A collection of Analog Devices drivers for the mbed platform
For additional information check out the mbed page of the Analog Devices wiki: https://wiki.analog.com/resources/tools-software/mbed-drivers-all
libraries/ADXL362/ADXL362.cpp
- Committer:
- Adrian Suciu
- Date:
- 2016-11-07
- Revision:
- 33:c3ec596a29c2
- Parent:
- 24:dae7123d432a
File content as of revision 33:c3ec596a29c2:
/** * @file ADXL362.cpp * @brief Source file for ADXL362 * @author Analog Devices Inc. * * For support please go to: * Github: https://github.com/analogdevicesinc/mbed-adi * Support: https://ez.analog.com/community/linux-device-drivers/microcontroller-no-os-drivers * Product: http://www.analog.com/adxl362 * More: https://wiki.analog.com/resources/tools-software/mbed-drivers-all ******************************************************************************** * Copyright 2016(c) Analog Devices, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Analog Devices, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * - The use of this software may or may not infringe the patent rights * of one or more patent holders. This license does not release you * from the requirement that you obtain separate licenses from these * patent holders to use this software. * - Use of the software either in source or binary form, must be run * on or directly connected to an Analog Devices Inc. component. * * THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ********************************************************************************/ #include <stdint.h> #include "mbed.h" #include "ADXL362.h" /** * ADXL362 constructor. Sets CS and SPI bus * @param CS - CS pin of the ADXL362 * @param MOSI - MOSI pin of the ADXL362 * @param MISO - MISO pin of the ADXL362 * @param SCK- SCK pin of the ADXL362 */ ADXL362::ADXL362(PinName CS, PinName MOSI, PinName MISO, PinName SCK) : adxl362(MOSI, MISO, SCK), cs(CS), _int1(NULL), _int2(NULL), _int1_poll(NC), _int2_poll( NC) { cs = true; // cs is active low adxl362.format(8, _SPI_MODE); _temp_stored_in_fifo = false; _int1_act_low = true; _int2_act_low = true; } /** * Sets ADXL362 SPI bus frequency * @param hz - frequency in hz */ void ADXL362::frequency(int hz) { adxl362.frequency(hz); } /** * Resets the ADXL362 * A latency of approximately 0.5 ms is required after soft reset. */ void ADXL362::reset() { adxl362.format(8, _SPI_MODE); cs = false; // Writing Code 0x52 (representing the letter, R, in ASCII or unicode) to this register immediately resets the ADXL362. write_reg(SOFT_RESET, 0x52); cs = true; } /** * Writes the reg register with data * @param reg - ADXL362_register_t register to be written * @param data - data to be written */ void ADXL362::write_reg(ADXL362_register_t reg, uint8_t data) { adxl362.format(8, _SPI_MODE); cs = false; adxl362.write(_WRITE_REG_CMD); adxl362.write(static_cast<uint8_t>(reg)); adxl362.write(static_cast<uint8_t>(data)); cs = true; } /** * Reads the reg register * @param reg - ADXL362_register_t register to be read * @return - data read from the register */ uint8_t ADXL362::read_reg(ADXL362_register_t reg) { uint8_t ret_val; adxl362.format(8, _SPI_MODE); cs = false; adxl362.write(_READ_REG_CMD); adxl362.write(static_cast<uint8_t>(reg)); ret_val = adxl362.write(_DUMMY_BYTE); cs = true; return ret_val; } /** * Writes 16 bit registers to the ADXL362. Performs conversion from Intel to Motorola byte order * @param reg - ADXL362_register_t register to be written * @param data - data to be written */ void ADXL362::write_reg_u16(ADXL362_register_t reg, uint16_t data) { adxl362.format(8, _SPI_MODE); cs = false; adxl362.write(_WRITE_REG_CMD); adxl362.write(static_cast<uint8_t>(reg)); adxl362.write(static_cast<uint8_t>(data & 0xff)); adxl362.write(static_cast<uint8_t>((data & 0xff00) >> 8)); cs = true; } /** * Reads 16 bit registers from the ADXL362. Performs