change some parameters in the library to meet the needs of the website httpbin.org
Fork of MiniTLS-GPL by
Diff: math/numtheory/fp_invmod.c
- Revision:
- 0:35aa5be3b78d
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/math/numtheory/fp_invmod.c Fri Jun 06 10:49:02 2014 +0000 @@ -0,0 +1,207 @@ +/* TomsFastMath, a fast ISO C bignum library. + * + * This project is meant to fill in where LibTomMath + * falls short. That is speed ;-) + * + * This project is public domain and free for all purposes. + * + * Tom St Denis, tomstdenis@gmail.com + */ +#include <tfm.h> + +static int fp_invmod_slow (fp_int * a, fp_int * b, fp_int * c) +{ + fp_int x, y, u, v, A, B, C, D; + int res; + + /* b cannot be negative */ + if (b->sign == FP_NEG || fp_iszero(b) == 1) { + return FP_VAL; + } + + /* init temps */ + fp_init(&x); fp_init(&y); + fp_init(&u); fp_init(&v); + fp_init(&A); fp_init(&B); + fp_init(&C); fp_init(&D); + + /* x = a, y = b */ + if ((res = fp_mod(a, b, &x)) != FP_OKAY) { + return res; + } + fp_copy(b, &y); + + /* 2. [modified] if x,y are both even then return an error! */ + if (fp_iseven (&x) == 1 && fp_iseven (&y) == 1) { + return FP_VAL; + } + + /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ + fp_copy (&x, &u); + fp_copy (&y, &v); + fp_set (&A, 1); + fp_set (&D, 1); + +top: + /* 4. while u is even do */ + while (fp_iseven (&u) == 1) { + /* 4.1 u = u/2 */ + fp_div_2 (&u, &u); + + /* 4.2 if A or B is odd then */ + if (fp_isodd (&A) == 1 || fp_isodd (&B) == 1) { + /* A = (A+y)/2, B = (B-x)/2 */ + fp_add (&A, &y, &A); + fp_sub (&B, &x, &B); + } + /* A = A/2, B = B/2 */ + fp_div_2 (&A, &A); + fp_div_2 (&B, &B); + } + + /* 5. while v is even do */ + while (fp_iseven (&v) == 1) { + /* 5.1 v = v/2 */ + fp_div_2 (&v, &v); + + /* 5.2 if C or D is odd then */ + if (fp_isodd (&C) == 1 || fp_isodd (&D) == 1) { + /* C = (C+y)/2, D = (D-x)/2 */ + fp_add (&C, &y, &C); + fp_sub (&D, &x, &D); + } + /* C = C/2, D = D/2 */ + fp_div_2 (&C, &C); + fp_div_2 (&D, &D); + } + + /* 6. if u >= v then */ + if (fp_cmp (&u, &v) != FP_LT) { + /* u = u - v, A = A - C, B = B - D */ + fp_sub (&u, &v, &u); + fp_sub (&A, &C, &A); + fp_sub (&B, &D, &B); + } else { + /* v - v - u, C = C - A, D = D - B */ + fp_sub (&v, &u, &v); + fp_sub (&C, &A, &C); + fp_sub (&D, &B, &D); + } + + /* if not zero goto step 4 */ + if (fp_iszero (&u) == 0) + goto top; + + /* now a = C, b = D, gcd == g*v */ + + /* if v != 1 then there is no inverse */ + if (fp_cmp_d (&v, 1) != FP_EQ) { + return FP_VAL; + } + + /* if its too low */ + while (fp_cmp_d(&C, 0) == FP_LT) { + fp_add(&C, b, &C); + } + + /* too big */ + while (fp_cmp_mag(&C, b) != FP_LT) { + fp_sub(&C, b, &C); + } + + /* C is now the inverse */ + fp_copy(&C, c); + return FP_OKAY; +} + +/* c = 1/a (mod b) for odd b only */ +int fp_invmod(fp_int *a, fp_int *b, fp_int *c) +{ + fp_int x, y, u, v, B, D; + int neg; + + /* 2. [modified] b must be odd */ + if (fp_iseven (b) == FP_YES) { + return fp_invmod_slow(a,b,c); + } + + /* init all our temps */ + fp_init(&x); fp_init(&y); + fp_init(&u); fp_init(&v); + fp_init(&B); fp_init(&D); + + /* x == modulus, y == value to invert */ + fp_copy(b, &x); + + /* we need y = |a| */ + fp_abs(a, &y); + + /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ + fp_copy(&x, &u); + fp_copy(&y, &v); + fp_set (&D, 1); + +top: + /* 4. while u is even do */ + while (fp_iseven (&u) == FP_YES) { + /* 4.1 u = u/2 */ + fp_div_2 (&u, &u); + + /* 4.2 if B is odd then */ + if (fp_isodd (&B) == FP_YES) { + fp_sub (&B, &x, &B); + } + /* B = B/2 */ + fp_div_2 (&B, &B); + } + + /* 5. while v is even do */ + while (fp_iseven (&v) == FP_YES) { + /* 5.1 v = v/2 */ + fp_div_2 (&v, &v); + + /* 5.2 if D is odd then */ + if (fp_isodd (&D) == FP_YES) { + /* D = (D-x)/2 */ + fp_sub (&D, &x, &D); + } + /* D = D/2 */ + fp_div_2 (&D, &D); + } + + /* 6. if u >= v then */ + if (fp_cmp (&u, &v) != FP_LT) { + /* u = u - v, B = B - D */ + fp_sub (&u, &v, &u); + fp_sub (&B, &D, &B); + } else { + /* v - v - u, D = D - B */ + fp_sub (&v, &u, &v); + fp_sub (&D, &B, &D); + } + + /* if not zero goto step 4 */ + if (fp_iszero (&u) == FP_NO) { + goto top; + } + + /* now a = C, b = D, gcd == g*v */ + + /* if v != 1 then there is no inverse */ + if (fp_cmp_d (&v, 1) != FP_EQ) { + return FP_VAL; + } + + /* b is now the inverse */ + neg = a->sign; + while (D.sign == FP_NEG) { + fp_add (&D, b, &D); + } + fp_copy (&D, c); + c->sign = neg; + return FP_OKAY; +} + +/* $Source: /cvs/libtom/tomsfastmath/src/numtheory/fp_invmod.c,v $ */ +/* $Revision: 1.1 $ */ +/* $Date: 2007/01/24 21:25:19 $ */