Repostiory containing DAPLink source code with Reset Pin workaround for HANI_IOT board.
Upstream: https://github.com/ARMmbed/DAPLink
Diff: source/hic_hal/freescale/k26f/fsl_uart.c
- Revision:
- 0:01f31e923fe2
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/source/hic_hal/freescale/k26f/fsl_uart.c Tue Apr 07 12:55:42 2020 +0200 @@ -0,0 +1,1658 @@ +/* + * Copyright (c) 2015-2016, Freescale Semiconductor, Inc. + * Copyright 2016-2017 NXP + * All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include "fsl_uart.h" +#include "fsl_clock.h" + +/******************************************************************************* + * Definitions + ******************************************************************************/ + +/* Component ID definition, used by tools. */ +#ifndef FSL_COMPONENT_ID +#define FSL_COMPONENT_ID "platform.drivers.uart" +#endif + +/* UART transfer state. */ +enum _uart_tansfer_states +{ + kUART_TxIdle, /* TX idle. */ + kUART_TxBusy, /* TX busy. */ + kUART_RxIdle, /* RX idle. */ + kUART_RxBusy, /* RX busy. */ + kUART_RxFramingError, /* Rx framing error */ + kUART_RxParityError /* Rx parity error */ +}; + +/* Typedef for interrupt handler. */ +typedef void (*uart_isr_t)(UART_Type *base, uart_handle_t *handle); + +/******************************************************************************* + * Prototypes + ******************************************************************************/ +/*! + * @brief Check whether the RX ring buffer is full. + * + * @param handle UART handle pointer. + * @retval true RX ring buffer is full. + * @retval false RX ring buffer is not full. + */ +static bool UART_TransferIsRxRingBufferFull(uart_handle_t *handle); + +/*! + * @brief Read RX register using non-blocking method. + * + * This function reads data from the TX register directly, upper layer must make + * sure the RX register is full or TX FIFO has data before calling this function. + * + * @param base UART peripheral base address. + * @param data Start addresss of the buffer to store the received data. + * @param length Size of the buffer. + */ +static void UART_ReadNonBlocking(UART_Type *base, uint8_t *data, size_t length); + +/*! + * @brief Write to TX register using non-blocking method. + * + * This function writes data to the TX register directly, upper layer must make + * sure the TX register is empty or TX FIFO has empty room before calling this function. + * + * @note This function does not check whether all the data has been sent out to bus, + * so before disable TX, check kUART_TransmissionCompleteFlag to ensure the TX is + * finished. + * + * @param base UART peripheral base address. + * @param data Start address of the data to write. + * @param length Size of the buffer to be sent. + */ +static void UART_WriteNonBlocking(UART_Type *base, const uint8_t *data, size_t length); + +/******************************************************************************* + * Variables + ******************************************************************************/ +/* Array of UART handle. */ +#if (defined(UART5)) +#define UART_HANDLE_ARRAY_SIZE 6 +#else /* UART5 */ +#if (defined(UART4)) +#define UART_HANDLE_ARRAY_SIZE 5 +#else /* UART4 */ +#if (defined(UART3)) +#define UART_HANDLE_ARRAY_SIZE 4 +#else /* UART3 */ +#if (defined(UART2)) +#define UART_HANDLE_ARRAY_SIZE 3 +#else /* UART2 */ +#if (defined(UART1)) +#define UART_HANDLE_ARRAY_SIZE 2 +#else /* UART1 */ +#if (defined(UART0)) +#define UART_HANDLE_ARRAY_SIZE 1 +#else /* UART0 */ +#error No UART instance. +#endif /* UART 0 */ +#endif /* UART 1 */ +#endif /* UART 2 */ +#endif /* UART 3 */ +#endif /* UART 4 */ +#endif /* UART 5 */ +static uart_handle_t *s_uartHandle[UART_HANDLE_ARRAY_SIZE]; +/* Array of UART peripheral base address. */ +static UART_Type *const s_uartBases[] = UART_BASE_PTRS; + +/* Array of UART IRQ number. */ +static const IRQn_Type s_uartIRQ[] = UART_RX_TX_IRQS; +#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) +/* Array of UART clock name. */ +static const clock_ip_name_t s_uartClock[] = UART_CLOCKS; +#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ + +/* UART ISR for transactional APIs. */ +static uart_isr_t s_uartIsr; + +/******************************************************************************* + * Code + ******************************************************************************/ + +/*! + * brief Get the UART instance from peripheral base address. + * + * param base UART peripheral base address. + * return UART instance. + */ +uint32_t UART_GetInstance(UART_Type *base) +{ + uint32_t instance; + uint32_t uartArrayCount = (sizeof(s_uartBases) / sizeof(s_uartBases[0])); + + /* Find the instance index from base address mappings. */ + for (instance = 0; instance < uartArrayCount; instance++) + { + if (s_uartBases[instance] == base) + { + break; + } + } + + assert(instance < uartArrayCount); + + return instance; +} + +/*! + * brief Get the length of received data in RX ring buffer. + * + * param handle UART handle pointer. + * return Length of received data in RX ring buffer. + */ +size_t UART_TransferGetRxRingBufferLength(uart_handle_t *handle) +{ + assert(handle); + + size_t size; + + if (handle->rxRingBufferTail > handle->rxRingBufferHead) + { + size = (size_t)(handle->rxRingBufferHead + handle->rxRingBufferSize - handle->rxRingBufferTail); + } + else + { + size = (size_t)(handle->rxRingBufferHead - handle->rxRingBufferTail); + } + + return size; +} + +static bool UART_TransferIsRxRingBufferFull(uart_handle_t *handle) +{ + assert(handle); + + bool full; + + if (UART_TransferGetRxRingBufferLength(handle) == (handle->rxRingBufferSize - 1U)) + { + full = true; + } + else + { + full = false; + } + + return full; +} + +/*! + * brief Initializes a UART instance with a user configuration structure and peripheral clock. + * + * This function configures the UART module with the user-defined settings. The user can configure the configuration + * structure and also get the default configuration by using the UART_GetDefaultConfig() function. + * The example below shows how to use this API to configure UART. + * code + * uart_config_t uartConfig; + * uartConfig.baudRate_Bps = 115200U; + * uartConfig.parityMode = kUART_ParityDisabled; + * uartConfig.stopBitCount = kUART_OneStopBit; + * uartConfig.txFifoWatermark = 0; + * uartConfig.rxFifoWatermark = 1; + * UART_Init(UART1, &uartConfig, 20000000U); + * endcode + * + * param base UART peripheral