FLASH_Success)
        {
            return returnCode;
        }
    }
#endif

    return kStatus_FLASH_Success;
}

status_t FLASH_SetCallback(flash_config_t *config, flash_callback_t callback)
{
    if (config == NULL)
    {
        return kStatus_FLASH_InvalidArgument;
    }

    config->PFlashCallback = callback;

    return kStatus_FLASH_Success;
}

#if FLASH_DRIVER_IS_FLASH_RESIDENT
status_t FLASH_PrepareExecuteInRamFunctions(flash_config_t *config)
{
    flash_execute_in_ram_function_config_t *flashExecuteInRamFunctionInfo;

    if (config == NULL)
    {
        return kStatus_FLASH_InvalidArgument;
    }

    flashExecuteInRamFunctionInfo = (flash_execute_in_ram_function_config_t *)config->flashExecuteInRamFunctionInfo;

    copy_flash_run_command(flashExecuteInRamFunctionInfo->flashRunCommand);
    copy_flash_cache_clear_command(flashExecuteInRamFunctionInfo->flashCacheClearCommand);
    flashExecuteInRamFunctionInfo->activeFunctionCount = kFLASH_executeInRamFunctionTotalNum;

    return kStatus_FLASH_Success;
}
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */

status_t FLASH_EraseAll(flash_config_t *config, uint32_t key)
{
    status_t returnCode;

    if (config == NULL)
    {
        return kStatus_FLASH_InvalidArgument;
    }

    /* preparing passing parameter to erase all flash blocks */
    kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_BLOCK, 0xFFFFFFU);

    /* Validate the user key */
    returnCode = flash_check_user_key(key);
    if (returnCode)
    {
        return returnCode;
    }

    /* calling flash command sequence function to execute the command */
    returnCode = flash_command_sequence(config);

    flash_cache_clear(config);

#if FLASH_SSD_IS_FLEXNVM_ENABLED
    /* Data flash IFR will be erased by erase all command, so we need to
     *  update FlexNVM memory partition status synchronously */
    if (returnCode == kStatus_FLASH_Success)
    {
        returnCode = flash_update_flexnvm_memory_partition_status(config);
    }
#endif

    return returnCode;
}

status_t FLASH_Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)
{
    uint32_t sectorSize;
    flash_operation_config_t flashInfo;
    uint32_t endAddress;      /* storing end address */
    uint32_t numberOfSectors; /* number of sectors calculated by endAddress */
    status_t returnCode;

    flash_get_matched_operation_info(config, start, &flashInfo);

    /* Check the supplied address range. */
    returnCode = flash_check_range(config, start, lengthInBytes, flashInfo.sectorCmdAddressAligment);
    if (returnCode)
    {
        return returnCode;
    }

    start = flashInfo.convertedAddress;
    sectorSize = flashInfo.activeSectorSize;

    /* calculating Flash end address */
    endAddress = start + lengthInBytes - 1;

    /* re-calculate the endAddress and align it to the start of the next sector
     * which will be used in the comparison below */
    if (endAddress % sectorSize)
    {
        numberOfSectors = endAddress / sectorSize + 1;
        endAddress = numberOfSectors * sectorSize - 1;
    }

    /* the start address will increment to the next sector address
     * until it reaches the endAdddress */
    while (start <= endAddress)
    {
        /* preparing passing parameter to erase a flash block */
        kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_SECTOR, start);

        /* Validate the user key */
        returnCode = flash_check_user_key(key);
        if (returnCode)
        {
            return returnCode;
        }

        /* calling flash command sequence function to execute the command */
        returnCode = flash_command_sequence(config);

        /* calling flash callback function if it is available */
        if (config->PFlashCallback)
        {
            config->PFlashCallback();
        }

        /* checking the success of command execution */
        if (kStatus_FLASH_Success != returnCode)
        {
            break;
        }
        else
        {
            /* Increment to the next sector */
            start += sectorSize;
        }
    }

    flash_cache_clear(config);

    return (returnCode);
}

// #if defined(FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD) && FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD
// status_t FLASH_EraseAllUnsecure(flash_config_t *config, uint32_t key)
// {
//     status_t returnCode;
//
//     if (config == NULL)
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     /* Prepare passing parameter to erase all flash blocks (unsecure). */
//     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_BLOCK_UNSECURE, 0xFFFFFFU);
//
//     /* Validate the user key */
//     returnCode = flash_check_user_key(key);
//     if (returnCode)
//     {
//         return returnCode;
//     }
//
//     /* calling flash command sequence function to execute the command */
//     returnCode = flash_command_sequence(config);
//
//     flash_cache_clear(config);
//
// #if FLASH_SSD_IS_FLEXNVM_ENABLED
//     /* Data flash IFR will be erased by erase all unsecure command, so we need to
//      *  update FlexNVM memory partition status synchronously */
//     if (returnCode == kStatus_FLASH_Success)
//     {
//         returnCode = flash_update_flexnvm_memory_partition_status(config);
//     }
// #endif
//
//     return returnCode;
// }
// #endif /* FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD */
//
// status_t FLASH_EraseAllExecuteOnlySegments(flash_config_t *config, uint32_t key)
// {
//     status_t returnCode;
//
//     if (config == NULL)
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     /* preparing passing parameter to erase all execute-only segments
//      * 1st element for the FCCOB register */
//     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_EXECUTE_ONLY_SEGMENT, 0xFFFFFFU);
//
//     /* Validate the user key */
//     returnCode = flash_check_user_key(key);
//     if (returnCode)
//     {
//         return returnCode;
//     }
//
//     /* calling flash command sequence function to execute the command */
//     returnCode = flash_command_sequence(config);
//
//     flash_cache_clear(config);
//
//     return returnCode;
// }

status_t FLASH_Program(flash_config_t *config, uint32_t start, uint32_t *src, uint32_t lengthInBytes)
{
    status_t returnCode;
    flash_operation_config_t flashInfo;

    if (src == NULL)
    {
        return kStatus_FLASH_InvalidArgument;
    }

    flash_get_matched_operation_info(config, start, &flashInfo);

    /* Check the supplied address range. */
    returnCode = flash_check_range(config, start, lengthInBytes, flashInfo.blockWriteUnitSize);
    if (returnCode)
    {
        return returnCode;
    }

    start = flashInfo.convertedAddress;

    while (lengthInBytes > 0)
    {
        /* preparing passing parameter to program the flash block */
        kFCCOBx[1] = *src++;
        if (4 == flashInfo.blockWriteUnitSize)
        {
            kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_LONGWORD, start);
        }
        else if (8 == flashInfo.blockWriteUnitSize)
        {
            kFCCOBx[2] = *src++;
            kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_PHRASE, start);
        }
        else
        {
        }

        /* calling flash command sequence function to execute the command */
        returnCode = flash_command_sequence(config);

        /* calling flash callback function if it is available */
        if (config->PFlashCallback)
        {
            config->PFlashCallback();
        }

        /* checking for the success of command execution */
        if (kStatus_FLASH_Success != returnCode)
        {
            break;
        }
        else
        {
            /* update start address for next iteration */
            start += flashInfo.blockWriteUnitSize;

            /* update lengthInBytes for next iteration */
            lengthInBytes -= flashInfo.blockWriteUnitSize;
        }
    }

    flash_cache_clear(config);

