change some parameters in the library to meet the needs of the website httpbin.org
Fork of MiniTLS-GPL by
math/numtheory/fp_invmod.c
- Committer:
- shiyilei
- Date:
- 2015-02-06
- Revision:
- 5:95f70ebfe61f
- Parent:
- 0:35aa5be3b78d
File content as of revision 5:95f70ebfe61f:
/* TomsFastMath, a fast ISO C bignum library. * * This project is meant to fill in where LibTomMath * falls short. That is speed ;-) * * This project is public domain and free for all purposes. * * Tom St Denis, tomstdenis@gmail.com */ #include <tfm.h> static int fp_invmod_slow (fp_int * a, fp_int * b, fp_int * c) { fp_int x, y, u, v, A, B, C, D; int res; /* b cannot be negative */ if (b->sign == FP_NEG || fp_iszero(b) == 1) { return FP_VAL; } /* init temps */ fp_init(&x); fp_init(&y); fp_init(&u); fp_init(&v); fp_init(&A); fp_init(&B); fp_init(&C); fp_init(&D); /* x = a, y = b */ if ((res = fp_mod(a, b, &x)) != FP_OKAY) { return res; } fp_copy(b, &y); /* 2. [modified] if x,y are both even then return an error! */ if (fp_iseven (&x) == 1 && fp_iseven (&y) == 1) { return FP_VAL; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ fp_copy (&x, &u); fp_copy (&y, &v); fp_set (&A, 1); fp_set (&D, 1); top: /* 4. while u is even do */ while (fp_iseven (&u) == 1) { /* 4.1 u = u/2 */ fp_div_2 (&u, &u); /* 4.2 if A or B is odd then */ if (fp_isodd (&A) == 1 || fp_isodd (&B) == 1) { /* A = (A+y)/2, B = (B-x)/2 */ fp_add (&A, &y, &A); fp_sub (&B, &x, &B); } /* A = A/2, B = B/2 */ fp_div_2 (&A, &A); fp_div_2 (&B, &B); } /* 5. while v is even do */ while (fp_iseven (&v) == 1) { /* 5.1 v = v/2 */ fp_div_2 (&v, &v); /* 5.2 if C or D is odd then */ if (fp_isodd (&C) == 1 || fp_isodd (&D) == 1) { /* C = (C+y)/2, D = (D-x)/2 */ fp_add (&C, &y, &C); fp_sub (&D, &x, &D); } /* C = C/2, D = D/2 */ fp_div_2 (&C, &C); fp_div_2 (&D, &D); } /* 6. if u >= v then */ if (fp_cmp (&u, &v) != FP_LT) { /* u = u - v, A = A - C, B = B - D */ fp_sub (&u, &v, &u); fp_sub (&A, &C, &A); fp_sub (&B, &D, &B); } else { /* v - v - u, C = C - A, D = D - B */ fp_sub (&v, &u, &v); fp_sub (&C, &A, &C); fp_sub (&D, &B, &D); } /* if not zero goto step 4 */ if (fp_iszero (&u) == 0) goto top; /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (fp_cmp_d (&v, 1) != FP_EQ) { return FP_VAL; } /* if its too low */ while (fp_cmp_d(&C, 0) == FP_LT) { fp_add(&C, b, &C); } /* too big */ while (fp_cmp_mag(&C, b) != FP_LT) { fp_sub(&C, b, &C); } /* C is now the inverse */ fp_copy(&C, c); return FP_OKAY; } /* c = 1/a (mod b) for odd b only */ int fp_invmod(fp_int *a, fp_int *b, fp_int *c) { fp_int x, y, u, v, B, D; int neg; /* 2. [modified] b must be odd */ if (fp_iseven (b) == FP_YES) { return fp_invmod_slow(a,b,c); } /* init all our temps */ fp_init(&x); fp_init(&y); fp_init(&u); fp_init(&v); fp_init(&B); fp_init(&D); /* x == modulus, y == value to invert */ fp_copy(b, &x); /* we need y = |a| */ fp_abs(a, &y); /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ fp_copy(&x, &u); fp_copy(&y, &v); fp_set (&D, 1); top: /* 4. while u is even do */ while (fp_iseven (&u) == FP_YES) { /* 4.1 u = u/2 */ fp_div_2 (&u, &u); /* 4.2 if B is odd then */ if (fp_isodd (&B) == FP_YES) { fp_sub (&B, &x, &B); } /* B = B/2 */ fp_div_2 (&B, &B); } /* 5. while v is even do */ while (fp_iseven (&v) == FP_YES) { /* 5.1 v = v/2 */ fp_div_2 (&v, &v); /* 5.2 if D is odd then */ if (fp_isodd (&D) == FP_YES) { /* D = (D-x)/2 */ fp_sub (&D, &x, &D); } /* D = D/2 */ fp_div_2 (&D, &D); } /* 6. if u >= v then */ if (fp_cmp (&u, &v) != FP_LT) { /* u = u - v, B = B - D */ fp_sub (&u, &v, &u); fp_sub (&B, &D, &B); } else { /* v - v - u, D = D - B */ fp_sub (&v, &u, &v); fp_sub (&D, &B, &D); } /* if not zero goto step 4 */ if (fp_iszero (&u) == FP_NO) { goto top; } /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (fp_cmp_d (&v, 1) != FP_EQ) { return FP_VAL; } /* b is now the inverse */ neg = a->sign; while (D.sign == FP_NEG) { fp_add (&D, b, &D); } fp_copy (&D, c); c->sign = neg; return FP_OKAY; } /* $Source: /cvs/libtom/tomsfastmath/src/numtheory/fp_invmod.c,v $ */ /* $Revision: 1.1 $ */ /* $Date: 2007/01/24 21:25:19 $ */