base address. + * param config Pointer to the user-defined configuration structure. + * param srcClock_Hz UART clock source frequency in HZ. + * retval kStatus_UART_BaudrateNotSupport Baudrate is not support in current clock source. + * retval kStatus_Success Status UART initialize succeed + */ +status_t UART_Init(UART_Type *base, const uart_config_t *config, uint32_t srcClock_Hz) +{ + assert(config); + assert(config->baudRate_Bps); +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + assert(FSL_FEATURE_UART_FIFO_SIZEn(base) >= config->txFifoWatermark); + assert(FSL_FEATURE_UART_FIFO_SIZEn(base) >= config->rxFifoWatermark); +#endif + + uint16_t sbr = 0; + uint8_t temp = 0; + uint32_t baudDiff = 0; + + /* Calculate the baud rate modulo divisor, sbr*/ + sbr = srcClock_Hz / (config->baudRate_Bps * 16); + /* set sbrTemp to 1 if the sourceClockInHz can not satisfy the desired baud rate */ + if (sbr == 0) + { + sbr = 1; + } +#if defined(FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT) && FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT + /* Determine if a fractional divider is needed to fine tune closer to the + * desired baud, each value of brfa is in 1/32 increments, + * hence the multiply-by-32. */ + uint32_t tempBaud = 0; + + uint16_t brfa = (2 * srcClock_Hz / (config->baudRate_Bps)) - 32 * sbr; + + /* Calculate the baud rate based on the temporary SBR values and BRFA */ + tempBaud = (srcClock_Hz * 2 / ((sbr * 32 + brfa))); + baudDiff = + (tempBaud > config->baudRate_Bps) ? (tempBaud - config->baudRate_Bps) : (config->baudRate_Bps - tempBaud); + +#else + /* Calculate the baud rate based on the temporary SBR values */ + baudDiff = (srcClock_Hz / (sbr * 16)) - config->baudRate_Bps; + + /* Select the better value between sbr and (sbr + 1) */ + if (baudDiff > (config->baudRate_Bps - (srcClock_Hz / (16 * (sbr + 1))))) + { + baudDiff = config->baudRate_Bps - (srcClock_Hz / (16 * (sbr + 1))); + sbr++; + } +#endif + + /* next, check to see if actual baud rate is within 3% of desired baud rate + * based on the calculate SBR value */ + if (baudDiff > ((config->baudRate_Bps / 100) * 3)) + { + /* Unacceptable baud rate difference of more than 3%*/ + return kStatus_UART_BaudrateNotSupport; + } + +#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) + /* Enable uart clock */ + CLOCK_EnableClock(s_uartClock[UART_GetInstance(base)]); +#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ + + /* Disable UART TX RX before setting. */ + base->C2 &= ~(UART_C2_TE_MASK | UART_C2_RE_MASK); + + /* Write the sbr value to the BDH and BDL registers*/ + base->BDH = (base->BDH & ~UART_BDH_SBR_MASK) | (uint8_t)(sbr >> 8); + base->BDL = (uint8_t)sbr; + +#if defined(FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT) && FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT + /* Write the brfa value to the register*/ + base->C4 = (base->C4 & ~UART_C4_BRFA_MASK) | (brfa & UART_C4_BRFA_MASK); +#endif + + /* Set bit count/parity mode/idle type. */ + temp = base->C1 & ~(UART_C1_PE_MASK | UART_C1_PT_MASK | UART_C1_M_MASK | UART_C1_ILT_MASK); + + temp |= UART_C1_ILT(config->idleType); + + if (kUART_ParityDisabled != config->parityMode) + { + temp |= (UART_C1_M_MASK | (uint8_t)config->parityMode); + } + + base->C1 = temp; + +#if defined(FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT) && FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT + /* Set stop bit per char */ + base->BDH = (base->BDH & ~UART_BDH_SBNS_MASK) | UART_BDH_SBNS((uint8_t)config->stopBitCount); +#endif + +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + /* Set tx/rx FIFO watermark + Note: + Take care of the RX FIFO, RX interrupt request only assert when received bytes + equal or more than RX water mark, there is potential issue if RX water + mark larger than 1. + For example, if RX FIFO water mark is 2, upper layer needs 5 bytes and + 5 bytes are received. the last byte will be saved in FIFO but not trigger + RX interrupt because the water mark is 2. + */ + base->TWFIFO = config->txFifoWatermark; + base->RWFIFO = config->rxFifoWatermark; + + /* Enable tx/rx FIFO */ + base->PFIFO |= (UART_PFIFO_TXFE_MASK | UART_PFIFO_RXFE_MASK); + + /* Flush FIFO */ + base->CFIFO |= (UART_CFIFO_TXFLUSH_MASK | UART_CFIFO_RXFLUSH_MASK); +#endif +#if defined(FSL_FEATURE_UART_HAS_MODEM_SUPPORT) && FSL_FEATURE_UART_HAS_MODEM_SUPPORT + if (config->enableRxRTS) + { + /* Enable receiver RTS(request-to-send) function. */ + base->MODEM |= UART_MODEM_RXRTSE_MASK; + } + if (config->enableTxCTS) + { + /* Enable transmitter CTS(clear-to-send) function. */ + base->MODEM |= UART_MODEM_TXCTSE_MASK; + } +#endif + + /* Enable TX/RX base on configure structure. */ + temp = base->C2; + + if (config->enableTx) + { + temp |= UART_C2_TE_MASK; + } + + if (config->enableRx) + { + temp |= UART_C2_RE_MASK; + } + + base->C2 = temp; + + return kStatus_Success; +} + +/*! + * brief Deinitializes a UART instance. + * + * This function waits for TX complete, disables TX and RX, and disables the UART clock. + * + * param base UART peripheral base address. + */ +void UART_Deinit(UART_Type *base) +{ +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + /* Wait tx FIFO send out*/ + while (0 != base->TCFIFO) + { + } +#endif + /* Wait last char shoft out */ + while (0 == (base->S1 & UART_S1_TC_MASK)) + { + } + + /* Disable the module. */ + base->C2 = 0; + +#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) + /* Disable uart clock */ + CLOCK_DisableClock(s_uartClock[UART_GetInstance(base)]); +#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ +} + +/*! + * brief Gets the default configuration structure. + * + * This function initializes the UART configuration structure to a default value. The default + * values are as follows. + * uartConfig->baudRate_Bps = 115200U; + * uartConfig->bitCountPerChar = kUART_8BitsPerChar; + * uartConfig->parityMode = kUART_ParityDisabled; + * uartConfig->stopBitCount = kUART_OneStopBit; + * uartConfig->txFifoWatermark = 0; + * uartConfig->rxFifoWatermark = 1; + * uartConfig->idleType = kUART_IdleTypeStartBit; + * uartConfig->enableTx = false; + * uartConfig->enableRx = false; + * + * param config Pointer to configuration structure. + */ +void UART_GetDefaultConfig(uart_config_t *config) +{ + assert(config); + + /* Initializes the configure structure to zero. */ + memset(config, 0, sizeof(*config)); + + config->baudRate_Bps = 115200U; + config->parityMode = kUART_ParityDisabled; +#if