Test

Dependencies:   mbed DRV8825

odo_asserv.cpp

Committer:
Nanaud
Date:
2020-10-06
Revision:
17:176a1b4a2fa8
Parent:
16:ae65ce77b1f9
Child:
18:48246daf0c06

File content as of revision 17:176a1b4a2fa8:

//Nom du fichier : odo_asserv.cpp
#include "pins.h"

#define VMAX 50

///// VARIABLES
Ticker ticker_odo;
Ticker ticker_asserv;

// Coeff à définir empiriquement
const double coeffGLong = 5.956, coeffDLong = 5.956; // constantes permettant la transformation tic/millimètre
const double coeffGAngl = 737.447, coeffDAngl = 748.057; // constantes permettant la transformation tic/radian

long comptG = 0, comptD = 0; // nb de tics comptés pour chaque codeur


///// INTERRUPTIONS CODEURS

void cdgaRise()
{
    if(cdgB) comptG--;
    else comptG++;
}

void cddaRise()
{
    if(cddB) comptD--;
    else comptD++;
}

/*
// odo1()
double dDist = 0, dAngl = 0; // Distance moyenne du robot et orientation
double x = 0, y = 0, O = 0;


void odo1()
{
    dDist = ((comptG / coeffGLong) + (comptD / coeffDLong)) / 2;
    dAngl = ((comptD / coeffDAngl) - (comptG / coeffGAngl));

    x += dDist * cos(dAngl);
    y += dDist * sin(dAngl);
    O += dAngl;

    comptG = 0;
    comptD = 0;
}
*/

///*
// odo2()
//#define diametre 51.45 // 51.45 théorique
//#define N 1000 // 1000 théorique
#define entraxe 253 // 255 théorique
//const double coeffG = ((double)(diametre/2)/(double)N)*2.0f*3.1415f;
//const double coeffD = ((double)(diametre/2)/(double)N)*2.0f*3.1415f;
const double coeffG = 0.16008537;
const double coeffD = 0.16059957;
double dDist = 0, dAngl = 0; // Distance moyenne du robot et orientation
double x = 0, y = 0, O = 0;

double vitG = 0, vitD = 0;
#define tpsTicker 0.020f

void odo2()
{
    vitG = (double) ((comptG * coeffG) / tpsTicker);
    vitD = (double) ((comptD * coeffD) / tpsTicker);

    dDist = (double) ((comptG * coeffG) + (comptD * coeffD)) / 2.0f;
    dAngl = (double) ((comptD * coeffD) - (comptG * coeffG)) / entraxe;

    x += (double) dDist * cos(O);
    y += (double) dDist * sin(O);
    O += (double) dAngl;

    if (O > 3.1415) O = O - (2.0f * 3.1415f);
    if (O < -3.1415) O = O + (2.0f * 3.1415f);

    comptG = 0;
    comptD = 0;
}
//*/

/*
// odo3()
#define diametre 51.45
#define N 1000
#define entraxe 255
const double coeffG = 1/5.956;
const double coeffD = 1/5.956;

void odo3()
{
    dDist = (double) ((comptG * coeffG) + (comptD * coeffD)) / 2.0f;
    dAngl = (double) ((comptD * coeffD) - (comptG * coeffG)) / entraxe;

    x += (double) dDist * cos(O);
    y += (double) dDist * sin(O);
    O += (double) dAngl;

    comptG = 0;
    comptD = 0;
}
*/


double distanceCible = 0;
double xC = 0, yC = 0; // x = xR et y = yR
double consigneOrientation = 0;
//double consigneOrientation = (90*3.1415)/180;
int signe = 1;
int cmdD = 0, cmdG = 0;
double erreurAngle = 0;
double erreurPre = 0;
double deltaErreur = 0;
const double coeffPro = 25.0; // 5.0 de base
const double coeffDer = 50.0; // 3.0 de base

// NEW NEW NEW NEW
int etape = 1;
int acc = 1;

void asserv()
{
    // Odométrie
    odo2();

    // Calcul de la cible
    distanceCible = sqrt((xC-x)*(xC-x)+(yC-y)*(yC-y));

    if(y > yC) {
        signe = -1;
    } else {
        signe = 1;
    }

    consigneOrientation = signe * acos((xC-x)/((xC-x)*(xC-x)*(yC-y)*(yC-y)));

    // Switch de sélection de l'étape

    switch (etape) {
        case 0: //
            break;

        case 1: // Rotation
            // Asservissement en position angulaire
            erreurAngle =  consigneOrientation - O;

            deltaErreur = erreurAngle - erreurPre;

            erreurPre  = erreurAngle;

            int deltaCommande = coeffPro * erreurAngle + coeffDer * deltaErreur;

            if (deltaCommande < VMAX) {
                cmdG = deltaCommande;
                cmdD = cmdG;
            } else {
                cmdG = VMAX;
                cmdD = cmdG;
            }

            if(acc && cmdG <VMAX) {
                cmdG+=1;
                cmdD = cmdG;
            }
            else {
                acc = 0;
            }

            vitesseMotG(abs(cmdG));
            vitesseMotD(abs(cmdD));

            if (O > (consigneOrientation - (2*0.0174533)) && O < (consigneOrientation + (2*0.0174533))) {
                mot_dis();
                //etape++;
                acc = 1;
            }
            break;

        case 2: // Avancer
            cmdD = abs((int)distanceCible);
            if(cmdD>VMAX) {
                cmdD = VMAX;
            }
            cmdG = cmdD;

            motGauche_fwd();
            motDroite_fwd();
            vitesseMotG(cmdG);
            vitesseMotD(cmdD);

            if (abs((int)distanceCible) < 1) mot_dis();
            break;

        case 3: // Reculer
            break;

        default:
            mot_dis();
    }
}