conversion from Motorola to Intel Byte order * @param reg - ADXL362_register_t register to be read * @return - data read from the ADXL362 */ uint16_t ADXL362::read_reg_u16(ADXL362_register_t reg) { uint16_t ret_val = 0; adxl362.format(8, _SPI_MODE); cs = false; adxl362.write(_READ_REG_CMD); adxl362.write(static_cast<uint8_t>(reg)); ret_val = adxl362.write(_DUMMY_BYTE); ret_val = ret_val | (adxl362.write(_DUMMY_BYTE) << 8); cs = true; return ret_val; } /** * Scans the X,Y,Z,T registers for data. * ADXL362 needs to be in measurement mode to read data * ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT) * @return a 64 bit integer with the following format 0xXXYYZZTT */ uint64_t ADXL362::scan() { uint64_t ret_val = 0; uint16_t x, y, z, t = 0; adxl362.format(8, _SPI_MODE); cs = false; adxl362.write(_READ_REG_CMD); adxl362.write(static_cast<uint8_t>(XDATA_L)); x = adxl362.write(_DUMMY_BYTE); x = x | static_cast<uint16_t>(adxl362.write(_DUMMY_BYTE) << 8); y = adxl362.write(_DUMMY_BYTE); y = y | static_cast<uint16_t>(adxl362.write(_DUMMY_BYTE) << 8); z = adxl362.write(_DUMMY_BYTE); z = z | static_cast<uint16_t>(adxl362.write(_DUMMY_BYTE) << 8); t = adxl362.write(_DUMMY_BYTE); t = t | static_cast<uint16_t>(adxl362.write(_DUMMY_BYTE) << 8); ret_val = static_cast<uint64_t>(x) << 48; ret_val |= static_cast<uint64_t>(y) << 32; ret_val |= static_cast<uint64_t>(z) << 16; ret_val |= static_cast<uint64_t>(t); cs = true; return ret_val; } /** * Reads the X 8 bit register from the ADXL362 * ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT) * @return 8 bit X data */ uint8_t ADXL362::scanx_u8() { return read_reg(XDATA); } /** * Reads the X 16 bit register from the ADXL362 * ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT) * @return 16 bit X data */ uint16_t ADXL362::scanx() { return read_reg_u16(XDATA_L); } /** * Reads the Y 8 bit register from the ADXL362 * ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT) * @return 8 bit Y data */ uint8_t ADXL362::scany_u8() { return read_reg(YDATA); } /** * Reads the Y 16 bit register from the ADXL362 * ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT) * @return 16 bit Y data */ uint16_t ADXL362::scany() { return read_reg_u16(YDATA_L); } /** * Reads the Z 8 bit register from the ADXL362 * ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT) * @return 8 bit Z data */ uint8_t ADXL362::scanz_u8() { return read_reg(ZDATA); } /** * Reads the Z 16 bit register from the ADXL362 * ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT) * @return 16 bit Z data */ uint16_t ADXL362::scanz() { return read_reg_u16(ZDATA_L); } /** * Reads the T 16 bit register from the ADXL362 * ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT) * @return 16 bit T data */ uint16_t ADXL362::scant() { return read_reg_u16(TEMP_L); } /** * Sets the STANDBY/MEASUREMENT mode of the ADXL362 * @param mode - ADXL362_modes_t STANDBY/MEASUREMENT mode */ void ADXL362::set_mode(ADXL362_modes_t mode) { uint8_t reg_val; reg_val = read_reg(POWER_CTL); reg_val = reg_val | static_cast<uint8_t>(mode); write_reg(POWER_CTL, reg_val); } /** * Sets the activity threshold registers * To enable activity/inactivity, the ACT_INACT_CTL reg must also be set * using the ADXL362::set_act_inact_ctl_reg(uint8_t data) method * @param threshold - activity threshold in natural format */ void ADXL362::set_activity_threshold(uint16_t threshold) { write_reg_u16(THRESH_ACT_L, threshold); } /** * Sets the activity time register * To enable activity/inactivity, the ACT_INACT_CTL reg must also be set * using the ADXL362::set_act_inact_ctl_reg(uint8_t data) method * @param time - activity time */ void ADXL362::set_activity_time(uint8_t time) { write_reg(TIME_ACT, time); } /** * Sets the inactivity threshold register * To enable activity/inactivity, the ACT_INACT_CTL reg must also be