Repostiory containing DAPLink source code with Reset Pin workaround for HANI_IOT board.
Upstream: https://github.com/ARMmbed/DAPLink
source/daplink/interface/swd_host_ca.c
- Committer:
- Pawel Zarembski
- Date:
- 2020-04-07
- Revision:
- 0:01f31e923fe2
File content as of revision 0:01f31e923fe2:
/** * @file swd_host.c * @brief Implementation of swd_host.h * * DAPLink Interface Firmware * Copyright (c) 2009-2019, ARM Limited, All Rights Reserved * Copyright 2019, Cypress Semiconductor Corporation * or a subsidiary of Cypress Semiconductor Corporation. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifdef TARGET_MCU_CORTEX_A #include "cmsis_os2.h" #include "target_config.h" #include "swd_host.h" #include "debug_ca.h" #include "DAP_config.h" #include "DAP.h" #include "target_family.h" // Default NVIC and Core debug base addresses // TODO: Read these addresses from ROM. #define NVIC_Addr (0xe000e000) #define DBG_Addr (0xe000edf0) // AP CSW register, base value #define CSW_VALUE (0x80000000 | CSW_RESERVED | CSW_MSTRDBG | CSW_HPROT | CSW_DBGSTAT | CSW_PADDRINC) // SWD register access #define SWD_REG_AP (1) #define SWD_REG_DP (0) #define SWD_REG_R (1<<1) #define SWD_REG_W (0<<1) #define SWD_REG_ADR(a) (a & 0x0c) #define CMD_MRC (0xEE100E15) /* 1110 1110 0001 0000 RRRR 1110 0001 0101 */ #define CMD_MCR (0xEE000E15) /* 1110 1110 0000 0000 RRRR 1110 0001 0101 */ #define CMD_MSR (0xE12CF000) /* 1110 0001 0010 1100 1111 0000 0000 RRRR */ #define CMD_MRS (0xE14F0000) /* 1110 0001 0100 1111 RRRR 0000 0000 0000 */ #define CMD_MOV (0xE1A00000) /* 1110 0001 1010 0000 DDDD 0000 0000 RRRR */ /* D = distination */ #define DBGDSCR_HALTED (0x00000001) #define SELECT_MEM (0x00000000) /* setting of SELECT access memmory */ #define SELECT_DBG (0x01000000) /* setting of SELECT access Debug Register */ #define MAX_SWD_RETRY 10 #define MAX_TIMEOUT 100000 // Timeout for syscalls on target typedef struct { uint32_t select; uint32_t csw; } DAP_STATE; typedef struct { uint32_t r[16]; uint32_t xpsr; } DEBUG_STATE; static DAP_STATE dap_state; static uint32_t soft_reset = SYSRESETREQ; static uint32_t select_state = SELECT_MEM; static volatile uint32_t swd_init_debug_flag = 0; /* Add static functions */ static uint8_t swd_restart_req(void); static uint8_t swd_enable_debug(void); void swd_set_reset_connect(SWD_CONNECT_TYPE type) { } void int2array(uint8_t *res, uint32_t data, uint8_t len) { uint8_t i = 0; for (i = 0; i < len; i++) { res[i] = (data >> 8 * i) & 0xff; } } uint8_t swd_transfer_retry(uint32_t req, uint32_t *data) { uint8_t i, ack; for (i = 0; i < MAX_SWD_RETRY; i++) { ack = SWD_Transfer(req, data); // if ack != WAIT if (ack != DAP_TRANSFER_WAIT) { return ack; } } return ack; } void swd_set_soft_reset(uint32_t soft_reset_type) { soft_reset = soft_reset_type; } uint8_t swd_init(void) { //TODO - DAP_Setup puts GPIO pins in a hi-z state which can // cause problems on re-init. This needs to be investigated // and fixed. DAP_Setup(); PORT_SWD_SETUP(); return 1; } uint8_t swd_off(void) { PORT_OFF(); return 1; } // Read debug port register. uint8_t swd_read_dp(uint8_t adr, uint32_t *val) { uint32_t tmp_in; uint8_t tmp_out[4]; uint8_t ack; uint32_t tmp; tmp_in = SWD_REG_DP | SWD_REG_R | SWD_REG_ADR(adr); ack = swd_transfer_retry(tmp_in, (uint32_t *)tmp_out); *val = 0; tmp = tmp_out[3]; *val |= (tmp << 24); tmp = tmp_out[2]; *val |= (tmp << 16); tmp = tmp_out[1]; *val |= (tmp << 8); tmp = tmp_out[0]; *val |= (tmp << 0); return (ack == 0x01); } // Write debug port register uint8_t swd_write_dp(uint8_t adr, uint32_t val) { uint32_t req; uint8_t data[4]; uint8_t ack; switch (adr) { case DP_SELECT: if (dap_state.select == val) { return 1; } dap_state.select = val; break; default: break; } req = SWD_REG_DP | SWD_REG_W | SWD_REG_ADR(adr); int2array(data, val, 4); ack = swd_transfer_retry(req, (uint32_t *)data); return (ack == 0x01); } // Read access port register. uint8_t swd_read_ap(uint32_t adr, uint32_t *val) { uint8_t tmp_in, ack; uint8_t tmp_out[4]; uint32_t tmp; uint32_t apsel = adr & 0xff000000; uint32_t bank_sel = adr & APBANKSEL; if (!swd_write_dp(DP_SELECT, apsel | bank_sel)) { return 0; } tmp_in = SWD_REG_AP | SWD_REG_R | SWD_REG_ADR(adr); // first dummy read swd_transfer_retry(tmp_in, (uint32_t *)tmp_out); ack = swd_transfer_retry(tmp_in, (uint32_t *)tmp_out); *val = 0; tmp = tmp_out[3]; *val |= (tmp << 24); tmp = tmp_out[2]; *val |= (tmp << 16); tmp = tmp_out[1]; *val |= (tmp << 8); tmp = tmp_out[0]; *val |= (tmp << 0); return (ack == 0x01); } // Write access port register uint8_t swd_write_ap(uint32_t adr, uint32_t val) { uint8_t data[4]; uint8_t req, ack; uint32_t apsel = adr & 0xff000000; uint32_t bank_sel = adr & APBANKSEL; if (!swd_write_dp(DP_SELECT, apsel | bank_sel)) { return 0; } switch (adr) { case AP_CSW: if (dap_state.csw == val) { return 1; } dap_state.csw = val; break; default: break; } req = SWD_REG_AP | SWD_REG_W | SWD_REG_ADR(adr); int2array(data, val, 4); if (swd_transfer_retry(req, (uint32_t *)data) != 0x01) { return 0; } req = SWD_REG_DP | SWD_REG_R | SWD_REG_ADR(DP_RDBUFF); ack = swd_transfer_retry(req, NULL); return (ack == 0x01); } uint8_t swd_ca_select_state(uint32_t addr) { uint8_t tmp_in[4]; uint32_t work_select_state; if ((DEBUG_REGSITER_BASE <= addr) && (addr <= DBGCID3)) { work_select_state = SELECT_DBG; } else { work_select_state = SELECT_MEM; } if (select_state != work_select_state) { // SELECT select_state = work_select_state; int2array(tmp_in, select_state, 4); if (swd_transfer_retry(0x08, (uint32_t *)tmp_in) != 0x01) { return 0; } } return 1; } // Write 32-bit word aligned values to target memory using address auto-increment. // size is in bytes. static uint8_t swd_write_block(uint32_t address, uint8_t *data, uint32_t size) { uint8_t tmp_in[4], req; uint32_t size_in_words; uint32_t i, ack = 0x01; uint32_t *work_write_data; if (size == 0) { return 