    return (returnCode);
}

// status_t FLASH_ProgramOnce(flash_config_t *config, uint32_t index, uint32_t *src, uint32_t lengthInBytes)
// {
//     status_t returnCode;
//
//     if ((config == NULL) || (src == NULL))
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     /* pass paramters to FTFx */
//     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_PROGRAM_ONCE, index, 0xFFFFU);
//
//     kFCCOBx[1] = *src;
//
// /* Note: Have to seperate the first index from the rest if it equals 0
//  * to avoid a pointless comparison of unsigned int to 0 compiler warning */
// #if FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT
// #if FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT
//     if (((index == FLASH_PROGRAM_ONCE_MIN_ID_8BYTES) ||
//          /* Range check */
//          ((index >= FLASH_PROGRAM_ONCE_MIN_ID_8BYTES + 1) && (index <= FLASH_PROGRAM_ONCE_MAX_ID_8BYTES))) &&
//         (lengthInBytes == 8))
// #endif /* FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT */
//     {
//         kFCCOBx[2] = *(src + 1);
//     }
// #endif /* FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT */
//
//     /* calling flash command sequence function to execute the command */
//     returnCode = flash_command_sequence(config);
//
//     flash_cache_clear(config);
//
//     return returnCode;
// }
//
// #if defined(FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD) && FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD
// status_t FLASH_ProgramSection(flash_config_t *config, uint32_t start, uint32_t *src, uint32_t lengthInBytes)
// {
//     status_t returnCode;
//     uint32_t sectorSize;
//     flash_operation_config_t flashInfo;
// #if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
//     bool needSwitchFlexRamMode = false;
// #endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
//
//     if (src == NULL)
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     flash_get_matched_operation_info(config, start, &flashInfo);
//
//     /* Check the supplied address range. */
//     returnCode = flash_check_range(config, start, lengthInBytes, flashInfo.sectionCmdAddressAligment);
//     if (returnCode)
//     {
//         return returnCode;
//     }
//
//     start = flashInfo.convertedAddress;
//     sectorSize = flashInfo.activeSectorSize;
//
// #if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
//     /* Switch function of FlexRAM if needed */
//     if (!(FTFx->FCNFG & FTFx_FCNFG_RAMRDY_MASK))
//     {
//         needSwitchFlexRamMode = true;
//
//         returnCode = FLASH_SetFlexramFunction(config, kFLASH_flexramFunctionOptionAvailableAsRam);
//         if (returnCode != kStatus_FLASH_Success)
//         {
//             return kStatus_FLASH_SetFlexramAsRamError;
//         }
//     }
// #endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
//
//     while (lengthInBytes > 0)
//     {
//         /* Make sure the write operation doesn't span two sectors */
//         uint32_t endAddressOfCurrentSector = ALIGN_UP(start, sectorSize);
//         uint32_t lengthTobeProgrammedOfCurrentSector;
//         uint32_t currentOffset = 0;
//
//         if (endAddressOfCurrentSector == start)
//         {
//             endAddressOfCurrentSector += sectorSize;
//         }
//
//         if (lengthInBytes + start > endAddressOfCurrentSector)
//         {
//             lengthTobeProgrammedOfCurrentSector = endAddressOfCurrentSector - start;
//         }
//         else
//         {
//             lengthTobeProgrammedOfCurrentSector = lengthInBytes;
//         }
//
//         /* Program Current Sector */
//         while (lengthTobeProgrammedOfCurrentSector > 0)
//         {
//             /* Make sure the program size doesn't exceeds Acceleration RAM size */
//             uint32_t programSizeOfCurrentPass;
//             uint32_t numberOfPhases;
//
//             if (lengthTobeProgrammedOfCurrentSector > kFLASH_accelerationRamSize)
//             {
//                 programSizeOfCurrentPass = kFLASH_accelerationRamSize;
//             }
//             else
//             {
//                 programSizeOfCurrentPass = lengthTobeProgrammedOfCurrentSector;
//             }
//
//             /* Copy data to FlexRAM */
//             memcpy((void *)FSL_FEATURE_FLASH_FLEX_RAM_START_ADDRESS, src + currentOffset / 4, programSizeOfCurrentPass);
//             /* Set start address of the data to be programmed */
//             kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_SECTION, start + currentOffset);
//             /* Set program size in terms of FEATURE_FLASH_SECTION_CMD_ADDRESS_ALIGMENT */
//             numberOfPhases = programSizeOfCurrentPass / flashInfo.sectionCmdAddressAligment;
//
//             kFCCOBx[1] = BYTES_JOIN_TO_WORD_2_2(numberOfPhases, 0xFFFFU);
//
//             /* Peform command sequence */
//             returnCode = flash_command_sequence(config);
//
//             /* calling flash callback function if it is available */
//             if (config->PFlashCallback)
//             {
//                 config->PFlashCallback();
//             }
//
//             if (returnCode != kStatus_FLASH_Success)
//             {
//                 flash_cache_clear(config);
//                 return returnCode;
//             }
//
//             lengthTobeProgrammedOfCurrentSector -= programSizeOfCurrentPass;
//             currentOffset += programSizeOfCurrentPass;
//         }
//
//         src += currentOffset / 4;
//         start += currentOffset;
//         lengthInBytes -= currentOffset;
//     }
//
//     flash_cache_clear(config);
//
// #if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
//     /* Restore function of FlexRAM if needed. */
//     if (needSwitchFlexRamMode)
//     {
//         returnCode = FLASH_SetFlexramFunction(config, kFLASH_flexramFunctionOptionAvailableForEeprom);
//         if (returnCode != kStatus_FLASH_Success)
//         {
//             return kStatus_FLASH_RecoverFlexramAsEepromError;
//         }
//     }
// #endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
//
//     return returnCode;
// }
// #endif /* FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD */
//
// #if FLASH_SSD_IS_FLEXNVM_ENABLED
// status_t FLASH_EepromWrite(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)
// {
//     status_t returnCode;
//     bool needSwitchFlexRamMode = false;
//
//     if (config == NULL)
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     /* Validates the range of the given address */
//     if ((start < config->FlexRAMBlockBase) ||
//         ((start + lengthInBytes) > (config->FlexRAMBlockBase + config->EEpromTotalSize)))
//     {
//         return kStatus_FLASH_AddressError;
//     }
//
//     returnCode = kStatus_FLASH_Success;
//
//     /* Switch function of FlexRAM if needed */
//     if (!(FTFx->FCNFG & FTFx_FCNFG_EEERDY_MASK))
//     {
//         needSwitchFlexRamMode = true;
//
//         returnCode = FLASH_SetFlexramFunction(config, kFLASH_flexramFunctionOptionAvailableForEeprom);
//         if (returnCode != kStatus_FLASH_Success)
//         {
//             return kStatus_FLASH_SetFlexramAsEepromError;
//         }
//     }
//
//     /* Write data to FlexRAM when it is used as EEPROM emulator */
//     while (lengthInBytes > 0)
//     {
//         if ((!(start & 0x3U)) && (lengthInBytes >= 4))
//         {
//             *(uint32_t *)start = *(uint32_t *)src;
//             start += 4;
//             src += 4;
//             lengthInBytes -= 4;
//         }
//         else if ((!(start & 0x1U)) && (lengthInBytes >= 2))
//         {
//             *(uint16_t *)start = *(uint16_t *)src;
//             start += 2;
//             src += 2;
//             lengthInBytes -= 2;
//         }
//         else
//         {
//             *(uint8_t *)start = *src;
//             start += 1;
//             src += 1;
//             lengthInBytes -= 1;
//         }
//         /* Wait till EEERDY bit is set */
//         while (!(FTFx->FCNFG & FTFx_FCNFG_EEERDY_MASK))
//         {
//         }
//
//         /* Check for protection violation error */
//         if (FTFx->FSTAT & FTFx_FSTAT_FPVIOL_MASK)
//         {
//             return kStatus_FLASH_ProtectionViolation;
//         }
//     }
//
//     /* Switch function of FlexRAM if needed */
//     if (needSwitchFlexRamMode)
//     {
//         returnCode = FLASH_SetFlexramFunction(config, kFLASH_flexramFunctionOptionAvailableAsRam);
//         if (returnCode != kStatus_FLASH_Success)
//         {
//             return kStatus_FLASH_RecoverFlexramAsRamError;
//         }
//     }
//
//     return returnCode;
// }
// #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
//
// #if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
// status_t FLASH_ReadResource(
//     flash_config_t *config, uint32_t start, uint32_t *dst, uint32_t lengthInBytes, flash_read_resource_option_t option)
// {
//     status_t returnCode;
//     flash_operation_config_t flashInfo;
//
//     if ((config == NULL) || (dst == NULL))
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     flash_get_matched_operation_info(config, start, &flashInfo);
//
//     /* Check the supplied address range. */
//     returnCode = flash_check_resource_range(start, lengthInBytes, flashInfo.resourceCmdAddressAligment, option);
//     if (returnCode != kStatus_FLASH_Success)
//     {
//         return returnCode;
//     }
//
//     while (lengthInBytes > 0)
//     {
//         /* preparing passing parameter */
//         kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_READ_RESOURCE, start);
//         if (flashInfo.resourceCmdAddressAligment == 4)
//         {
//             kFCCOBx[2] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU);
//         }
//         else if (flashInfo.resourceCmdAddressAligment == 8)
//         {
//             kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU);
//         }
//         else
//         {
//         }
//
//         /* calling flash command sequence function to execute the command */
//         returnCode = flash_command_sequence(config);
//
//         if (kStatus_FLASH_Success != returnCode)
//         {
//             break;
//         }
//
//         /* fetch data */
//         *dst++ = kFCCOBx[1];
//         if (flashInfo.resourceCmdAddressAligment == 8)
//         {
//             *dst++ = kFCCOBx[2];
//         }
//         /* update start address for next iteration */
//         start += flashInfo.resourceCmdAddressAligment;
//         /* update lengthInBytes for next iteration */
//         lengthInBytes -= flashInfo.resourceCmdAddressAligment;
//     }
//
//     return (returnCode);
// }
// #endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */
//
// status_t FLASH_ReadOnce(flash_config_t *config, uint32_t index, uint32_t *dst, uint32_t lengthInBytes)
// {
//     status_t returnCode;
//
//     if ((config == NULL) || (dst == NULL))
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     /* pass paramters to FTFx */
//     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_READ_ONCE, index, 0xFFFFU);
//
//     /* calling flash command sequence function to execute the command */
//     returnCode = flash_command_sequence(config);
//
//     if (kStatus_FLASH_Success == returnCode)
//     {
//         *dst = kFCCOBx[1];
// /* Note: Have to seperate the first index from the rest if it equals 0
//  *       to avoid a pointless comparison of unsigned int to 0 compiler warning */
// #if FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT
// #if FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT
//         if (((index == FLASH_PROGRAM_ONCE_MIN_ID_8BYTES) ||
//              /* Range check */
//              ((index >= FLASH_PROGRAM_ONCE_MIN_ID_8BYTES + 1) && (index <= FLASH_PROGRAM_ONCE_MAX_ID_8BYTES))) &&
//             (lengthInBytes == 8))
// #endif /* FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT */
//         {
//             *(dst + 1) = kFCCOBx[2];
//         }
// #endif /* FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT */
//     }
//
//     return returnCode;
// }
//
// status_t FLASH_GetSecurityState(flash_config_t *config, flash_security_state_t *state)
// {
//     /* store data read from flash register */
//     uint8_t registerValue;
//
//     if ((config == NULL) || (state == NULL))
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     /* Get flash security register value */
//     registerValue = FTFx->FSEC;
//
//     /* check the status of the flash security bits in the security register */
//     if (FLASH_SECURITY_STATE_UNSECURED == (registerValue & FTFx_FSEC_SEC_MASK))
//     {
//         /* Flash in unsecured state */
//         *state = kFLASH_securityStateNotSecure;
//     }
//     else
//     {
//         /* Flash in secured state
//          * check for backdoor key security enable bit */
//         if (FLASH_SECURITY_STATE_KEYEN == (registerValue & FTFx_FSEC_KEYEN_MASK))
//         {
//             /* Backdoor key security enabled */
//             *state = kFLASH_securityStateBackdoorEnabled;
//         }
//         else
//         {
//             /* Backdoor key security disabled */
//             *state = kFLASH_securityStateBackdoorDisabled;
//         }
//     }
//
//     return (kStatus_FLASH_Success);
// }
//
// status_t FLASH_SecurityBypass(flash_config_t *config, const uint8_t *backdoorKey)
// {
//     uint8_t registerValue; /* registerValue */
//     status_t returnCode;   /* return code variable */
//
//     if ((config == NULL) || (backdoorKey == NULL))
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     /* set the default return code as kStatus_Success */
//     returnCode = kStatus_FLASH_Success;
//
//     /* Get flash security register value */
//     registerValue = FTFx->FSEC;
//
//     /* Check to see if flash is in secure state (any state other than 0x2)
//      * If not, then skip this since flash is not secure */
//     if (0x02 != (registerValue & 0x03))
//     {
//         /* preparing passing parameter to erase a flash block */
//         kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_SECURITY_BY_PASS, 0xFFFFFFU);
//         kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_1_1_1(backdoorKey[0], backdoorKey[1], backdoorKey[2], backdoorKey[3]);
//         kFCCOBx[2] = BYTES_JOIN_TO_WORD_1_1_1_1(backdoorKey[4], backdoorKey[5], backdoorKey[6], backdoorKey[7]);
//
//         /* calling flash command sequence function to execute the command */
//         returnCode = flash_command_sequence(config);
//     }
//
//     return (returnCode);
// }