defined(FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT) && FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT + config->stopBitCount = kUART_OneStopBit; +#endif +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + config->txFifoWatermark = 0; + config->rxFifoWatermark = 1; +#endif +#if defined(FSL_FEATURE_UART_HAS_MODEM_SUPPORT) && FSL_FEATURE_UART_HAS_MODEM_SUPPORT + config->enableRxRTS = false; + config->enableTxCTS = false; +#endif + config->idleType = kUART_IdleTypeStartBit; + config->enableTx = false; + config->enableRx = false; +} + +/*! + * brief Sets the UART instance baud rate. + * + * This function configures the UART module baud rate. This function is used to update + * the UART module baud rate after the UART module is initialized by the UART_Init. + * code + * UART_SetBaudRate(UART1, 115200U, 20000000U); + * endcode + * + * param base UART peripheral base address. + * param baudRate_Bps UART baudrate to be set. + * param srcClock_Hz UART clock source freqency in Hz. + * retval kStatus_UART_BaudrateNotSupport Baudrate is not support in the current clock source. + * retval kStatus_Success Set baudrate succeeded. + */ +status_t UART_SetBaudRate(UART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz) +{ + assert(baudRate_Bps); + + uint16_t sbr = 0; + uint32_t baudDiff = 0; + uint8_t oldCtrl; + + /* Calculate the baud rate modulo divisor, sbr*/ + sbr = srcClock_Hz / (baudRate_Bps * 16); + /* set sbrTemp to 1 if the sourceClockInHz can not satisfy the desired baud rate */ + if (sbr == 0) + { + sbr = 1; + } +#if defined(FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT) && FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT + /* Determine if a fractional divider is needed to fine tune closer to the + * desired baud, each value of brfa is in 1/32 increments, + * hence the multiply-by-32. */ + uint32_t tempBaud = 0; + + uint16_t brfa = (2 * srcClock_Hz / (baudRate_Bps)) - 32 * sbr; + + /* Calculate the baud rate based on the temporary SBR values and BRFA */ + tempBaud = (srcClock_Hz * 2 / ((sbr * 32 + brfa))); + baudDiff = (tempBaud > baudRate_Bps) ? (tempBaud - baudRate_Bps) : (baudRate_Bps - tempBaud); +#else + /* Calculate the baud rate based on the temporary SBR values */ + baudDiff = (srcClock_Hz / (sbr * 16)) - baudRate_Bps; + + /* Select the better value between sbr and (sbr + 1) */ + if (baudDiff > (baudRate_Bps - (srcClock_Hz / (16 * (sbr + 1))))) + { + baudDiff = baudRate_Bps - (srcClock_Hz / (16 * (sbr + 1))); + sbr++; + } +#endif + + /* next, check to see if actual baud rate is within 3% of desired baud rate + * based on the calculate SBR value */ + if (baudDiff < ((baudRate_Bps / 100) * 3)) + { + /* Store C2 before disable Tx and Rx */ + oldCtrl = base->C2; + + /* Disable UART TX RX before setting. */ + base->C2 &= ~(UART_C2_TE_MASK | UART_C2_RE_MASK); + + /* Write the sbr value to the BDH and BDL registers*/ + base->BDH = (base->BDH & ~UART_BDH_SBR_MASK) | (uint8_t)(sbr >> 8); + base->BDL = (uint8_t)sbr; + +#if defined(FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT) && FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT + /* Write the brfa value to the register*/ + base->C4 = (base->C4 & ~UART_C4_BRFA_MASK) | (brfa & UART_C4_BRFA_MASK); +#endif + /* Restore C2. */ + base->C2 = oldCtrl; + + return kStatus_Success; + } + else + { + /* Unacceptable baud rate difference of more than 3%*/ + return kStatus_UART_BaudrateNotSupport; + } +} + +/*! + * brief Enables UART interrupts according to the provided mask. + * + * This function enables the UART interrupts according to the provided mask. The mask + * is a logical OR of enumeration members. See ref _uart_interrupt_enable. + * For example, to enable TX empty interrupt and RX full interrupt, do the following. + * code + * UART_EnableInterrupts(UART1,kUART_TxDataRegEmptyInterruptEnable | kUART_RxDataRegFullInterruptEnable); + * endcode + * + * param base UART peripheral base address. + * param mask The interrupts to enable. Logical OR of ref _uart_interrupt_enable. + */ +void UART_EnableInterrupts(UART_Type *base, uint32_t mask) +{ + mask &= kUART_AllInterruptsEnable; + + /* The interrupt mask is combined by control bits from several register: ((CFIFO<<24) | (C3<<16) | (C2<<8) |(BDH)) + */ + base->BDH |= mask; + base->C2 |= (mask >> 8); + base->C3 |= (mask >> 16); + +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + base->CFIFO |= (mask >> 24); +#endif +} + +/*! + * brief Disables the UART interrupts according to the provided mask. + * + * This function disables the UART interrupts according to the provided mask. The mask + * is a logical OR of enumeration members. See ref _uart_interrupt_enable. + * For example, to disable TX empty interrupt and RX full interrupt do the following. + * code + * UART_DisableInterrupts(UART1,kUART_TxDataRegEmptyInterruptEnable | kUART_RxDataRegFullInterruptEnable); + * endcode + * + * param base UART peripheral base address. + * param mask The interrupts to disable. Logical OR of ref _uart_interrupt_enable. + */ +void UART_DisableInterrupts(UART_Type *base, uint32_t mask) +{ + mask &= kUART_AllInterruptsEnable; + + /* The interrupt mask is combined by control bits from several register: ((CFIFO<<24) | (C3<<16) | (C2<<8) |(BDH)) + */ + base->BDH &= ~mask; + base->C2 &= ~(mask >> 8); + base->C3 &= ~(mask >> 16); + +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + base->CFIFO &= ~(mask >> 24); +#endif +} + +/*! + * brief Gets the enabled UART interrupts. + * + * This function gets the enabled UART interrupts. The enabled interrupts are returned + * as the logical OR value of the enumerators ref _uart_interrupt_enable. To check + * a specific interrupts enable status, compare the return value with enumerators + * in ref _uart_interrupt_enable. + * For example, to check whether TX empty interrupt is enabled, do the following. + * code + * uint32_t enabledInterrupts = UART_GetEnabledInterrupts(UART1); + * + * if (kUART_TxDataRegEmptyInterruptEnable & enabledInterrupts) + * { + * ... + * } + * endcode + * + * param base UART peripheral base address. + * return UART interrupt flags which are logical OR of the enumerators in ref _uart_interrupt_enable. + */ +uint32_t UART_GetEnabledInterrupts(UART_Type *base) +{ + uint32_t temp; + + temp = base->BDH | ((uint32_t)(base->C2) << 8) | ((uint32_t)(base->C3) << 16); + +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + temp |= ((uint32_t)(base->CFIFO) << 