0; } size_in_words = size / 4; // CSW register if (!swd_write_ap(AP_CSW, CSW_VALUE | CSW_SIZE32)) { return 0; } if (swd_ca_select_state(address) == 0) { return 0; } // TAR write req = SWD_REG_AP | SWD_REG_W | (1 << 2); int2array(tmp_in, address, 4); if (swd_transfer_retry(req, (uint32_t *)tmp_in) != 0x01) { return 0; } // DRW write req = SWD_REG_AP | SWD_REG_W | (3 << 2); work_write_data = (uint32_t *)data; for (i = 0; i < size_in_words; i++) { int2array(tmp_in, *work_write_data, 4); ack = swd_transfer_retry(req, (uint32_t *)tmp_in); if (ack != 0x01) { return 0; } work_write_data++; } return (ack == 0x01); } // Read target memory. static uint8_t swd_read_data(uint32_t addr, uint32_t *val) { uint8_t tmp_in[4]; uint8_t tmp_out[4]; uint8_t req, ack; uint32_t tmp; if (swd_ca_select_state(addr) == 0) { return 0; } // put addr in TAR register int2array(tmp_in, addr, 4); req = SWD_REG_AP | SWD_REG_W | (1 << 2); if (swd_transfer_retry(req, (uint32_t *)tmp_in) != 0x01) { return 0; } // read data req = SWD_REG_AP | SWD_REG_R | (3 << 2); if (swd_transfer_retry(req, (uint32_t *)tmp_out) != 0x01) { return 0; } // dummy read req = SWD_REG_DP | SWD_REG_R | SWD_REG_ADR(DP_RDBUFF); ack = swd_transfer_retry(req, (uint32_t *)tmp_out); *val = 0; tmp = tmp_out[3]; *val |= (tmp << 24); tmp = tmp_out[2]; *val |= (tmp << 16); tmp = tmp_out[1]; *val |= (tmp << 8); tmp = tmp_out[0]; *val |= (tmp << 0); return (ack == 0x01); } // Write target memory. static uint8_t swd_write_data(uint32_t address, uint32_t data) { uint8_t tmp_in[4]; uint8_t req, ack; if (swd_ca_select_state(address) == 0) { return 0; } // put addr in TAR register int2array(tmp_in, address, 4); req = SWD_REG_AP | SWD_REG_W | (1 << 2); if (swd_transfer_retry(req, (uint32_t *)tmp_in) != 0x01) { return 0; } // write data int2array(tmp_in, data, 4); req = SWD_REG_AP | SWD_REG_W | (3 << 2); ack = swd_transfer_retry(req, (uint32_t *)tmp_in); return (ack == 0x01) ? 1 : 0; } // Read 32-bit word from target memory. uint8_t swd_read_word(uint32_t addr, uint32_t *val) { if (!swd_write_ap(AP_CSW, CSW_VALUE | CSW_SIZE32)) { return 0; } if (!swd_read_data(addr, val)) { return 0; } return 1; } // Write 32-bit word to target memory. uint8_t swd_write_word(uint32_t addr, uint32_t val) { if (!swd_write_ap(AP_CSW, CSW_VALUE | CSW_SIZE32)) { return 0; } if (!swd_write_data(addr, val)) { return 0; } return 1; } // Read unaligned data from target memory. // size is in bytes. uint8_t swd_read_memory(uint32_t address, uint8_t *data, uint32_t size) { uint32_t read_size; uint32_t* read_data; read_size = (size / 4); read_data = (uint32_t*)data; /* Write bytes until end */ while ((read_size > 0)) { if (!swd_read_data(address, read_data)) { return 0; } address+=4; read_data++; read_size--; } return 1; } // Write unaligned data to target memory. // size is in bytes. uint8_t swd_write_memory(uint32_t address, uint8_t *data, uint32_t size) { uint32_t n; while (size > 3) { // Limit to auto increment page size n = TARGET_AUTO_INCREMENT_PAGE_SIZE - (address & (TARGET_AUTO_INCREMENT_PAGE_SIZE - 1)); if (size < n) { n = size & 0xFFFFFFFC; // Only count complete words remaining } if (!swd_write_block(address, data, n)) { return 0; } address += n; data += n; size -= n; } /* Auto increment is end */ /* Return the CSW reg value to SIZE8 */ if (!swd_write_ap(AP_CSW, CSW_VALUE | CSW_SIZE8)) { return 0; } return 1; } // Execute system call. static uint8_t swd_write_debug_state(DEBUG_STATE *state) { uint32_t i, status; if (!swd_write_dp(DP_SELECT, 0)) { return 0; } // R0, R1, R2, R3 for (i = 0; i < 4; i++) { if (!swd_write_core_register(i, state->r[i])) { return 0; } } // R9 if (!swd_write_core_register(9, state->r[9])) { return 0; } // R13, R14 for (i = 13; i < 15; i++) { if (!swd_write_core_register(i, state->r[i])) { return 0; } } // xPSR /* xPSR write */ /* write PSR (write r6) */ if (!swd_write_core_register(6, state->xpsr)) { return 0; } /* MSR (PSR <- r6) */ if (!swd_write_word(DBGITR, CMD_MSR | (6))) { return 0; } /* R15(PC) */ /* MRC R7 */ if (!swd_write_core_register(7, state->r[15])) { return 0; } /* MOV R15, R7 */ if (!swd_write_word(DBGITR, CMD_MOV | (15 << 12) | (7))) { return 0; } if (!swd_restart_req()) { return 0; } // check status if (!swd_read_dp(DP_CTRL_STAT, &status)) { return 0; } if (status & (STICKYERR | WDATAERR)) { return 0; } return 1; } static uint8_t swd_restart_req(void) { uint32_t val, i, timeout = MAX_TIMEOUT; /* Clear ITRen */ if (!swd_read_word(DBGDSCR, &val)) { return 0; } val = val & ~0x00002000; if (!swd_write_word(DBGDSCR, val)) { return 0; } for (i = 0; i < timeout; i++) { /* read DBGDSCR */ if (!swd_read_word(DBGDSCR, &val)) { return 0; } /* wait Clear UND_I, ADABORT_I, SDABORT_I[bit:8-6] and InstrCompl_I[bit24] set to 1 */ if ((val & 0x010001C0) == 0x01000000) { break; } else if (i == (timeout -1)) { return 0; } } /* DBGDRCR Restart req */ if (!swd_write_word(DBGDRCR, 0x00000002 )) { return 0; } for (i = 0; i < timeout; i++) { /* read DBGDSCR */ if (!swd_read_word(DBGDSCR, &val)) { return 0; } if ((val & 0x00000002) == 0x00000002) { /* restarted */ return 1; } } return 0; } static uint8_t swd_enable_debug(void) { uint32_t val; if (!swd_read_word(DBGDSCR, &val)) { return 0; } /* DBGDSCR ITRen = 1(ARM instruction enable) */ /* and ExtDCCmode = 01(stall mode) */ val = val | 0x00106000; if (!swd_write_word(DBGDSCR, val)) { return 0; } return 1; } uint8_t swd_read_core_register(uint32_t n, uint32_t *val) { if (!swd_write_word(DBGITR, CMD_MCR | (n << 12))) { return 0; } if (!swd_read_word(DBGDTRTX, val)){ return 0; } return 1; } uint8_t swd_write_core_register(uint32_t n, uint32_t val) { if (!swd_write_word(DBGDTRRX, val)){ return 0; } /* Write MRC */ if (!swd_write_word(DBGITR, (CMD_MRC | (n << 12)))) { return 0; } return 1; } static uint8_t swd_wait_until_halted(void) { uint32_t val, i, timeout = MAX_TIMEOUT; for (i = 0; i < timeout; i++) { /* read DBGDSCR */ if (!swd_read_word(DBGDSCR, &val)) { return 0; } if ((val & DBGDSCR_HALTED) == DBGDSCR_HALTED) { return 1; } osDelay(1); } return 0; } uint8_t swd_flash_syscall_exec(const program_syscall_t *sysCallParam, uint32_t entry, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint32_t arg4, flash_algo_return_t return_type) { DEBUG_STATE state = {{0}, 0}; // Call flash algorithm function on target and wait for result. state.r[0] = arg1; // R0: Argument 1 state.r[1] = arg2; // R1: Argument 2 state.r[2] = arg3; // R2: Argument 3 state.r[3] = arg4; // R3: Argument 4 state.r[9] = sysCallParam->static_base; // SB: Static Base state.r[13] = sysCallParam->stack_pointer; // SP: Stack Pointer state.r[14] = sysCallParam->breakpoint; // LR: Exit Point state.r[15] = entry; // PC: Entry Point state.xpsr = 0x00000000; // xPSR: T = 1, ISR = 0 if (!swd_write_debug_state(&state)) { return 0; } if (!swd_wait_until_halted()) { return 0; } if (!swd_enable_debug()) { return 0; } if (!swd_read_core_register(0, &state.r[0])) { return 0; } if ( return_type == FLASHALGO_RETURN_POINTER ) { // Flash verify functions return pointer to byte following the buffer if successful. if (state.r[0] != (arg1 + arg2)) { return 0; } } else { // Flash functions return 0 if successful. if (state.r[0] != 0) { return 0; } } return 1; } // SWD Reset static uint8_t swd_reset(void) { uint8_t tmp_in[8]; uint8_t i = 0; for (i = 0; i < 8; i++) { tmp_in[i] = 0xff; } SWJ_Sequence(51, tmp_in); return 1; } // SWD Switch static uint8_t swd_switch(uint16_t val) { uint8_t tmp_in[2]; tmp_in[0] = val & 0xff; tmp_in[1] = (val >> 8) & 0xff; SWJ_Sequence(16, tmp_in); return 1; } // SWD Read ID static uint8_t swd_read_idcode(uint32_t *id) { uint8_t tmp_in[1]; uint8_t tmp_out[4]; tmp_in[0] = 0x00; SWJ_Sequence(8, tmp_in); if (swd_read_dp(0, (uint32_t *)tmp_out) != 0x01) { return 0; } *id = (tmp_out[3] << 24) | (tmp_out[2] << 16) | (tmp_out[1] << 8) | tmp_out[0]; return 1; } uint8_t JTAG2SWD() { uint32_t tmp = 0; if (!swd_reset()) { return 0; } if (!swd_switch(0xE79E)) { return 0; } if (!swd_reset()) { return 0; } if (!swd_read_idcode(&tmp)) { return 0; } return 1; } uint8_t swd_init_debug(void) { uint32_t tmp = 0; if (swd_init_debug_flag != 0) { return 1; } swd_init_debug_flag = 1; // init dap state with fake values dap_state.select = 0xffffffff; dap_state.csw = 0xffffffff; swd_init(); // call a target dependant function // this function can do several stuff before really // initing the debug if (g_target_family && g_target_family->target_before_init_debug) { g_target_family->target_before_init_debug(); } if (!JTAG2SWD()) { return 0; } if (!swd_write_dp(DP_ABORT, STKCMPCLR | STKERRCLR | WDERRCLR | ORUNERRCLR)) { return 0; } // Ensure CTRL/STAT register selected in DPBANKSEL if (!swd_write_dp(DP_SELECT, 0)) { return 0; } // Power up if (!swd_write_dp(DP_CTRL_STAT, CSYSPWRUPREQ | CDBGPWRUPREQ)) { return 