status_t FLASH_VerifyEraseAll(flash_config_t *config, flash_margin_value_t margin)
{
    if (config == NULL)
    {
        return kStatus_FLASH_InvalidArgument;
    }

    /* preparing passing parameter to verify all block command */
    kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_VERIFY_ALL_BLOCK, margin, 0xFFFFU);

    /* calling flash command sequence function to execute the command */
    return flash_command_sequence(config);
}

status_t FLASH_VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, flash_margin_value_t margin)
{
    /* Check arguments. */
    uint32_t blockSize;
    flash_operation_config_t flashInfo;
    uint32_t nextBlockStartAddress;
    uint32_t remainingBytes;
    status_t returnCode;

    flash_get_matched_operation_info(config, start, &flashInfo);

    returnCode = flash_check_range(config, start, lengthInBytes, flashInfo.sectionCmdAddressAligment);
    if (returnCode)
    {
        return returnCode;
    }

    flash_get_matched_operation_info(config, start, &flashInfo);
    start = flashInfo.convertedAddress;
    blockSize = flashInfo.activeBlockSize;

    nextBlockStartAddress = ALIGN_UP(start, blockSize);
    if (nextBlockStartAddress == start)
    {
        nextBlockStartAddress += blockSize;
    }

    remainingBytes = lengthInBytes;

    while (remainingBytes)
    {
        uint32_t numberOfPhrases;
        uint32_t verifyLength = nextBlockStartAddress - start;
        if (verifyLength > remainingBytes)
        {
            verifyLength = remainingBytes;
        }

        numberOfPhrases = verifyLength / flashInfo.sectionCmdAddressAligment;

        /* Fill in verify section command parameters. */
        kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_VERIFY_SECTION, start);
        kFCCOBx[1] = BYTES_JOIN_TO_WORD_2_1_1(numberOfPhrases, margin, 0xFFU);

        /* calling flash command sequence function to execute the command */
        returnCode = flash_command_sequence(config);
        if (returnCode)
        {
            return returnCode;
        }

        remainingBytes -= verifyLength;
        start += verifyLength;
        nextBlockStartAddress += blockSize;
    }

    return kStatus_FLASH_Success;
}

status_t FLASH_VerifyProgram(flash_config_t *config,
                             uint32_t start,
                             uint32_t lengthInBytes,
                             const uint32_t *expectedData,
                             flash_margin_value_t margin,
                             uint32_t *failedAddress,
                             uint32_t *failedData)
{
    status_t returnCode;
    flash_operation_config_t flashInfo;

    if (expectedData == NULL)
    {
        return kStatus_FLASH_InvalidArgument;
    }

    flash_get_matched_operation_info(config, start, &flashInfo);

    returnCode = flash_check_range(config, start, lengthInBytes, flashInfo.checkCmdAddressAligment);
    if (returnCode)
    {
        return returnCode;
    }

    start = flashInfo.convertedAddress;

    while (lengthInBytes)
    {
        /* preparing passing parameter to program check the flash block */
        kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_CHECK, start);
        kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(margin, 0xFFFFFFU);
        kFCCOBx[2] = *expectedData;

        /* calling flash command sequence function to execute the command */
        returnCode = flash_command_sequence(config);

        /* checking for the success of command execution */
        if (kStatus_FLASH_Success != returnCode)
        {
            if (failedAddress)
            {
                *failedAddress = start;
            }
            if (failedData)
            {
                *failedData = 0;
            }
            break;
        }

        lengthInBytes -= flashInfo.checkCmdAddressAligment;
        expectedData += flashInfo.checkCmdAddressAligment / sizeof(*expectedData);
        start += flashInfo.checkCmdAddressAligment;
    }