24); +#endif + + return temp & kUART_AllInterruptsEnable; +} + +/*! + * brief Gets UART status flags. + * + * This function gets all UART status flags. The flags are returned as the logical + * OR value of the enumerators ref _uart_flags. To check a specific status, + * compare the return value with enumerators in ref _uart_flags. + * For example, to check whether the TX is empty, do the following. + * code + * if (kUART_TxDataRegEmptyFlag & UART_GetStatusFlags(UART1)) + * { + * ... + * } + * endcode + * + * param base UART peripheral base address. + * return UART status flags which are ORed by the enumerators in the _uart_flags. + */ +uint32_t UART_GetStatusFlags(UART_Type *base) +{ + uint32_t status_flag; + + status_flag = base->S1 | ((uint32_t)(base->S2) << 8); + +#if defined(FSL_FEATURE_UART_HAS_EXTENDED_DATA_REGISTER_FLAGS) && FSL_FEATURE_UART_HAS_EXTENDED_DATA_REGISTER_FLAGS + status_flag |= ((uint32_t)(base->ED) << 16); +#endif + +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + status_flag |= ((uint32_t)(base->SFIFO) << 24); +#endif + + return status_flag; +} + +/*! + * brief Clears status flags with the provided mask. + * + * This function clears UART status flags with a provided mask. An automatically cleared flag + * can't be cleared by this function. + * These flags can only be cleared or set by hardware. + * kUART_TxDataRegEmptyFlag, kUART_TransmissionCompleteFlag, kUART_RxDataRegFullFlag, + * kUART_RxActiveFlag, kUART_NoiseErrorInRxDataRegFlag, kUART_ParityErrorInRxDataRegFlag, + * kUART_TxFifoEmptyFlag,kUART_RxFifoEmptyFlag + * Note that this API should be called when the Tx/Rx is idle. Otherwise it has no effect. + * + * param base UART peripheral base address. + * param mask The status flags to be cleared; it is logical OR value of ref _uart_flags. + * retval kStatus_UART_FlagCannotClearManually The flag can't be cleared by this function but + * it is cleared automatically by hardware. + * retval kStatus_Success Status in the mask is cleared. + */ +status_t UART_ClearStatusFlags(UART_Type *base, uint32_t mask) +{ + uint8_t reg = base->S2; + status_t status; + +#if defined(FSL_FEATURE_UART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_UART_HAS_LIN_BREAK_DETECT + reg &= ~(UART_S2_RXEDGIF_MASK | UART_S2_LBKDIF_MASK); +#else + reg &= ~UART_S2_RXEDGIF_MASK; +#endif + + base->S2 = reg | (uint8_t)(mask >> 8); + +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + base->SFIFO = (uint8_t)(mask >> 24); +#endif + + if (mask & (kUART_IdleLineFlag | kUART_NoiseErrorFlag | kUART_FramingErrorFlag | kUART_ParityErrorFlag)) + { + /* Read base->D to clear the flags. */ + (void)base->S1; + (void)base->D; + } + + if (mask & kUART_RxOverrunFlag) + { + /* Read base->D to clear the flags and Flush all data in FIFO. */ + (void)base->S1; + (void)base->D; +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + /* Flush FIFO date, otherwise FIFO pointer will be in unknown state. */ + base->CFIFO |= UART_CFIFO_RXFLUSH_MASK; +#endif + } + + /* If some flags still pending. */ + if (mask & UART_GetStatusFlags(base)) + { + /* Some flags can only clear or set by the hardware itself, these flags are: kUART_TxDataRegEmptyFlag, + kUART_TransmissionCompleteFlag, kUART_RxDataRegFullFlag, kUART_RxActiveFlag, kUART_NoiseErrorInRxDataRegFlag, + kUART_ParityErrorInRxDataRegFlag, kUART_TxFifoEmptyFlag, kUART_RxFifoEmptyFlag. */ + status = kStatus_UART_FlagCannotClearManually; + } + else + { + status = kStatus_Success; + } + + return status; +} + +/*! + * brief Writes to the TX register using a blocking method. + * + * This function polls the TX register, waits for the TX register to be empty or for the TX FIFO + * to have room and writes data to the TX buffer. + * + * note This function does not check whether all data is sent out to the bus. + * Before disabling the TX, check kUART_TransmissionCompleteFlag to ensure that the TX is + * finished. + * + * param base UART peripheral base address. + * param data Start address of the data to write. + * param length Size of the data to write. + */ +void UART_WriteBlocking(UART_Type *base, const uint8_t *data, size_t length) +{ + /* This API can only ensure that the data is written into the data buffer but can't + ensure all data in the data buffer are sent into the transmit shift buffer. */ + while (length--) + { + while (!(base->S1 & UART_S1_TDRE_MASK)) + { + } + base->D = *(data++); + } +} + +static void UART_WriteNonBlocking(UART_Type *base, const uint8_t *data, size_t length) +{ + assert(data); + + size_t i; + + /* The Non Blocking write data API assume user have ensured there is enough space in + peripheral to write. */ + for (i = 0; i < length; i++) + { + base->D = data[i]; + } +} + +/*! + * brief Read RX data register using a blocking method. + * + * This function polls the RX register, waits for the RX register to be full or for RX FIFO to + * have data, and reads data from the TX register. + * + * param base UART peripheral base address. + * param data Start address of the buffer to store the received data. + * param length Size of the buffer. + * retval kStatus_UART_RxHardwareOverrun Receiver overrun occurred while receiving data. + * retval kStatus_UART_NoiseError A noise error occurred while receiving data. + * retval kStatus_UART_FramingError A framing error occurred while receiving data. + * retval kStatus_UART_ParityError A parity error occurred while receiving data. + * retval kStatus_Success Successfully received all data. + */ +status_t UART_ReadBlocking(UART_Type *base, uint8_t *data, size_t length) +{ + assert(data); + + uint32_t statusFlag; + + while (length--) + { +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + while (!base->RCFIFO) +#else + while (!