set * using the ADXL362::set_act_inact_ctl_reg(uint8_t data) method * @param threshold - inactivity threshold in natural format */ void ADXL362::set_inactivity_threshold(uint16_t threshold) { write_reg_u16(THRESH_INACT_L, threshold); } /** * Sets the inactivity time register * To enable activity/inactivity, the ACT_INACT_CTL reg must also be set * using the ADXL362::set_act_inact_ctl_reg(uint8_t data) method * @param time - inactivity time in natural format */ void ADXL362::set_inactivity_time(uint16_t time) { write_reg_u16(TIME_INACT_L, time); } /** * Sets the ACT_INACT_CTL register of the ADXL362 * @param data - data to be written to the register */ void ADXL362::set_act_inact_ctl_reg(uint8_t data) { write_reg(ACT_INACT_CTL, data); } /** * Configures INT1 output of the ADXL362 for polling use * @param in - uC pin connected to ADXL362's INT1 * @param data - data to be written to INTMAP1 * @param pull - (optional) configures pullup on In pin */ void ADXL362::set_polling_interrupt1_pin(PinName in, uint8_t data, PinMode pull) { if ((data & 0x7F) != 0) { write_reg(INTMAP1, data); _int1_poll = DigitalIn(in); _int1_poll.mode(pull); if (data & 0x80) { _int1_act_low = true; } else { _int1_act_low = false; } } } /** * Configures INT2 output of the ADXL362 for polling use * @param in - uC pin connected to ADXL362's INT2 * @param data - data to be written to INTMAP2 * @param pull - (optional) configures pullup on In pin */ void ADXL362::set_polling_interrupt2_pin(PinName in, uint8_t data, PinMode pull) { if ((data & 0x7F) != 0) { write_reg(INTMAP2, data); _int2_poll = DigitalIn(in); _int2_poll.mode(pull); if (data & 0x80) { _int2_act_low = true; } else { _int2_act_low = false; } } } /** * Gets the active state of the INT1 pin * @return true if active, false if not active */ bool ADXL362::get_int1() { if(_int1_poll != NC) return (_int1_poll.read() != _int1_act_low); // boolean XOR else return (_int1->read() != _int1_act_low); } /** * Gets the active state of the INT2 pin * @return true if active, false if not active */ bool ADXL362::get_int2() { if(_int2_poll != NC) return (_int1_poll.read() != _int1_act_low); // boolean XOR else return (_int2->read() != _int2_act_low); } /** * Configures the INT1 pin of the ADXL362 to be used in interrupt mode * @param in - uC pin connected to ADXL362's INT1 * @param data - data to be written to INTMAP1 * @param callback_rising - rising edge interrupt callback - can be set to NULL if no callback is required for rising edge * @param callback_falling - falling edge interrupt callback - can be set to NULL if no callback is required for falling edge * @param pull - (optional) configures pullup on In pin */ void ADXL362::set_interrupt1_pin(PinName in, uint8_t data, void (*callback_rising)(void), void (*callback_falling)(void), PinMode pull) { if ((data & 0x7F) != 0) { write_reg(INTMAP1, data); delete _int1; _int1 = new InterruptIn(in); _int1->mode(pull); if(callback_falling != NULL) _int1->fall(callback_falling); if(callback_rising != NULL) _int1->rise(callback_rising); if (data & 0x80) { _int1_act_low = true; } else { _int1_act_low = false; } } } /** * Configures the INT2 pin of the ADXL362 to be used in interrupt mode * @param in - uC pin connected to ADXL362's INT2 * @param data - data to be written to INTMAP2 * @param callback_rising - rising edge interrupt callback - can be set to NULL if no callback is required for rising edge * @param callback_falling - falling edge interrupt callback - can be set to NULL if no callback is required for falling edge * @param pull - (optional) configures pullup on In pin */ void ADXL362::set_interrupt2_pin(PinName in, uint8_t data, void (*callback_rising)(void), void (*callback_falling)(void), PinMode pull) { if ((data & 0x7F) != 0) { write_reg(INTMAP2, data); delete _int2; _int2 = new