    return (returnCode);
}

// status_t FLASH_VerifyEraseAllExecuteOnlySegments(flash_config_t *config, flash_margin_value_t margin)
// {
//     if (config == NULL)
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     /* preparing passing parameter to verify erase all execute-only segments command */
//     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_VERIFY_ALL_EXECUTE_ONLY_SEGMENT, margin, 0xFFFFU);
//
//     /* calling flash command sequence function to execute the command */
//     return flash_command_sequence(config);
// }
//
// status_t FLASH_IsProtected(flash_config_t *config,
//                            uint32_t start,
//                            uint32_t lengthInBytes,
//                            flash_protection_state_t *protection_state)
// {
//     uint32_t endAddress;           /* end address for protection check */
//     uint32_t protectionRegionSize; /* size of flash protection region */
//     uint32_t regionCheckedCounter; /* increments each time the flash address was checked for
//                                     * protection status */
//     uint32_t regionCounter;        /* incrementing variable used to increment through the flash
//                                     * protection regions */
//     uint32_t protectStatusCounter; /* increments each time a flash region was detected as protected */
//
//     uint8_t flashRegionProtectStatus[FSL_FEATURE_FTFx_REGION_COUNT]; /* array of the protection status for each
//                                                                       * protection region */
//     uint32_t flashRegionAddress[FSL_FEATURE_FTFx_REGION_COUNT + 1];  /* array of the start addresses for each flash
//                                                                       * protection region. Note this is REGION_COUNT+1
//                                                                       * due to requiring the next start address after
//                                                                       * the end of flash for loop-check purposes below */
//     status_t returnCode;
//
//     if (protection_state == NULL)
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     /* Check the supplied address range. */
//     returnCode = flash_check_range(config, start, lengthInBytes, FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE);
//     if (returnCode)
//     {
//         return returnCode;
//     }
//
//     /* calculating Flash end address */
//     endAddress = start + lengthInBytes;
//
//     /* Calculate the size of the flash protection region
//      * If the flash density is > 32KB, then protection region is 1/32 of total flash density
//      * Else if flash density is < 32KB, then flash protection region is set to 1KB */
//     if (config->PFlashTotalSize > 32 * 1024)
//     {
//         protectionRegionSize = (config->PFlashTotalSize) / FSL_FEATURE_FTFx_REGION_COUNT;
//     }
//     else
//     {
//         protectionRegionSize = 1024;
//     }
//
//     /* populate the flashRegionAddress array with the start address of each flash region */
//     regionCounter = 0; /* make sure regionCounter is initialized to 0 first */
//
//     /* populate up to 33rd element of array, this is the next address after end of flash array */
//     while (regionCounter <= FSL_FEATURE_FTFx_REGION_COUNT)
//     {
//         flashRegionAddress[regionCounter] = config->PFlashBlockBase + protectionRegionSize * regionCounter;
//         regionCounter++;
//     }
//
//     /* populate flashRegionProtectStatus array with status information
//      * Protection status for each region is stored in the FPROT[3:0] registers
//      * Each bit represents one region of flash
//      * 4 registers * 8-bits-per-register = 32-bits (32-regions)
//      * The convention is:
//      * FPROT3[bit 0] is the first protection region (start of flash memory)
//      * FPROT0[bit 7] is the last protection region (end of flash memory)
//      * regionCounter is used to determine which FPROT[3:0] register to check for protection status
//      * Note: FPROT=1 means NOT protected, FPROT=0 means protected */
//     regionCounter = 0; /* make sure regionCounter is initialized to 0 first */
//     while (regionCounter < FSL_FEATURE_FTFx_REGION_COUNT)
//     {
//         if (regionCounter < 8)
//         {
//             flashRegionProtectStatus[regionCounter] = ((FTFx->FPROT3) >> regionCounter) & (0x01u);
//         }
//         else if ((regionCounter >= 8) && (regionCounter < 16))
//         {
//             flashRegionProtectStatus[regionCounter] = ((FTFx->FPROT2) >> (regionCounter - 8)) & (0x01u);
//         }
//         else if ((regionCounter >= 16) && (regionCounter < 24))
//         {
//             flashRegionProtectStatus[regionCounter] = ((FTFx->FPROT1) >> (regionCounter - 16)) & (0x01u);
//         }
//         else
//         {
//             flashRegionProtectStatus[regionCounter] = ((FTFx->FPROT0) >> (regionCounter - 24)) & (0x01u);
//         }
//         regionCounter++;
//     }
//
//     /* loop through the flash regions and check
//      * desired flash address range for protection status
//      * loop stops when it is detected that start has exceeded the endAddress */
//     regionCounter = 0; /* make sure regionCounter is initialized to 0 first */
//     regionCheckedCounter = 0;
//     protectStatusCounter = 0; /* make sure protectStatusCounter is initialized to 0 first */
//     while (start < endAddress)
//     {
//         /* check to see if the address falls within this protection region
//          * Note that if the entire flash is to be checked, the last protection
//          * region checked would consist of the last protection start address and
//          * the start address following the end of flash */
//         if ((start >= flashRegionAddress[regionCounter]) && (start < flashRegionAddress[regionCounter + 1]))
//         {
//             /* increment regionCheckedCounter to indicate this region was checked */
//             regionCheckedCounter++;
//
//             /* check the protection status of this region
//              * Note: FPROT=1 means NOT protected, FPROT=0 means protected */
//             if (!flashRegionProtectStatus[regionCounter])
//             {
//                 /* increment protectStatusCounter to indicate this region is protected */
//                 protectStatusCounter++;
//             }
//             start += protectionRegionSize; /* increment to an address within the next region */
//         }
//         regionCounter++; /* increment regionCounter to check for the next flash protection region */
//     }
//
//     /* if protectStatusCounter == 0, then no region of the desired flash region is protected */
//     if (protectStatusCounter == 0)
//     {
//         *protection_state = kFLASH_protectionStateUnprotected;
//     }
//     /* if protectStatusCounter == regionCheckedCounter, then each region checked was protected */
//     else if (protectStatusCounter == regionCheckedCounter)
//     {
//         *protection_state = kFLASH_protectionStateProtected;
//     }
//     /* if protectStatusCounter != regionCheckedCounter, then protection status is mixed
//      * In other words, some regions are protected while others are unprotected */
//     else
//     {
//         *protection_state = kFLASH_protectionStateMixed;
//     }
//
//     return (returnCode);
// }
//
// status_t FLASH_IsExecuteOnly(flash_config_t *config,
//                              uint32_t start,
//                              uint32_t lengthInBytes,
//                              flash_execute_only_access_state_t *access_state)
// {
//     status_t returnCode;
//
//     if (access_state == NULL)
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     /* Check the supplied address range. */
//     returnCode = flash_check_range(config, start, lengthInBytes, FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE);
//     if (returnCode)
//     {
//         return returnCode;
//     }
//
// #if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL
//     {
//         uint32_t executeOnlySegmentCounter = 0;
//
//         /* calculating end address */
//         uint32_t endAddress = start + lengthInBytes;
//
//         /* Aligning start address and end address */
//         uint32_t alignedStartAddress = ALIGN_DOWN(start, config->PFlashAccessSegmentSize);
//         uint32_t alignedEndAddress = ALIGN_UP(endAddress, config->PFlashAccessSegmentSize);
//
//         uint32_t segmentIndex = 0;
//         uint32_t maxSupportedExecuteOnlySegmentCount =
//             (alignedEndAddress - alignedStartAddress) / config->PFlashAccessSegmentSize;
//
//         while (start < endAddress)
//         {
//             uint32_t xacc;
//
//             segmentIndex = start / config->PFlashAccessSegmentSize;
//
//             if (segmentIndex < 32)
//             {
//                 xacc = *(const volatile uint32_t *)&FTFx->XACCL3;
//             }
//             else if (segmentIndex < config->PFlashAccessSegmentCount)
//             {
//                 xacc = *(const volatile uint32_t *)&FTFx->XACCH3;
//                 segmentIndex -= 32;
//             }
//             else
//             {
//                 break;
//             }
//
//             /* Determine if this address range is in a execute-only protection flash segment. */
//             if ((~xacc) & (1u << segmentIndex))
//             {
//                 executeOnlySegmentCounter++;
//             }
//
//             start += config->PFlashAccessSegmentSize;
//         }
//
//         if (executeOnlySegmentCounter < 1u)
//         {
//             *access_state = kFLASH_accessStateUnLimited;
//         }
//         else if (executeOnlySegmentCounter < maxSupportedExecuteOnlySegmentCount)
//         {
//             *access_state = kFLASH_accessStateMixed;
//         }
//         else
//         {
//             *access_state = kFLASH_accessStateExecuteOnly;
//         }
//     }
// #else
//     *access_state = kFLASH_accessStateUnLimited;
// #endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
//
//     return (returnCode);
// }

// status_t FLASH_GetProperty(flash_config_t *config, flash_property_tag_t whichProperty, uint32_t *value)
// {
//     if ((config == NULL) || (value == NULL))
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     switch (whichProperty)
//     {
//         case kFLASH_propertyPflashSectorSize:
//             *value = config->PFlashSectorSize;
//             break;
//
//         case kFLASH_propertyPflashTotalSize:
//             *value = config->PFlashTotalSize;
//             break;
//
//         case kFLASH_propertyPflashBlockSize:
//             *value = config->PFlashTotalSize / FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT;
//             break;
//
//         case kFLASH_propertyPflashBlockCount:
//             *value = config->PFlashBlockCount;
//             break;
//
//         case kFLASH_propertyPflashBlockBaseAddr:
//             *value = config->PFlashBlockBase;
//             break;
//
//         case kFLASH_propertyPflashFacSupport:
// #if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL)
//             *value = FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL;
// #else
//             *value = 0;
// #endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
//             break;
//
//         case kFLASH_propertyPflashAccessSegmentSize:
//             *value = config->PFlashAccessSegmentSize;
//             break;
//
//         case kFLASH_propertyPflashAccessSegmentCount:
//             *value = config->PFlashAccessSegmentCount;
//             break;
//
// #if FLASH_SSD_IS_FLEXNVM_ENABLED
//         case kFLASH_propertyDflashSectorSize:
//             *value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SECTOR_SIZE;
//             break;
//         case kFLASH_propertyDflashTotalSize:
//             *value = config->DFlashTotalSize;
//             break;
//         case kFLASH_propertyDflashBlockSize:
//             *value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SIZE;
//             break;
//         case kFLASH_propertyDflashBlockCount:
//             *value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_COUNT;
//             break;
//         case kFLASH_propertyDflashBlockBaseAddr:
//             *value = config->DFlashBlockBase;
//             break;
//         case kFLASH_propertyEepromTotalSize:
//             *value = config->EEpromTotalSize;
//             break;
// #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
//
//         default: /* catch inputs that are not recognized */
//             return kStatus_FLASH_UnknownProperty;
//     }
//
//     return kStatus_FLASH_Success;
// }