(base->S1 & UART_S1_RDRF_MASK)) +#endif + { + statusFlag = UART_GetStatusFlags(base); + + if (statusFlag & kUART_RxOverrunFlag) + { + return kStatus_UART_RxHardwareOverrun; + } + + if (statusFlag & kUART_NoiseErrorFlag) + { + return kStatus_UART_NoiseError; + } + + if (statusFlag & kUART_FramingErrorFlag) + { + return kStatus_UART_FramingError; + } + + if (statusFlag & kUART_ParityErrorFlag) + { + return kStatus_UART_ParityError; + } + } + *(data++) = base->D; + } + + return kStatus_Success; +} + +static void UART_ReadNonBlocking(UART_Type *base, uint8_t *data, size_t length) +{ + assert(data); + + size_t i; + + /* The Non Blocking read data API assume user have ensured there is enough space in + peripheral to write. */ + for (i = 0; i < length; i++) + { + data[i] = base->D; + } +} + +/*! + * brief Initializes the UART handle. + * + * This function initializes the UART handle which can be used for other UART + * transactional APIs. Usually, for a specified UART instance, + * call this API once to get the initialized handle. + * + * param base UART peripheral base address. + * param handle UART handle pointer. + * param callback The callback function. + * param userData The parameter of the callback function. + */ +void UART_TransferCreateHandle(UART_Type *base, + uart_handle_t *handle, + uart_transfer_callback_t callback, + void *userData) +{ + assert(handle); + + uint32_t instance; + + /* Zero the handle. */ + memset(handle, 0, sizeof(*handle)); + + /* Set the TX/RX state. */ + handle->rxState = kUART_RxIdle; + handle->txState = kUART_TxIdle; + + /* Set the callback and user data. */ + handle->callback = callback; + handle->userData = userData; + + /* Get instance from peripheral base address. */ + instance = UART_GetInstance(base); + + /* Save the handle in global variables to support the double weak mechanism. */ + s_uartHandle[instance] = handle; + + s_uartIsr = UART_TransferHandleIRQ; + /* Enable interrupt in NVIC. */ + EnableIRQ(s_uartIRQ[instance]); +} + +/*! + * brief Sets up the RX ring buffer. + * + * This function sets up the RX ring buffer to a specific UART handle. + * + * When the RX ring buffer is used, data received are stored into the ring buffer even when the + * user doesn't call the UART_TransferReceiveNonBlocking() API. If data is already received + * in the ring buffer, the user can get the received data from the ring buffer directly. + * + * note When using the RX ring buffer, one byte is reserved for internal use. In other + * words, if p ringBufferSize is 32, only 31 bytes are used for saving data. + * + * param base UART peripheral base address. + * param handle UART handle pointer. + * param ringBuffer Start address of the ring buffer for background receiving. Pass NULL to disable the ring buffer. + * param ringBufferSize Size of the ring buffer. + */ +void UART_TransferStartRingBuffer(UART_Type *base, uart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize) +{ + assert(handle); + assert(ringBuffer); + + /* Setup the ringbuffer address */ + handle->rxRingBuffer = ringBuffer; + handle->rxRingBufferSize = ringBufferSize; + handle->rxRingBufferHead = 0U; + handle->rxRingBufferTail = 0U; + + /* Enable the interrupt to accept the data when user need the ring buffer. */ + UART_EnableInterrupts( + base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable | kUART_FramingErrorInterruptEnable); + /* Enable parity error interrupt when parity mode is enable*/ + if (UART_C1_PE_MASK & base->C1) + { + UART_EnableInterrupts(base, kUART_ParityErrorInterruptEnable); + } +} + +/*! + * brief Aborts the background transfer and uninstalls the ring buffer. + * + * This function aborts the background transfer and uninstalls the ring buffer. + * + * param base UART peripheral base address. + * param handle UART handle pointer. + */ +void UART_TransferStopRingBuffer(UART_Type *base, uart_handle_t *handle) +{ + assert(handle); + + if (handle->rxState == kUART_RxIdle) + { + UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable | + kUART_FramingErrorInterruptEnable); + /* Disable parity error interrupt when parity mode is enable*/ + if (UART_C1_PE_MASK & base->C1) + { + UART_DisableInterrupts(base, kUART_ParityErrorInterruptEnable); + } + } + + handle->rxRingBuffer = NULL; + handle->rxRingBufferSize = 0U; + handle->rxRingBufferHead = 0U; + handle->rxRingBufferTail = 0U; +} + +/*! + * brief Transmits a buffer of data using the interrupt method. + * + * This function sends data using an interrupt method. This is a non-blocking function, which + * returns directly without waiting for all data to be written to the TX register. When + * all data is written to the TX register in the ISR, the UART driver calls the callback + * function and passes the ref kStatus_UART_TxIdle as status parameter. + * + * note The kStatus_UART_TxIdle is passed to the upper layer when all data is written + * to the TX register. However, it does not ensure that all data is sent out. Before disabling the TX, + * check the kUART_TransmissionCompleteFlag to ensure that the TX is finished. + * + * param base UART peripheral base address. + * param handle UART handle pointer. + * param xfer UART transfer structure. See #uart_transfer_t. + * retval kStatus_Success Successfully start the data transmission. + * retval kStatus_UART_TxBusy Previous transmission still not finished; data not all written to TX register yet. + * retval kStatus_InvalidArgument Invalid argument. + */ +status_t UART_TransferSendNonBlocking(UART_Type *base, uart_handle_t *handle, uart_transfer_t *xfer) +{ + assert(handle); + assert(xfer); + assert(xfer->dataSize); + assert(xfer->data); + + status_t status; + + /* Return error if current TX busy. */ + if (kUART_TxBusy == handle->txState) + { + status = kStatus_UART_TxBusy; + } + else + { + handle->txData = xfer->data; + handle->txDataSize = xfer->dataSize; + handle->txDataSizeAll = xfer->dataSize; + handle->txState = kUART_TxBusy; + + /* Enable transmitter interrupt. */ + UART_EnableInterrupts(base, kUART_TxDataRegEmptyInterruptEnable); + + status = kStatus_Success; + } + + return status; +} + +/*! + * brief Aborts the interrupt-driven data transmit. + * + * This function aborts the interrupt-driven data sending. The user can get the remainBytes to find out + * how many bytes are not sent out. + * + * param base UART peripheral base address. + * param handle UART handle pointer. + */ +void UART_TransferAbortSend(UART_Type *base, uart_handle_t *handle) +{ + assert(handle); + + UART_DisableInterrupts(base, kUART_TxDataRegEmptyInterruptEnable | kUART_TransmissionCompleteInterruptEnable); + + handle->txDataSize = 0; + handle->txState = kUART_TxIdle; +} + +/*! + * brief Gets the number of bytes written to the UART TX register. + * + * This function gets the number of bytes written to the UART TX + * register by using the interrupt method. + * + * param base UART peripheral base address. + * param handle UART handle pointer. + * param count Send bytes count. + * retval kStatus_NoTransferInProgress No send in progress. + * retval kStatus_InvalidArgument The parameter is invalid. + * retval kStatus_Success Get successfully through the parameter \p