Test

Dependencies:   mbed DRV8825

odo_asserv.cpp

Committer:
Nanaud
Date:
2020-10-12
Revision:
19:c419033c0967
Parent:
18:48246daf0c06
Child:
20:7d206773f39e

File content as of revision 19:c419033c0967:

//Nom du fichier : odo_asserv.cpp
#include "pins.h"

#define VMAXROT 0.060 // 0.030
#define VMAXLIN 0.100 // 0.050

// Objectifs
#define NbObj 4
int indice = 0;
int objEtape [4] = {0,1,1,1};
double objX[4] = {0,660, 660, 210};
double objY[4] = {0,1070,1650,1300};

///// VARIABLES
Ticker ticker_odo;
Ticker ticker_asserv;

// Coeff à définir empiriquement
const double coeffGLong = 5.956, coeffDLong = 5.956; // constantes permettant la transformation tic/millimètre
const double coeffGAngl = 737.447, coeffDAngl = 748.057; // constantes permettant la transformation tic/radian

long comptG = 0, comptD = 0; // nb de tics comptés pour chaque codeur


///// INTERRUPTIONS CODEURS

void cdgaRise()
{
    if(cdgB) comptG--;
    else comptG++;
}

void cddaRise()
{
    if(cddB) comptD--;
    else comptD++;
}



///*
// odo2()
//#define diametre 51.45 // 51.45 théorique
//#define N 1000 // 1000 théorique
#define entraxe 253 // 255 théorique
//const double coeffG = ((double)(diametre/2)/(double)N)*2.0f*3.1415f;
//const double coeffD = ((double)(diametre/2)/(double)N)*2.0f*3.1415f;
const double coeffG = 0.16008537;
const double coeffD = 0.16059957;
double dDist = 0, dAngl = 0; // Distance moyenne du robot et orientation
double x = 110, y = 1070, O = 0;

void odo2()
{
    dDist = (double) ((comptG * coeffG) + (comptD * coeffD)) / 2.0f;
    dAngl = (double) ((comptD * coeffD) - (comptG * coeffG)) / entraxe;

    x += (double) dDist * cos(O);
    y += (double) dDist * sin(O);
    O += (double) dAngl;


    if (O > 3.1415) O = O - (2.0f * 3.1415f);
    if (O < -3.1415) O = O + (2.0f * 3.1415f);


    comptG = 0;
    comptD = 0;
}
//*/


double distanceCible = 0;
double xC = 0, yC = 0; // x = xR et y = yR
double consigneOrientation = 0;
//double consigneOrientation = (90*3.1415)/180;
int signe = 1;
double cmdD = 0, cmdG = 0;
double erreurAngle = 0;
double erreurPre = 0;
double deltaErreur = 0;
const double coeffPro = 0.08; // 0.023 de base
const double coeffDer = 0.06; // 0.023 de base

// Ligne droite
//double erreurDist = 0;
double erreurPreDist = 0;
double deltaErreurDist = 0;
const double coeffProDist = 0.10; // 0.023 de base
const double coeffDerDist = 0.10; // 0.023 de base

// NEW NEW NEW NEW
int fnc = 0;
bool acc = 1;
double distancePrecedente = 0;
bool stt = 0;

void asserv()
{
    // Odométrie
    odo2();

    // Calcul de la cible

    distanceCible = sqrt(((xC-x)*(xC-x))+((yC-y)*(yC-y)));

    if(y > yC) {
        signe = -1;
    } else {
        signe = 1;
    }

    if (xC >= x)
        consigneOrientation = signe * acos((abs(xC-x))/distanceCible);

    else
        consigneOrientation = signe * (3.1415 - acos((abs(xC-x))/distanceCible));

    // Switch de sélection de l'étape

    switch (fnc) {
        case 0: // Stand-by
            mot_dis();
            break;

        case 1: // Rotation
            mot_en();

            // Choix du sens de rotation
            double choixSens = consigneOrientation - O;

            if (choixSens > 3.1415) choixSens -= (2.0f * 3.1415f);
            else if (choixSens < 3.1415) choixSens += (2.0f * 3.1415f);

            if (choixSens > 0) {
                motGauche_bck();
                motDroite_fwd();
            } else {
                motGauche_fwd();
                motDroite_bck();
            }

            // Asservissement en position angulaire
            erreurAngle =  consigneOrientation - O;

            deltaErreur = erreurAngle - erreurPre;

            erreurPre  = erreurAngle;

            double deltaCommande = (abs(coeffPro * erreurAngle) + abs(coeffDer * deltaErreur));

            if(acc) {
                cmdG = cmdG + 0.0005;
                cmdD = cmdG;

                if (cmdG >= VMAXROT) acc = 0;
            } else {
                //acc = 0;

                if (deltaCommande < VMAXROT) {
                    cmdG = deltaCommande;
                    cmdD = cmdG;
                } else {
                    cmdG = VMAXROT;
                    cmdD = cmdG;
                }
            }

            vitesseMotG(abs(cmdG));
            vitesseMotD(abs(cmdD));

            if (O > (consigneOrientation - (1*0.0174533)) && O < (consigneOrientation + (1*0.0174533))) {
                //mot_dis();
                fnc++;
                acc = 1;
            }
            break;

        case 2: // Avancer
            mot_en();

            /*
            cmdD = abs((int)distanceCible)*0.0001; // *0.005
            if(cmdD>VMAXLIN) {
                cmdD = VMAXLIN;
            }
            cmdG = cmdD;
            */

            // Asservissement distance à parcourir
            //erreurDist =  consigneOrientation - O;

            deltaErreurDist = distanceCible - erreurPreDist;

            erreurPreDist  = distanceCible;

            double deltaCommande2 = (abs(coeffProDist * distanceCible) + abs(coeffDerDist * deltaErreurDist));

            if(acc) {
                cmdG = cmdG + 0.0005;
                cmdD = cmdG;

                if (cmdG >= VMAXLIN) {
                    acc = 0;
                    stt = 1;
                }
            } else {
                //acc = 0;

                if (deltaCommande2 < VMAXLIN) {
                    cmdG = deltaCommande2;
                    cmdD = cmdG;
                } else {
                    cmdG = VMAXLIN;
                    cmdD = cmdG;
                }
            }

            vitesseMotG(abs(cmdG));
            vitesseMotD(abs(cmdD));

            //if (distanceCible < 15)[
            //if ((x < xC+10) && (x > xC-10) && (y < yC+10) && (y > yC-10)) {
            if ((distanceCible < 10) || (stt==1 && (distancePrecedente < distanceCible))) {
                //mot_dis();
                //fnc=0;
                acc = 1;
                stt = 0;
                indice++;
                fnc = objEtape[indice];
                xC = objX[indice];
                yC = objY[indice];
            }

            motGauche_fwd();
            motDroite_fwd();
            vitesseMotG(cmdG);
            vitesseMotD(cmdD);

            distancePrecedente = distanceCible;

            break;

        case 3: // Reculer
            break;

        default:
            mot_dis();
    }
}