// #if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
// status_t FLASH_SetFlexramFunction(flash_config_t *config, flash_flexram_function_option_t option)
// {
//     status_t status;
//
//     if (config == NULL)
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     status = flasn_check_flexram_function_option_range(option);
//     if (status != kStatus_FLASH_Success)
//     {
//         return status;
//     }
//
//     /* preparing passing parameter to verify all block command */
//     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_SET_FLEXRAM_FUNCTION, option, 0xFFFFU);
//
//     /* calling flash command sequence function to execute the command */
//     return flash_command_sequence(config);
// }
// #endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
//
// #if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD
// status_t FLASH_SwapControl(flash_config_t *config,
//                            uint32_t address,
//                            flash_swap_control_option_t option,
//                            flash_swap_state_config_t *returnInfo)
// {
//     status_t returnCode;
//
//     if ((config == NULL) || (returnInfo == NULL))
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     if (address & (FSL_FEATURE_FLASH_PFLASH_SWAP_CONTROL_CMD_ADDRESS_ALIGMENT - 1))
//     {
//         return kStatus_FLASH_AlignmentError;
//     }
//
//     /* Make sure address provided is in the lower half of Program flash but not in the Flash Configuration Field */
//     if ((address >= (config->PFlashTotalSize / 2)) ||
//         ((address >= kFLASH_configAreaStart) && (address <= kFLASH_configAreaEnd)))
//     {
//         return kStatus_FLASH_SwapIndicatorAddressError;
//     }
//
//     /* Check the option. */
//     returnCode = flash_check_swap_control_option(option);
//     if (returnCode)
//     {
//         return returnCode;
//     }
//
//     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_SWAP_CONTROL, address);
//     kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU);
//
//     returnCode = flash_command_sequence(config);
//
//     returnInfo->flashSwapState = (flash_swap_state_t)FTFx->FCCOB5;
//     returnInfo->currentSwapBlockStatus = (flash_swap_block_status_t)FTFx->FCCOB6;
//     returnInfo->nextSwapBlockStatus = (flash_swap_block_status_t)FTFx->FCCOB7;
//
//     return returnCode;
// }
// #endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */
//
// #if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
// status_t FLASH_Swap(flash_config_t *config, uint32_t address, flash_swap_function_option_t option)
// {
//     flash_swap_state_config_t returnInfo;
//     status_t returnCode;
//
//     memset(&returnInfo, 0xFFU, sizeof(returnInfo));
//
//     do
//     {
//         returnCode = FLASH_SwapControl(config, address, kFLASH_swapControlOptionReportStatus, &returnInfo);
//         if (returnCode != kStatus_FLASH_Success)
//         {
//             return returnCode;
//         }
//
//         if (kFLASH_swapFunctionOptionDisable == option)
//         {
//             if (returnInfo.flashSwapState == kFLASH_swapStateDisabled)
//             {
//                 return kStatus_FLASH_Success;
//             }
//             else if (returnInfo.flashSwapState == kFLASH_swapStateUninitialized)
//             {
//                 /* The swap system changed to the DISABLED state with Program flash block 0
//                  * located at relative flash address 0x0_0000 */
//                 returnCode = FLASH_SwapControl(config, address, kFLASH_swapControlOptionDisableSystem, &returnInfo);
//             }
//             else
//             {
//                 /* Swap disable should be requested only when swap system is in the uninitialized state */
//                 return kStatus_FLASH_SwapSystemNotInUninitialized;
//             }
//         }
//         else
//         {
//             /* When first swap: the initial swap state is Uninitialized, flash swap inidicator address is unset,
//              *    the swap procedure should be Uninitialized -> Update-Erased -> Complete.
//              * After the first swap has been completed, the flash swap inidicator address cannot be modified
//              *    unless EraseAllBlocks command is issued, the swap procedure is changed to Update -> Update-Erased ->
//              *    Complete. */
//             switch (returnInfo.flashSwapState)
//             {
//                 case kFLASH_swapStateUninitialized:
//                     /* If current swap mode is Uninitialized, Initialize Swap to Initialized/READY state. */
//                     returnCode =
//                         FLASH_SwapControl(config, address, kFLASH_swapControlOptionIntializeSystem, &returnInfo);
//                     break;
//                 case kFLASH_swapStateReady:
//                     /* Validate whether the address provided to the swap system is matched to
//                      * swap indicator address in the IFR */
//                     returnCode = flash_validate_swap_indicator_address(config, address);
//                     if (returnCode == kStatus_FLASH_Success)
//                     {
//                         /* If current swap mode is Initialized/Ready, Initialize Swap to UPDATE state. */
//                         returnCode =
//                             FLASH_SwapControl(config, address, kFLASH_swapControlOptionSetInUpdateState, &returnInfo);
//                     }
//                     break;
//                 case kFLASH_swapStateUpdate:
//                     /* If current swap mode is Update, Erase indicator sector in non active block
//                      * to proceed swap system to update-erased state */
//                     returnCode = FLASH_Erase(config, address + (config->PFlashTotalSize >> 1),
//                                              FSL_FEATURE_FLASH_PFLASH_SECTOR_CMD_ADDRESS_ALIGMENT, kFLASH_apiEraseKey);
//                     break;
//                 case kFLASH_swapStateUpdateErased:
//                     /* If current swap mode is Update or Update-Erased, progress Swap to COMPLETE State */
//                     returnCode =
//                         FLASH_SwapControl(config, address, kFLASH_swapControlOptionSetInCompleteState, &returnInfo);
//                     break;
//                 case kFLASH_swapStateComplete:
//                     break;
//                 case kFLASH_swapStateDisabled:
//                     /* When swap system is in disabled state, We need to clear swap system back to uninitialized
//                      * by issuing EraseAllBlocks command */
//                     returnCode = kStatus_FLASH_SwapSystemNotInUninitialized;
//                     break;
//                 default:
//                     returnCode = kStatus_FLASH_InvalidArgument;
//                     break;
//             }
//         }
//         if (returnCode != kStatus_FLASH_Success)
//         {
//             break;
//         }
//     } while (!((kFLASH_swapStateComplete == returnInfo.flashSwapState) && (kFLASH_swapFunctionOptionEnable == option)));
//
//     return returnCode;
// }
// #endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
//
// #if defined(FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD) && FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD
// status_t FLASH_ProgramPartition(flash_config_t *config,
//                                 flash_partition_flexram_load_option_t option,
//                                 uint32_t eepromDataSizeCode,
//                                 uint32_t flexnvmPartitionCode)
// {
//     status_t returnCode;
//
//     if (config == NULL)
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     /* eepromDataSizeCode[7:6], flexnvmPartitionCode[7:4] should be all 1'b0
//      *  or it will cause access error. */
//     /* eepromDataSizeCode &= 0x3FU;  */
//     /* flexnvmPartitionCode &= 0x0FU; */
//
//     /* preparing passing parameter to program the flash block */
//     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_2_1(FTFx_PROGRAM_PARTITION, 0xFFFFU, option);
//     kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_1_2(eepromDataSizeCode, flexnvmPartitionCode, 0xFFFFU);
//
//     /* calling flash command sequence function to execute the command */
//     returnCode = flash_command_sequence(config);
//
//     flash_cache_clear(config);
//
// #if FLASH_SSD_IS_FLEXNVM_ENABLED
//     /* Data flash IFR will be updated by program partition command during reset sequence,
//      * so we just set reserved values for partitioned FlexNVM size here */
//     config->EEpromTotalSize = FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED;
//     config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif
//
//     return (returnCode);
// }
// #endif /* FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD */
//
// status_t FLASH_PflashSetProtection(flash_config_t *config, uint32_t protectStatus)
// {
//     if (config == NULL)
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     *kFPROT = protectStatus;
//
//     if (protectStatus != *kFPROT)
//     {
//         return kStatus_FLASH_CommandFailure;
//     }
//
//     return kStatus_FLASH_Success;
// }
//
// status_t FLASH_PflashGetProtection(flash_config_t *config, uint32_t *protectStatus)
// {
//     if ((config == NULL) || (protectStatus == NULL))
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     *protectStatus = *kFPROT;
//
//     return kStatus_FLASH_Success;
// }
//
// #if FLASH_SSD_IS_FLEXNVM_ENABLED
// status_t FLASH_DflashSetProtection(flash_config_t *config, uint8_t protectStatus)
// {
//     if (config == NULL)
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     if ((config->DFlashTotalSize == 0) || (config->DFlashTotalSize == FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED))
//     {
//         return kStatus_FLASH_CommandNotSupported;
//     }
//
//     FTFx->FDPROT = protectStatus;
//
//     if (FTFx->FDPROT != protectStatus)
//     {
//         return kStatus_FLASH_CommandFailure;
//     }
//
//     return kStatus_FLASH_Success;
// }
// #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
//
// #if FLASH_SSD_IS_FLEXNVM_ENABLED
// status_t FLASH_DflashGetProtection(flash_config_t *config, uint8_t *protectStatus)
// {
//     if ((config == NULL) || (protectStatus == NULL))
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     if ((config->DFlashTotalSize == 0) || (config->DFlashTotalSize == FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED))
//     {
//         return kStatus_FLASH_CommandNotSupported;
//     }
//
//     *protectStatus = FTFx->FDPROT;
//
//     return kStatus_FLASH_Success;
// }
// #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
//
// #if FLASH_SSD_IS_FLEXNVM_ENABLED
// status_t FLASH_EepromSetProtection(flash_config_t *config, uint8_t protectStatus)
// {
//     if (config == NULL)
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     if ((config->EEpromTotalSize == 0) || (config->EEpromTotalSize == FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED))
//     {
//         return kStatus_FLASH_CommandNotSupported;
//     }
//
//     FTFx->FEPROT = protectStatus;
//
//     if (FTFx->FEPROT != protectStatus)
//     {
//         return kStatus_FLASH_CommandFailure;
//     }
//
//     return kStatus_FLASH_Success;
// }
// #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
//
// #if FLASH_SSD_IS_FLEXNVM_ENABLED
// status_t FLASH_EepromGetProtection(flash_config_t *config, uint8_t *protectStatus)
// {
//     if ((config == NULL) || (protectStatus == NULL))
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     if ((config->EEpromTotalSize == 0) || (config->EEpromTotalSize == FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED))
//     {
//         return kStatus_FLASH_CommandNotSupported;
//     }
//
//     *protectStatus = FTFx->FEPROT;
//
//     return kStatus_FLASH_Success;
// }
// #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */

#if FLASH_DRIVER_IS_FLASH_RESIDENT
/*!
 * @brief Run flash command
 *
 * This function should be copied to RAM for execution to make sure that code works
 * properly even flash cache is disabled.
 * It is for flash-resident bootloader only, not technically required for ROM or
 *  flashloader (RAM-resident bootloader).
 */
void flash_run_command(FTFx_REG_ACCESS_TYPE ftfx_fstat)
{
    /* clear CCIF bit */
    *ftfx_fstat = FTFx_FSTAT_CCIF_MASK;

    /* Check CCIF bit of the flash status register, wait till it is set.
     * IP team indicates that this loop will always complete. */
    while (!((*ftfx_fstat) & FTFx_FSTAT_CCIF_MASK))
    {
    }
}

/*!
 * @brief Be used for determining the size of flash_run_command()
 *
 * This function must be defined that lexically follows flash_run_command(),
 * so we can determine the size of flash_run_command() at runtime and not worry
 * about toolchain or code generation differences.
 */
void flash_run_command_end(void)
{
}

/*!
 * @brief Copy flash_run_command() to RAM
 *
 * This function copys the memory between flash_run_command() and flash_run_command_end()
 * into the buffer which is also means that copying flash_run_command() to RAM.
 */
static void copy_flash_run_command(uint8_t *flashRunCommand)
{
    /* Calculate the valid length of flash_run_command() memory.
     * Set max size(64 bytes) as default function size, in case some compiler allocates
     * flash_run_command_end ahead of flash_run_command. */
    uint32_t funcLength = kFLASH_executeInRamFunctionMaxSize;
    uint32_t flash_run_command_start_addr = (uint32_t)flash_run_command & (~1U);
    uint32_t flash_run_command_end_addr = (uint32_t)flash_run_command_end & (~1U);
    if (flash_run_command_end_addr > flash_run_command_start_addr)
    {
        funcLength = flash_run_command_end_addr - flash_run_command_start_addr;

        assert(funcLength <= kFLASH_executeInRamFunctionMaxSize);

        /* In case some compiler allocates other function in the middle of flash_run_command
         * and flash_run_command_end. */
        if (funcLength > kFLASH_executeInRamFunctionMaxSize)
        {
            funcLength = kFLASH_executeInRamFunctionMaxSize;
        }
    }

    /* Since the value of ARM function pointer is always odd, but the real start address
     * of function memory should be even, that's why -1 and +1 operation exist. */
    memcpy((void *)flashRunCommand, (void *)flash_run_command_start_addr, funcLength);
    callFlashRunCommand = (void (*)(FTFx_REG_ACCESS_TYPE ftfx_fstat))((uint32_t)flashRunCommand + 1);
}
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */

/*!
 * @brief Flash Command Sequence
 *
 * This function is used to perform the command write sequence to the flash.
 *
 * @param driver Pointer to storage for the driver runtime state.
 * @return An error code or kStatus_FLASH_Success
 */
static status_t flash_command_sequence(flash_config_t *config)
{
    uint8_t registerValue;

#if FLASH_DRIVER_IS_FLASH_RESIDENT
    /* clear RDCOLERR & ACCERR & FPVIOL flag in flash status register */
    FTFx->FSTAT = FTFx_FSTAT_RDCOLERR_MASK | FTFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_FPVIOL_MASK;

    status_t returnCode = flash_check_execute_in_ram_function_info(config);
    if (kStatus_FLASH_Success != returnCode)
    {
        return returnCode;
    }

    /* We pass the ftfx_fstat address as a parameter to flash_run_comamnd() instead of using
     * pre-processed MICRO sentences or operating global variable in flash_run_comamnd()
     * to make sure that flash_run_command() will be compiled into position-independent code (PIC). */
    callFlashRunCommand((FTFx_REG_ACCESS_TYPE)(&FTFx->FSTAT));
#else
    /* clear RDCOLERR & ACCERR & FPVIOL flag in flash status register */
    FTFx->FSTAT = FTFx_FSTAT_RDCOLERR_MASK | FTFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_FPVIOL_MASK;

    /* clear CCIF bit */
    FTFx->FSTAT = FTFx_FSTAT_CCIF_MASK;

    /* Check CCIF bit of the flash status register, wait till it is set.
     * IP team indicates that this loop will always complete. */
    while (!(FTFx->FSTAT & FTFx_FSTAT_CCIF_MASK))
    {
    }
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */

    /* Check error bits */
    /* Get flash status register value */
    registerValue = FTFx->FSTAT;

    /* checking access error */
    if (registerValue & FTFx_FSTAT_ACCERR_MASK)
    {
        return kStatus_FLASH_AccessError;
    }
    /* checking protection error */
    else if (registerValue & FTFx_FSTAT_FPVIOL_MASK)
    {
        return kStatus_FLASH_ProtectionViolation;
    }
    /* checking MGSTAT0 non-correctable error */
    else if (registerValue & FTFx_FSTAT_MGSTAT0_MASK)
    {
        return kStatus_FLASH_CommandFailure;
    }
    else
    {
        return kStatus_FLASH_Success;
    }
}

#if FLASH_DRIVER_IS_FLASH_RESIDENT
/*!
 * @brief Run flash cache clear command
 *
 * This function should be copied to RAM for execution to make sure that code works
 * properly even flash cache is disabled.
 * It is for flash-resident bootloader only, not technically required for ROM or
 * flashloader (RAM-resident bootloader).
 */
void flash_cache_clear_command(FTFx_REG32_ACCESS_TYPE ftfx_reg)
{
#if defined(FSL_FEATURE_FLASH_HAS_MCM_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_MCM_FLASH_CACHE_CONTROLS
    *ftfx_reg |= MCM_PLACR_CFCC_MASK;
#elif defined(FSL_FEATURE_FLASH_HAS_FMC_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_FMC_FLASH_CACHE_CONTROLS
#if defined(FMC_PFB01CR_CINV_WAY_MASK)
    *ftfx_reg = (*ftfx_reg & ~FMC_PFB01CR_CINV_WAY_MASK) | FMC_PFB01CR_CINV_WAY(~0);
#else
    *ftfx_reg = (*ftfx_reg & ~FMC_PFB0CR_CINV_WAY_MASK) | FMC_PFB0CR_CINV_WAY(~0);
#endif
#elif defined(FSL_FEATURE_FLASH_HAS_MSCM_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_MSCM_FLASH_CACHE_CONTROLS
    *ftfx_reg |= MSCM_OCMDR_OCMC1(2);
    *ftfx_reg |= MSCM_OCMDR_OCMC1(1);
#else
/*    #error "Unknown flash cache controller"  */
#endif /* FSL_FEATURE_FTFx_MCM_FLASH_CACHE_CONTROLS */
       /* Memory barriers for good measure.
        * All Cache, Branch predictor and TLB maintenance operations before this instruction complete */
    __ISB();
    __DSB();
}

/*!
 * @brief Be used for determining the size of flash_cache_clear_command()
 *
 * This function must be defined that lexically follows flash_cache_clear_command(),
 * so we can determine the size of flash_cache_clear_command() at runtime and not worry
 * about toolchain or code generation differences.
 */
void flash_cache_clear_command_end(void)
{
}