count; + */ +status_t UART_TransferGetSendCount(UART_Type *base, uart_handle_t *handle, uint32_t *count) +{ + assert(handle); + assert(count); + + if (kUART_TxIdle == handle->txState) + { + return kStatus_NoTransferInProgress; + } + + *count = handle->txDataSizeAll - handle->txDataSize; + + return kStatus_Success; +} + +/*! + * brief Receives a buffer of data using an interrupt method. + * + * This function receives data using an interrupt method. This is a non-blocking function, which + * returns without waiting for all data to be received. + * If the RX ring buffer is used and not empty, the data in the ring buffer is copied and + * the parameter p receivedBytes shows how many bytes are copied from the ring buffer. + * After copying, if the data in the ring buffer is not enough to read, the receive + * request is saved by the UART driver. When the new data arrives, the receive request + * is serviced first. When all data is received, the UART driver notifies the upper layer + * through a callback function and passes the status parameter ref kStatus_UART_RxIdle. + * For example, the upper layer needs 10 bytes but there are only 5 bytes in the ring buffer. + * The 5 bytes are copied to the xfer->data and this function returns with the + * parameter p receivedBytes set to 5. For the left 5 bytes, newly arrived data is + * saved from the xfer->data[5]. When 5 bytes are received, the UART driver notifies the upper layer. + * If the RX ring buffer is not enabled, this function enables the RX and RX interrupt + * to receive data to the xfer->data. When all data is received, the upper layer is notified. + * + * param base UART peripheral base address. + * param handle UART handle pointer. + * param xfer UART transfer structure, see #uart_transfer_t. + * param receivedBytes Bytes received from the ring buffer directly. + * retval kStatus_Success Successfully queue the transfer into transmit queue. + * retval kStatus_UART_RxBusy Previous receive request is not finished. + * retval kStatus_InvalidArgument Invalid argument. + */ +status_t UART_TransferReceiveNonBlocking(UART_Type *base, + uart_handle_t *handle, + uart_transfer_t *xfer, + size_t *receivedBytes) +{ + assert(handle); + assert(xfer); + assert(xfer->data); + assert(xfer->dataSize); + + uint32_t i; + status_t status; + /* How many bytes to copy from ring buffer to user memory. */ + size_t bytesToCopy = 0U; + /* How many bytes to receive. */ + size_t bytesToReceive; + /* How many bytes currently have received. */ + size_t bytesCurrentReceived; + + /* How to get data: + 1. If RX ring buffer is not enabled, then save xfer->data and xfer->dataSize + to uart handle, enable interrupt to store received data to xfer->data. When + all data received, trigger callback. + 2. If RX ring buffer is enabled and not empty, get data from ring buffer first. + If there are enough data in ring buffer, copy them to xfer->data and return. + If there are not enough data in ring buffer, copy all of them to xfer->data, + save the xfer->data remained empty space to uart handle, receive data + to this empty space and trigger callback when finished. */ + + if (kUART_RxBusy == handle->rxState) + { + status = kStatus_UART_RxBusy; + } + else + { + bytesToReceive = xfer->dataSize; + bytesCurrentReceived = 0U; + + /* If RX ring buffer is used. */ + if (handle->rxRingBuffer) + { + /* Disable UART RX IRQ, protect ring buffer. */ + UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable); + + /* How many bytes in RX ring buffer currently. */ + bytesToCopy = UART_TransferGetRxRingBufferLength(handle); + + if (bytesToCopy) + { + bytesToCopy = MIN(bytesToReceive, bytesToCopy); + + bytesToReceive -= bytesToCopy; + + /* Copy data from ring buffer to user memory. */ + for (i = 0U; i < bytesToCopy; i++) + { + xfer->data[bytesCurrentReceived++] = handle->rxRingBuffer[handle->rxRingBufferTail]; + + /* Wrap to 0. Not use modulo (%) because it might be large and slow. */ + if (handle->rxRingBufferTail + 1U == handle->rxRingBufferSize) + { + handle->rxRingBufferTail = 0U; + } + else + { + handle->rxRingBufferTail++; + } + } + } + + /* If ring buffer does not have enough data, still need to read more data. */ + if (bytesToReceive) + { + /* No data in ring buffer, save the request to UART handle. */ + handle->rxData = xfer->data + bytesCurrentReceived; + handle->rxDataSize = bytesToReceive; + handle->rxDataSizeAll = bytesToReceive; + handle->rxState = kUART_RxBusy; + } + + /* Enable UART RX IRQ if previously enabled. */ + UART_EnableInterrupts(base, kUART_RxDataRegFullInterruptEnable); + + /* Call user callback since all data are received. */ + if (0 == bytesToReceive) + { + if (handle->callback) + { + handle->callback(base, handle, kStatus_UART_RxIdle, handle->userData); + } + } + } + /* Ring buffer not used. */ + else + { + handle->rxData = xfer->data + bytesCurrentReceived; + handle->rxDataSize = bytesToReceive; + handle->rxDataSizeAll = bytesToReceive; + handle->rxState = kUART_RxBusy; + + /* Enable RX/Rx overrun/framing error/idle line interrupt. */ + UART_EnableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable | + kUART_FramingErrorInterruptEnable | kUART_IdleLineInterruptEnable); + /* Enable parity error interrupt when parity mode is enable*/ + if (UART_C1_PE_MASK & base->C1) + { + UART_EnableInterrupts(base, kUART_ParityErrorInterruptEnable); + } + } + + /* Return the how many bytes have read. */ + if (receivedBytes) + { + *receivedBytes = bytesCurrentReceived; + } + + status = kStatus_Success; + } + + return status; +} + +/*! + * brief Aborts the interrupt-driven data receiving. + * + * This function aborts the interrupt-driven data receiving. The user can get the remainBytes to know + * how many bytes are not received yet. + * + * param base UART peripheral base address. + * param handle UART handle pointer. + */ +void UART_TransferAbortReceive(UART_Type *base, uart_handle_t *handle) +{ + assert(handle); + + /* Only abort the receive to handle->rxData, the RX ring buffer is still working. */ + if (!handle->rxRingBuffer) + { + /* Disable RX interrupt. */ + UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable | + kUART_FramingErrorInterruptEnable | kUART_IdleLineInterruptEnable); + /* Disable parity error interrupt when parity mode is enable*/ + if (UART_C1_PE_MASK & base->C1) + { + UART_DisableInterrupts(base, kUART_ParityErrorInterruptEnable); + } + } + + handle->rxDataSize = 0U; + handle->rxState = kUART_RxIdle; +} + +/*! + * brief Gets the number of bytes that have been received. + * + * This function gets the number of bytes that have been received. + * + * param base UART peripheral base address. + * param handle UART handle pointer. + * param count Receive bytes count. + * retval kStatus_NoTransferInProgress No receive in progress. + * retval kStatus_InvalidArgument Parameter is invalid. + * retval kStatus_Success Get successfully through the parameter \p count; + */ +status_t UART_TransferGetReceiveCount(UART_Type *base, uart_handle_t *handle, uint32_t *count) +{ + assert(handle); + assert(count); + + if (kUART_RxIdle == handle->rxState) + { + return kStatus_NoTransferInProgress; + } + + if (!count) + { + return kStatus_InvalidArgument; + } + + *count = handle->rxDataSizeAll - handle->rxDataSize; + + return kStatus_Success; +} + +/*! + * brief UART IRQ handle function. + * + * This function handles the UART transmit and receive IRQ request. + * + * param base UART peripheral base address. + * param handle UART handle pointer. + */ +void UART_TransferHandleIRQ(UART_Type *base, uart_handle_t *handle) +{ + assert(handle); + + uint8_t count; + uint8_t tempCount; + uint32_t status = UART_GetStatusFlags(base); + + /* If RX framing error */ + if (kUART_FramingErrorFlag & status) + { + /* Read base->D to clear framing error flag, otherwise the RX does not work. */ + while (base->S1 & UART_S1_RDRF_MASK) + { + (void)base->D; + } +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + /* Flush FIFO date, otherwise FIFO pointer will be in unknown state. */ + base->CFIFO |= UART_CFIFO_RXFLUSH_MASK; +#endif + + handle->rxState = kUART_RxFramingError; + handle->rxDataSize = 0U; + /* Trigger callback. */ + if (handle->callback) + { + handle->callback(base, handle, kStatus_UART_FramingError, handle->userData); + } + } + + /* If RX parity error */ + if (kUART_ParityErrorFlag & status) + { + /* Read base->D to clear parity error flag, otherwise the RX does not work. */ + while (base->S1 & UART_S1_RDRF_MASK) + { + (void)base->D; + } +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + /* Flush FIFO date, otherwise FIFO pointer will be in unknown state. */ + base->CFIFO |= UART_CFIFO_RXFLUSH_MASK; +#endif + + handle->rxState = kUART_RxParityError; + handle->rxDataSize = 0U; + /* Trigger callback. */ + if (handle->callback) + { + handle->callback(base, handle, kStatus_UART_ParityError, handle->userData); + } + } + + /* If RX overrun. */ + if (kUART_RxOverrunFlag & status) + { + /* Read base->D to clear overrun flag, otherwise the RX does not work. */ + while (base->S1 & UART_S1_RDRF_MASK) + { + (void)base->D; + } +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + /* Flush FIFO date, otherwise FIFO pointer will be in unknown state. */ + base->CFIFO |= UART_CFIFO_RXFLUSH_MASK; +#endif + /* Trigger callback. */ + if (handle->callback) + { + handle->callback(base, handle, kStatus_UART_RxHardwareOverrun, handle->userData); + } + } + + /* If IDLE line was detected. */ + if ((kUART_IdleLineFlag & status) && (UART_C2_ILIE_MASK & base->C2)) + { +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + /* If still some data in the FIFO, read out these data to user data buffer. */ + count = base->RCFIFO; + /* If handle->rxDataSize is not 0, first save data to handle->rxData. */ + while ((count) && (handle->rxDataSize)) + { + tempCount = MIN(handle->rxDataSize, count); + + /* Using non block API to read the data from the registers. */ + UART_ReadNonBlocking(base, handle->rxData, tempCount); + handle->rxData += tempCount; + handle->rxDataSize -= tempCount; + count -= tempCount; + + /* If all the data required for upper layer is ready, trigger callback. */ + if (!handle->rxDataSize) + { + handle->rxState = kUART_RxIdle; + + /* Disable RX interrupt/overrun interrupt/fram error/idle line detected interrupt */ + UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable | + kUART_FramingErrorInterruptEnable); + + /* Disable parity error interrupt when parity mode is enable*/ + if (UART_C1_PE_MASK & base->C1) + { + UART_DisableInterrupts(base, kUART_ParityErrorInterruptEnable); + } + + if (handle->callback) + { + handle->callback(base, handle, kStatus_UART_RxIdle, handle->userData); + } + } + } +#endif + /* To clear IDLE, read UART status S1 with IDLE set and then read D.*/ + while (UART_S1_IDLE_MASK & base->S1) + { + (void)base->D; + } +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + /* Flush FIFO date, otherwise FIFO pointer will be in unknown state. */ + base->CFIFO |= UART_CFIFO_RXFLUSH_MASK; +#endif + /* If rxDataSize is 0, disable idle line interrupt.*/ + if (!(handle->rxDataSize)) + { + UART_DisableInterrupts(base, kUART_IdleLineInterruptEnable); + } + /* If callback is not NULL and rxDataSize is not 0. */ + if ((handle->callback) && (handle->rxDataSize)) + { + handle->callback(base, handle, kStatus_UART_IdleLineDetected, handle->userData); + } + } + /* Receive data register full */ + if ((kUART_RxDataRegFullFlag & status) && (UART_C2_RIE_MASK & base->C2)) + { +/* Get the size that can be stored into buffer for this interrupt. */ +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + count = base->RCFIFO; +#else + count = 1; +#endif + + /* If handle->rxDataSize is not 0, first save data to handle->rxData. */ + while ((count) && (handle->rxDataSize)) + { +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + tempCount = MIN(handle->rxDataSize, count); +#else + tempCount = 1; +#endif + + /* Using non block API to read the data from the registers. */ + UART_ReadNonBlocking(base, handle->rxData, tempCount); + handle->rxData += tempCount; + handle->rxDataSize -= tempCount; + count -= tempCount; + + /* If all the data required for upper layer is ready, trigger callback. */ + if (!handle->rxDataSize) + { + handle->rxState = kUART_RxIdle; + + if (handle->callback) + { + handle->callback(base, handle, kStatus_UART_RxIdle, handle->userData); + } + } + } + + /* If use RX ring buffer, receive data to ring buffer. */ + if (handle->rxRingBuffer) + { + while (count--) + { + /* If RX ring buffer is full, trigger callback to notify over run. */ + if (UART_TransferIsRxRingBufferFull(handle)) + { + if (handle->callback) + { + handle->callback(base, handle, kStatus_UART_RxRingBufferOverrun, handle->userData); + } + } + + /* If ring buffer is still full after callback function, the oldest data is overrided. */ + if (UART_TransferIsRxRingBufferFull(handle)) + { + /* Increase handle->rxRingBufferTail to make room for new data. */ + if (handle->rxRingBufferTail + 1U == handle->rxRingBufferSize) + { + handle->rxRingBufferTail = 0U; + } + else + { + handle->rxRingBufferTail++; + } + } + + /* Read data. */ + handle->rxRingBuffer[handle->rxRingBufferHead] = base->D; + + /* Increase handle->rxRingBufferHead. */ + if (handle->rxRingBufferHead + 1U == handle->rxRingBufferSize) + { + handle->rxRingBufferHead = 0U; + } + else + { + handle->rxRingBufferHead++; + } + } + } + + else if (!handle->rxDataSize) + { + /* Disable RX interrupt/overrun interrupt/fram error/idle line detected interrupt */ + UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable | + kUART_FramingErrorInterruptEnable); + + /* Disable parity error interrupt when parity mode is enable*/ + if (UART_C1_PE_MASK & base->C1) + { + UART_DisableInterrupts(base, kUART_ParityErrorInterruptEnable); + } + } + else + { + } + } + + /* If framing error or parity error happened, stop the RX interrupt when ues no ring buffer */ + if (((handle->rxState == kUART_RxFramingError) || (handle->rxState == kUART_RxParityError)) && + (!handle->rxRingBuffer)) + { + UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable | + kUART_FramingErrorInterruptEnable | kUART_IdleLineInterruptEnable); + + /* Disable parity error interrupt when parity mode is enable*/ + if (UART_C1_PE_MASK & base->C1) + { + UART_DisableInterrupts(base, kUART_ParityErrorInterruptEnable); + } + } + + /* Send data register empty and the interrupt is enabled. */ + if ((kUART_TxDataRegEmptyFlag & status) && (base->C2 & UART_C2_TIE_MASK)) + { +/* Get the bytes that available at this moment. */ +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + count = FSL_FEATURE_UART_FIFO_SIZEn(base) - base->TCFIFO; +#else + count = 1; +#endif + + while ((count) && (handle->txDataSize)) + { +#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO + tempCount = MIN(handle->txDataSize, count); +#else + tempCount = 1; +#endif + + /* Using non block API to write the data to the registers. */ + UART_WriteNonBlocking(base, handle->txData, tempCount); + handle->txData += tempCount; + handle->txDataSize -= tempCount; + count -= tempCount; + + /* If all the data are written to data register, TX finished. */ + if (!handle->txDataSize) + { + handle->txState = kUART_TxIdle; + + /* Disable TX register empty interrupt. */ + base->C2 = (base->C2 & ~UART_C2_TIE_MASK); + + /* Trigger callback. */ + if (handle->callback) + { + handle->callback(base, handle, kStatus_UART_TxIdle, handle->userData); + } + } + } + } +} + +/*! + * brief UART Error IRQ handle function. + * + * This function handles the UART error IRQ request. + * + * param base UART peripheral base address. + * param handle UART handle pointer. + */ +void UART_TransferHandleErrorIRQ(UART_Type *base, uart_handle_t *handle) +{ + /* To be implemented by User. */ +} + +#if defined(UART0) +#if ((!(defined(FSL_FEATURE_SOC_LPSCI_COUNT))) || \ + ((defined(FSL_FEATURE_SOC_LPSCI_COUNT)) && (FSL_FEATURE_SOC_LPSCI_COUNT == 0))) +void UART0_DriverIRQHandler(void) +{ + s_uartIsr(UART0, s_uartHandle[0]); +/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping + exception return operation might vector to incorrect interrupt */ +#if defined __CORTEX_M && (__CORTEX_M == 4U) + __DSB(); +#endif +} + +void UART0_RX_TX_DriverIRQHandler(void) +{ + UART0_DriverIRQHandler(); +/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping + exception return operation might vector to incorrect interrupt */ +#if defined __CORTEX_M && (__CORTEX_M == 4U) + __DSB(); +#endif +} +#endif +#endif + +#if defined(UART1) +void UART1_DriverIRQHandler(void) +{ + s_uartIsr(UART1, s_uartHandle[1]); +/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping + exception return operation might vector to incorrect interrupt */ +#if defined __CORTEX_M && (__CORTEX_M == 4U) + __DSB(); +#endif +} + +void UART1_RX_TX_DriverIRQHandler(void) +{ + UART1_DriverIRQHandler(); +/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping + exception return operation might vector to incorrect interrupt */ +#if defined __CORTEX_M && (__CORTEX_M == 4U) + __DSB(); +#endif +} +#endif + +#if defined(UART2) +void UART2_DriverIRQHandler(void) +{ + s_uartIsr(UART2, s_uartHandle[2]); +/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping + exception return operation might vector to incorrect interrupt */ +#if defined __CORTEX_M && (__CORTEX_M == 4U) + __DSB(); +#endif +} + +void UART2_RX_TX_DriverIRQHandler(void) +{ + UART2_DriverIRQHandler(); +/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping + exception return operation might vector to incorrect interrupt */ +#if defined __CORTEX_M && (__CORTEX_M == 4U) + __DSB(); +#endif +} +#endif + +#if defined(UART3) +void UART3_DriverIRQHandler(void) +{ + s_uartIsr(UART3, s_uartHandle[3]); +/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping + exception return operation might vector to incorrect interrupt */ +#if defined __CORTEX_M && (__CORTEX_M == 4U) + __DSB(); +#endif +} + +void UART3_RX_TX_DriverIRQHandler(void) +{ + UART3_DriverIRQHandler(); +/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping + exception return operation might vector to incorrect interrupt */ +#if defined __CORTEX_M && (__CORTEX_M == 4U) + __DSB(); +#endif +} +#endif + +#if defined(UART4) +void UART4_DriverIRQHandler(void) +{ + s_uartIsr(UART4, s_uartHandle[4]); +/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping + exception return operation might vector to incorrect interrupt */ +#if defined __CORTEX_M && (__CORTEX_M == 4U) + __DSB(); +#endif +} + +void UART4_RX_TX_DriverIRQHandler(void) +{ + UART4_DriverIRQHandler(); +/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping + exception return operation might vector to incorrect interrupt */ +#if defined __CORTEX_M && (__CORTEX_M == 4U) + __DSB(); +#endif +} +#endif + +#if defined(UART5) +void UART5_DriverIRQHandler(void) +{ + s_uartIsr(UART5, s_uartHandle[5]); +/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping + exception return operation might vector to incorrect interrupt */ +#if defined __CORTEX_M && (__CORTEX_M == 4U) + __DSB(); +#endif +} + +void UART5_RX_TX_DriverIRQHandler(void) +{ + UART5_DriverIRQHandler(); +/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping + exception return operation might vector to incorrect interrupt */ +#if defined __CORTEX_M && (__CORTEX_M == 4U) + __DSB(); +#endif +} +#endif