0; } do { if (!swd_read_dp(DP_CTRL_STAT, &tmp)) { return 0; } } while ((tmp & (CDBGPWRUPACK | CSYSPWRUPACK)) != (CDBGPWRUPACK | CSYSPWRUPACK)); if (!swd_write_dp(DP_CTRL_STAT, CSYSPWRUPREQ | CDBGPWRUPREQ | TRNNORMAL | MASKLANE)) { return 0; } // call a target dependant function: // some target can enter in a lock state // this function can unlock these targets if (g_target_family && g_target_family->target_unlock_sequence) { g_target_family->target_unlock_sequence(); } if (!swd_write_dp(DP_SELECT, 0)) { return 0; } return 1; } uint8_t swd_uninit_debug(void) { return 1; } uint8_t swd_set_target_state_hw(target_state_t state) { uint32_t val; swd_init(); switch (state) { case RESET_HOLD: swd_set_target_reset(1); break; case RESET_RUN: swd_set_target_reset(1); osDelay(2); swd_set_target_reset(0); osDelay(2); swd_off(); break; case RESET_PROGRAM: swd_set_target_reset(1); osDelay(2); swd_set_target_reset(0); osDelay(2); if (!swd_init_debug()) { return 0; } if (!swd_enable_debug()) { return 0; } /* DBGDRCR halt req*/ val = 0x00000001; if (!swd_write_word(DBGDRCR, val )) { return 0; } osDelay(2); if (!swd_wait_until_halted()) { return 0; } break; case NO_DEBUG: if (!swd_write_word(DBG_HCSR, DBGKEY)) { return 0; } break; case DEBUG: if (!JTAG2SWD()) { return 0; } if (!swd_write_dp(DP_ABORT, STKCMPCLR | STKERRCLR | WDERRCLR | ORUNERRCLR)) { return 0; } // Ensure CTRL/STAT register selected in DPBANKSEL if (!swd_write_dp(DP_SELECT, 0)) { return 0; } // Power up if (!swd_write_dp(DP_CTRL_STAT, CSYSPWRUPREQ | CDBGPWRUPREQ)) { return 0; } // Enable debug if (!swd_write_word(DBG_HCSR, DBGKEY | C_DEBUGEN)) { return 0; } break; default: return 0; } return 1; } uint8_t swd_set_target_state_sw(target_state_t state) { uint32_t val; swd_init(); switch (state) { case RESET_HOLD: swd_set_target_reset(1); break; case RESET_RUN: swd_set_target_reset(1); osDelay(2); swd_set_target_reset(0); osDelay(2); swd_off(); break; case RESET_PROGRAM: if (!swd_init_debug()) { return 0; } // Enable debug and halt the core (DHCSR <- 0xA05F0003) if (!swd_write_word(DBG_HCSR, DBGKEY | C_DEBUGEN | C_HALT)) { return 0; } // Wait until core is halted do { if (!swd_read_word(DBG_HCSR, &val)) { return 0; } } while ((val & S_HALT) == 0); // Enable halt on reset if (!swd_write_word(DBG_EMCR, VC_CORERESET)) { return 0; } // Perform a soft reset if (!swd_write_word(NVIC_AIRCR, VECTKEY | soft_reset)) { return 0; } break; case NO_DEBUG: if (!swd_write_word(DBG_HCSR, DBGKEY)) { return 0; } break; case DEBUG: if (!JTAG2SWD()) { return 0; } if (!swd_write_dp(DP_ABORT, STKCMPCLR | STKERRCLR | WDERRCLR | ORUNERRCLR)) { return 0; } // Ensure CTRL/STAT register selected in DPBANKSEL if (!swd_write_dp(DP_SELECT, 0)) { return 0; } // Power up if (!swd_write_dp(DP_CTRL_STAT, CSYSPWRUPREQ | CDBGPWRUPREQ)) { return 0; } // Enable debug if (!swd_write_word(DBG_HCSR, DBGKEY | C_DEBUGEN)) { return 0; } break; default: return 0; } return 1; } #endif