/*!
 * @brief Copy flash_cache_clear_command() to RAM
 *
 * This function copys the memory between flash_cache_clear_command() and flash_cache_clear_command_end()
 * into the buffer which is also means that copying flash_cache_clear_command() to RAM.
 */
static void copy_flash_cache_clear_command(uint8_t *flashCacheClearCommand)
{
    /* Calculate the valid length of flash_cache_clear_command() memory.
     * Set max size(64 bytes) as default function size, in case some compiler allocates
     * flash_cache_clear_command_end ahead of flash_cache_clear_command. */
    uint32_t funcLength = kFLASH_executeInRamFunctionMaxSize;
    uint32_t flash_cache_clear_command_start_addr = (uint32_t)flash_cache_clear_command & (~1U);
    uint32_t flash_cache_clear_command_end_addr = (uint32_t)flash_cache_clear_command_end & (~1U);
    if (flash_cache_clear_command_end_addr > flash_cache_clear_command_start_addr)
    {
        funcLength = flash_cache_clear_command_end_addr - flash_cache_clear_command_start_addr;

        assert(funcLength <= kFLASH_executeInRamFunctionMaxSize);

        /* In case some compiler allocates other function in the middle of flash_cache_clear_command
         * and flash_cache_clear_command_end. */
        if (funcLength > kFLASH_executeInRamFunctionMaxSize)
        {
            funcLength = kFLASH_executeInRamFunctionMaxSize;
        }
    }

    /* Since the value of ARM function pointer is always odd, but the real start address
     * of function memory should be even, that's why -1 and +1 operation exist. */
    memcpy((void *)flashCacheClearCommand, (void *)flash_cache_clear_command_start_addr, funcLength);
    callFlashCacheClearCommand = (void (*)(FTFx_REG32_ACCESS_TYPE ftfx_reg))((uint32_t)flashCacheClearCommand + 1);
}
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */

/*!
 * @brief Flash Cache Clear
 *
 * This function is used to perform the cache clear to the flash.
 */
#if (defined(__ICCARM__))
#pragma optimize = none
void flash_cache_clear(flash_config_t *config)
#elif (defined(__CC_ARM))
#pragma push
#pragma O0
void flash_cache_clear(flash_config_t *config)
#elif (!defined(__GNUC__))
/* #pragma GCC push_options */
/* #pragma GCC optimize("O0") */
void __attribute__((optimize("O0"))) flash_cache_clear(flash_config_t *config)
#else
#error "Unknown compiler"
#endif
{
#if FLASH_DRIVER_IS_FLASH_RESIDENT
    status_t returnCode = flash_check_execute_in_ram_function_info(config);
    if (kStatus_FLASH_Success != returnCode)
    {
        return;
    }

/* We pass the ftfx register address as a parameter to flash_cache_clear_comamnd() instead of using
 * pre-processed MACROs or a global variable in flash_cache_clear_comamnd()
 * to make sure that flash_cache_clear_command() will be compiled into position-independent code (PIC). */
#if defined(FSL_FEATURE_FLASH_HAS_MCM_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_MCM_FLASH_CACHE_CONTROLS
#if defined(MCM)
    callFlashCacheClearCommand((FTFx_REG32_ACCESS_TYPE)&MCM->PLACR);
#endif
#if defined(MCM0)
    callFlashCacheClearCommand((FTFx_REG32_ACCESS_TYPE)&MCM0->PLACR);
#endif
#if defined(MCM1)
    callFlashCacheClearCommand((FTFx_REG32_ACCESS_TYPE)&MCM1->PLACR);
#endif
#elif defined(FSL_FEATURE_FLASH_HAS_FMC_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_FMC_FLASH_CACHE_CONTROLS
#if defined(FMC_PFB01CR_CINV_WAY_MASK)
    callFlashCacheClearCommand((FTFx_REG32_ACCESS_TYPE)&FMC->PFB01CR);
#else
    callFlashCacheClearCommand((FTFx_REG32_ACCESS_TYPE)&FMC->PFB0CR);
#endif
#elif defined(FSL_FEATURE_FLASH_HAS_MSCM_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_MSCM_FLASH_CACHE_CONTROLS
    callFlashCacheClearCommand((FTFx_REG32_ACCESS_TYPE)&MSCM->OCMDR[0]);
#else
    /* #error "Unknown flash cache controller" */
    /* meaningless code, just a workaround to solve warning*/
    callFlashCacheClearCommand((FTFx_REG32_ACCESS_TYPE)0);
#endif /* FSL_FEATURE_FTFx_MCM_FLASH_CACHE_CONTROLS */

#else

#if defined(FSL_FEATURE_FLASH_HAS_MCM_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_MCM_FLASH_CACHE_CONTROLS
#if defined(MCM)
    MCM->PLACR |= MCM_PLACR_CFCC_MASK;
#endif
#if defined(MCM0)
    MCM0->PLACR |= MCM_PLACR_CFCC_MASK;
#endif
#if defined(MCM1)
    MCM1->PLACR |= MCM_PLACR_CFCC_MASK;
#endif
#elif defined(FSL_FEATURE_FLASH_HAS_FMC_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_FMC_FLASH_CACHE_CONTROLS
#if defined(FMC_PFB01CR_CINV_WAY_MASK)
    FMC->PFB01CR = (FMC->PFB01CR & ~FMC_PFB01CR_CINV_WAY_MASK) | FMC_PFB01CR_CINV_WAY(~0);
#else
    FMC->PFB0CR = (FMC->PFB0CR & ~FMC_PFB0CR_CINV_WAY_MASK) | FMC_PFB0CR_CINV_WAY(~0);
#endif
#elif defined(FSL_FEATURE_FLASH_HAS_MSCM_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_MSCM_FLASH_CACHE_CONTROLS
    MSCM->OCMDR[0] |= MSCM_OCMDR_OCMC1(2);
    MSCM->OCMDR[0] |= MSCM_OCMDR_OCMC1(1);
#else
/*    #error "Unknown flash cache controller" */
#endif /* FSL_FEATURE_FTFx_MCM_FLASH_CACHE_CONTROLS */
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
}
#if (defined(__CC_ARM))
#pragma pop
#endif
#if (defined(__GNUC__))
/* #pragma GCC pop_options */
#endif

#if FLASH_DRIVER_IS_FLASH_RESIDENT
/*! @brief Check whether flash execute-in-ram functions are ready  */
static status_t flash_check_execute_in_ram_function_info(flash_config_t *config)
{
    flash_execute_in_ram_function_config_t *flashExecuteInRamFunctionInfo;

    if (config == NULL)
    {
        return kStatus_FLASH_InvalidArgument;
    }

    flashExecuteInRamFunctionInfo = (flash_execute_in_ram_function_config_t *)config->flashExecuteInRamFunctionInfo;

    if ((config->flashExecuteInRamFunctionInfo) &&
        (kFLASH_executeInRamFunctionTotalNum == flashExecuteInRamFunctionInfo->activeFunctionCount))
    {
        return kStatus_FLASH_Success;
    }

    return kStatus_FLASH_ExecuteInRamFunctionNotReady;
}
#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */

/*! @brief Validates the range and alignment of the given address range.*/
static status_t flash_check_range(flash_config_t *config,
                                  uint32_t startAddress,
                                  uint32_t lengthInBytes,
                                  uint32_t alignmentBaseline)
{
    if (config == NULL)
    {
        return kStatus_FLASH_InvalidArgument;
    }

    /* Verify the start and length are alignmentBaseline aligned. */
    if ((startAddress & (alignmentBaseline - 1)) || (lengthInBytes & (alignmentBaseline - 1)))
    {
        return kStatus_FLASH_AlignmentError;
    }

/* check for valid range of the target addresses */
#if !FLASH_SSD_IS_FLEXNVM_ENABLED
    if ((startAddress < config->PFlashBlockBase) ||
        ((startAddress + lengthInBytes) > (config->PFlashBlockBase + config->PFlashTotalSize)))
#else
    if (!(((startAddress >= config->PFlashBlockBase) &&
           ((startAddress + lengthInBytes) <= (config->PFlashBlockBase + config->PFlashTotalSize))) ||
          ((startAddress >= config->DFlashBlockBase) &&
           ((startAddress + lengthInBytes) <= (config->DFlashBlockBase + config->DFlashTotalSize)))))
#endif
    {
        return kStatus_FLASH_AddressError;
    }

    return kStatus_FLASH_Success;
}

/*! @brief Gets the right address, sector and block size of current flash type which is indicated by address.*/
static status_t flash_get_matched_operation_info(flash_config_t *config,
                                                 uint32_t address,
                                                 flash_operation_config_t *info)
{
    if (config == NULL)
    {
        return kStatus_FLASH_InvalidArgument;
    }

    /* Clean up info Structure*/
    memset(info, 0, sizeof(flash_operation_config_t));