InterruptIn(in); _int2->mode(pull); if(callback_falling != NULL) _int2->fall(callback_falling); if(callback_rising != NULL) _int2->rise(callback_rising); if (data & 0x80) { _int2_act_low = true; } else { _int2_act_low = false; } } } /** * Enables external interrupt registration for pin configured as INT1 * To enable this interrupt, it must first be configured using ADXL362::set_interrupt1_pin() */ void ADXL362::enable_interrupt1() { _int1->enable_irq(); } /** * Enables external interrupt registration for pin configured as INT2 * * To enable this interrupt, it must first be configured using ADXL362::set_interrupt2_pin() */ void ADXL362::enable_interrupt2() { _int2->enable_irq(); } /** * Disables external interrupt registration for pin configured as INT1 */ void ADXL362::disable_interrupt1() { _int1->disable_irq(); } /** * Disables external interrupt registration for pin configured as INT2 */ void ADXL362::disable_interrupt2() { _int2->disable_irq(); } /** * Sets the POWER_CTL register * @param data - data to be written to the register */ void ADXL362::set_power_ctl_reg(uint8_t data) { write_reg(POWER_CTL, data); } /** * Sets the FILTER_CTL register * @param data - data to be written to the register */ void ADXL362::set_filter_ctl_reg(uint8_t data) { write_reg(FILTER_CTL, data); } /** * Reads the STATUS register of the ADXL362 * @return - data in the status register */ uint8_t ADXL362::read_status() { return read_reg(STATUS); } /** * Reads the FIFO_ENTRIES_L and FIFO_ENTRIES_H register * @return the number of entries in the FIFO */ uint16_t ADXL362::fifo_read_nr_of_entries() { return read_reg_u16(FIFO_ENTRIES_L); } /** * Setup for the FIFO * @param store_temp - boolean, true - temperature will be stored in the fifo. false otherwise * @param mode - ADXL362_FIFO_modes_t fifo mode * @param nr_of_entries - number of entries in the FIFO */ void ADXL362::fifo_setup(bool store_temp, ADXL362_FIFO_modes_t mode, uint16_t nr_of_entries) { uint8_t fifo_ctl = static_cast<uint8_t>(mode); _temp_stored_in_fifo = store_temp; fifo_ctl = fifo_ctl | (static_cast<uint8_t>(_temp_stored_in_fifo) << 2); if (nr_of_entries > 0xff) { fifo_ctl = fifo_ctl | static_cast<uint8_t>(AH); } write_reg(FIFO_CONTROL, fifo_ctl); write_reg(FIFO_SAMPLES, static_cast<uint8_t>(nr_of_entries & 0xff)); } /** * Reads a FIFO entry * @return FIFO entry */ uint16_t ADXL362::fifo_read_u16() { uint16_t ret_val = 0; adxl362.format(8, _SPI_MODE); cs = false; adxl362.write(_READ_FIFO_CMD); ret_val = adxl362.write(_DUMMY_BYTE); ret_val = (ret_val) | static_cast<uint16_t>(adxl362.write(_DUMMY_BYTE) << 8); cs = true; return ret_val; } /** * Reads 3(4) bytes from the FIFO(if store_temp was set), assembles the data in the format used by the scan method * ADXL362::fifo_setup() needs to be called before calling fifo_scan to ensure correct fifo operation * fifo_scan and fifo_read_u16 should not be used as fifo_read_u16 disaligns the fifo therefore * fifo_scan will return data from multiple samples * @return scanned data from the fifo in the 0xXXYYZZTT format */ uint64_t ADXL362::fifo_scan() { uint64_t ret_val = 0; uint16_t x = 0, y = 0, z = 0, dummy, t = 0, sample_type; adxl362.format(8, _SPI_MODE); cs = false; adxl362.write(_READ_FIFO_CMD); uint8_t samples = (_temp_stored_in_fifo) ? 4 : 3; for(uint8_t i = 0; i < samples; i++) { dummy = adxl362.write(_DUMMY_BYTE); dummy = dummy | static_cast<uint16_t>(adxl362.write(_DUMMY_BYTE) << 8); sample_type = (dummy & 0xc000) >> 14; dummy = dummy & 0x3fff; switch(sample_type) { case 0: // x x = dummy; break; case 1: // y y = dummy; break; case 2: // z z = dummy; break; case 3: // temp t = dummy; break; } } // format xxyyzztt ret_val = static_cast<uint64_t> (x) << 48; ret_val |= static_cast<uint64_t>(y) << 32; ret_val |= static_cast<uint64_t>(z) << 16; ret_val |= static_cast<uint64_t>(t); cs = true; return ret_val; }