#if FLASH_SSD_IS_FLEXNVM_ENABLED
    if ((address >= config->DFlashBlockBase) && (address <= (config->DFlashBlockBase + config->DFlashTotalSize)))
    {
        info->convertedAddress = address - config->DFlashBlockBase + 0x800000U;
        info->activeSectorSize = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SECTOR_SIZE;
        info->activeBlockSize = config->DFlashTotalSize / FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_COUNT;

        info->blockWriteUnitSize = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_WRITE_UNIT_SIZE;
        info->sectorCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_SECTOR_CMD_ADDRESS_ALIGMENT;
        info->sectionCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_SECTION_CMD_ADDRESS_ALIGMENT;
        info->resourceCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_RESOURCE_CMD_ADDRESS_ALIGMENT;
        info->checkCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_CHECK_CMD_ADDRESS_ALIGMENT;
    }
    else
#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
    {
        info->convertedAddress = address;
        info->activeSectorSize = config->PFlashSectorSize;
        info->activeBlockSize = config->PFlashTotalSize / config->PFlashBlockCount;

        info->blockWriteUnitSize = FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE;
        info->sectorCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_SECTOR_CMD_ADDRESS_ALIGMENT;
        info->sectionCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_SECTION_CMD_ADDRESS_ALIGMENT;
        info->resourceCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_RESOURCE_CMD_ADDRESS_ALIGMENT;
        info->checkCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_CHECK_CMD_ADDRESS_ALIGMENT;
    }

    return kStatus_FLASH_Success;
}

/*! @brief Validates the given user key for flash erase APIs.*/
static status_t flash_check_user_key(uint32_t key)
{
    /* Validate the user key */
    if (key != kFLASH_apiEraseKey)
    {
        return kStatus_FLASH_EraseKeyError;
    }

    return kStatus_FLASH_Success;
}

// #if FLASH_SSD_IS_FLEXNVM_ENABLED
// /*! @brief Updates FlexNVM memory partition status according to data flash 0 IFR.*/
// static status_t flash_update_flexnvm_memory_partition_status(flash_config_t *config)
// {
//     struct
//     {
//         uint32_t reserved0;
//         uint8_t FlexNVMPartitionCode;
//         uint8_t EEPROMDataSetSize;
//         uint16_t reserved1;
//     } dataIFRReadOut;
//     status_t returnCode;
//
//     if (config == NULL)
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     /* Get FlexNVM memory partition info from data flash IFR */
//     returnCode = FLASH_ReadResource(config, DFLASH_IFR_READRESOURCE_START_ADDRESS, (uint32_t *)&dataIFRReadOut,
//                                     sizeof(dataIFRReadOut), kFLASH_resourceOptionFlashIfr);
//     if (returnCode != kStatus_FLASH_Success)
//     {
//         return kStatus_FLASH_PartitionStatusUpdateFailure;
//     }
//
//     /* Fill out partitioned EEPROM size */
//     dataIFRReadOut.EEPROMDataSetSize &= 0x0FU;
//     switch (dataIFRReadOut.EEPROMDataSetSize)
//     {
//         case 0x00U:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0000;
//             break;
//         case 0x01U:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0001;
//             break;
//         case 0x02U:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0010;
//             break;
//         case 0x03U:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0011;
//             break;
//         case 0x04U:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0100;
//             break;
//         case 0x05U:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0101;
//             break;
//         case 0x06U:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0110;
//             break;
//         case 0x07U:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0111;
//             break;
//         case 0x08U:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1000;
//             break;
//         case 0x09U:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1001;
//             break;
//         case 0x0AU:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1010;
//             break;
//         case 0x0BU:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1011;
//             break;
//         case 0x0CU:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1100;
//             break;
//         case 0x0DU:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1101;
//             break;
//         case 0x0EU:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1110;
//             break;
//         case 0x0FU:
//             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1111;
//             break;
//         default:
//             config->EEpromTotalSize = FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED;
//             break;
//     }
//
//     /* Fill out partitioned DFlash size */
//     dataIFRReadOut.FlexNVMPartitionCode &= 0x0FU;
//     switch (dataIFRReadOut.FlexNVMPartitionCode)
//     {
//         case 0x00U:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000 */
//             break;
//         case 0x01U:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001 */
//             break;
//         case 0x02U:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010 */
//             break;
//         case 0x03U:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011 */
//             break;
//         case 0x04U:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100 */
//             break;
//         case 0x05U:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101 */
//             break;
//         case 0x06U:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110 */
//             break;
//         case 0x07U:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111 */
//             break;
//         case 0x08U:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000 */
//             break;
//         case 0x09U:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001 */
//             break;
//         case 0x0AU:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010 */
//             break;
//         case 0x0BU:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011 */
//             break;
//         case 0x0CU:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100 */
//             break;
//         case 0x0DU:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101 */
//             break;
//         case 0x0EU:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110 */
//             break;
//         case 0x0FU:
// #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111 != 0xFFFFFFFF)
//             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111;
// #else
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
// #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111 */
//             break;
//         default:
//             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
//             break;
//     }
//
//     return kStatus_FLASH_Success;
// }
// #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */

// #if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
// /*! @brief Validates the range of the given resource address.*/
// static status_t flash_check_resource_range(uint32_t start,
//                                            uint32_t lengthInBytes,
//                                            uint32_t alignmentBaseline,
//                                            flash_read_resource_option_t option)
// {
//     status_t status;
//     uint32_t maxReadbleAddress;
//
//     if ((start & (alignmentBaseline - 1)) || (lengthInBytes & (alignmentBaseline - 1)))
//     {
//         return kStatus_FLASH_AlignmentError;
//     }
//
//     status = kStatus_FLASH_Success;
//
//     maxReadbleAddress = start + lengthInBytes - 1;
//     if (option == kFLASH_resourceOptionVersionId)
//     {
//         if ((start != kFLASH_resourceRangeVersionIdStart) ||
//             ((start + lengthInBytes - 1) != kFLASH_resourceRangeVersionIdEnd))
//         {
//             status = kStatus_FLASH_InvalidArgument;
//         }
//     }
//     else if (option == kFLASH_resourceOptionFlashIfr)
//     {
//         if (maxReadbleAddress < kFLASH_resourceRangePflashIfrSizeInBytes)
//         {
//         }
// #if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
//         else if ((start >= kFLASH_resourceRangePflashSwapIfrStart) &&
//                  (maxReadbleAddress <= kFLASH_resourceRangePflashSwapIfrEnd))
//         {
//         }
// #endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
//         else if ((start >= kFLASH_resourceRangeDflashIfrStart) &&
//                  (maxReadbleAddress <= kFLASH_resourceRangeDflashIfrEnd))
//         {
//         }
//         else
//         {
//             status = kStatus_FLASH_InvalidArgument;
//         }
//     }
//     else
//     {
//         status = kStatus_FLASH_InvalidArgument;
//     }
//
//     return status;
// }
// #endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */

// #if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD
// /*! @brief Validates the gived swap control option.*/
// static status_t flash_check_swap_control_option(flash_swap_control_option_t option)
// {
//     if ((option == kFLASH_swapControlOptionIntializeSystem) || (option == kFLASH_swapControlOptionSetInUpdateState) ||
//         (option == kFLASH_swapControlOptionSetInCompleteState) || (option == kFLASH_swapControlOptionReportStatus) ||
//         (option == kFLASH_swapControlOptionDisableSystem))
//     {
//         return kStatus_FLASH_Success;
//     }
//
//     return kStatus_FLASH_InvalidArgument;
// }
// #endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */
//
// #if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
// /*! @brief Validates the gived address to see if it is equal to swap indicator address in pflash swap IFR.*/
// static status_t flash_validate_swap_indicator_address(flash_config_t *config, uint32_t address)
// {
//     flash_swap_ifr_field_config_t flashSwapIfrField;
//     uint32_t swapIndicatorAddress;
//
//     status_t returnCode;
//     returnCode = FLASH_ReadResource(config, kFLASH_resourceRangePflashSwapIfrStart, (uint32_t *)&flashSwapIfrField,
//                                     sizeof(flash_swap_ifr_field_config_t), kFLASH_resourceOptionFlashIfr);
//     if (returnCode != kStatus_FLASH_Success)
//     {
//         return returnCode;
//     }
//
//     /* The high 2 byte value of Swap Indicator Address is stored in Program Flash Swap IFR Field,
//      * the low 4 bit value of Swap Indicator Address is always 4'b0000 */
//     swapIndicatorAddress =
//         (uint32_t)flashSwapIfrField.swapIndicatorAddress * FSL_FEATURE_FLASH_PFLASH_SWAP_CONTROL_CMD_ADDRESS_ALIGMENT;
//     if (address != swapIndicatorAddress)
//     {
//         return kStatus_FLASH_SwapIndicatorAddressError;
//     }
//
//     return returnCode;
// }
// #endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
//
// #if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
// /*! @brief Validates the gived flexram function option.*/
// static inline status_t flasn_check_flexram_function_option_range(flash_flexram_function_option_t option)
// {
//     if ((option != kFLASH_flexramFunctionOptionAvailableAsRam) &&
//         (option != kFLASH_flexramFunctionOptionAvailableForEeprom))
//     {
//         return kStatus_FLASH_InvalidArgument;
//     }
//
//     return kStatus_FLASH_Success;
// }
// #endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */