Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of Robot2016_2-0 by
Diff: Asserv_Plan_B/planB.cpp
- Revision:
- 13:5355aed288b0
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Asserv_Plan_B/planB.cpp Tue Jan 05 17:08:15 2016 +0000
@@ -0,0 +1,199 @@
+#include "planB.h"
+#include "defines.h"
+
+extern Serial logger;
+
+aserv_planB::aserv_planB(Odometry2 &odometry,Motor &motorL,Motor &motorR) : m_odometry(odometry), m_motorL(motorL), m_motorR(motorR)
+{
+ limite = 0.55;
+ lim_max = 0.30;
+ lim_min = 0.1995;
+ cmd = 0;
+ cmd_g = 0;
+ cmd_d = 0;
+
+ somme_erreur_theta = 0;
+ delta_erreur_theta = 0;
+ erreur_precedente_theta = 0;
+
+ somme_erreur_distance = 0;
+ delta_erreur_distance = 0;
+ erreur_precedente_distance = 0;
+ distanceGoal = 0;
+ distance = 0;
+
+ Kp_angle = 3.5; //Fixed à 3.0 pour 180 deg
+ Ki_angle = 0.0;
+ Kd_angle = 0.2;
+
+ Kp_distance = 0.0041;
+ Ki_distance = 0.0001;//0.000001
+ Kd_distance = 0.01;//0.05
+
+ N = 0;
+ arrived = false;
+ squip = false;
+ state = 0; // Etat ou l'on ne fait rien
+}
+
+void aserv_planB::setGoal(float x, float y, float phi)
+{
+ arrived = false;
+ m_goalX = x;
+ m_goalY = y;
+ m_goalPhi = phi;
+ distanceGoal = sqrt(carre(m_goalX-m_odometry.getX())+carre(m_goalY-m_odometry.getY()));
+ state = 1; // Etat de rotation 1
+ Kd_distance = 0.01;
+ N = 0;
+}
+
+void aserv_planB::stop(void)
+{
+ m_motorL.setSpeed(0);
+ m_motorR.setSpeed(0);
+ state = 0;
+}
+
+void aserv_planB::setGoal(float x, float y)
+{
+ squip = true;
+ setGoal(x, y, 0);
+}
+
+void aserv_planB::update(float dt)
+{
+ thetaGoal = atan2(m_goalY-m_odometry.getY(),m_goalX-m_odometry.getX());
+ float erreur_theta = thetaGoal-m_odometry.getTheta();
+
+ float erreur_distance = sqrt(carre(m_goalX-m_odometry.getX())+carre(m_goalY-m_odometry.getY()));
+
+ delta_erreur_theta = erreur_theta - erreur_precedente_theta;
+ erreur_precedente_theta = erreur_theta;
+ somme_erreur_theta += erreur_theta;
+
+ delta_erreur_distance = erreur_distance - erreur_precedente_distance;
+ erreur_precedente_distance = erreur_distance;
+ somme_erreur_distance += erreur_distance;
+
+ if(erreur_theta <= PI) erreur_theta += 2.0f*PI;
+ if(erreur_theta >= PI) erreur_theta -= 2.0f*PI;
+
+ // Etat 1 : Angle theta pour viser dans la direction du point M(x,y)
+ if(state == 1)
+ {
+ //logger.printf("%.2f\r\n", erreur_theta*180/PI);
+ cmd = erreur_theta*Kp_angle + delta_erreur_theta*Kd_angle + somme_erreur_theta*Ki_angle;
+
+ if(cmd > limite) cmd = limite;
+ else if(cmd < -limite) cmd = -limite;
+
+ m_motorL.setSpeed(-cmd);
+ m_motorR.setSpeed(cmd);
+
+ if(abs(erreur_theta) < 0.05f) N++;
+ else N = 0;
+ if(N > 5)
+ {
+ m_motorL.setSpeed(0);
+ m_motorR.setSpeed(0);
+ state = 2;
+ //logger.printf("Erreur theta : %.2f\r\n", erreur_theta*180/PI);
+ somme_erreur_theta = 0;
+ }
+ }
+
+ // Etat 2 : Parcours du robot jusqu'au point M(x,y)
+ if(state == 2)
+ {
+ //Source d'erreurs et de ralentissements
+ /*if(delta_erreur_distance > 0) // On a dépassé le point
+ {
+ state = 1;
+ return;
+ }*/
+
+ if(abs(erreur_distance) > 55.0f) somme_erreur_distance = 0;
+
+ cmd_g = erreur_distance*Kp_distance + somme_erreur_distance*Ki_distance + delta_erreur_distance*Kd_distance - (erreur_theta*Kp_angle + delta_erreur_theta*Kd_angle + somme_erreur_theta*Ki_angle);
+ cmd_d = erreur_distance*Kp_distance + somme_erreur_distance*Ki_distance + delta_erreur_distance*Kd_distance + erreur_theta*Kp_angle + delta_erreur_theta*Kd_angle + somme_erreur_theta*Ki_angle;
+
+
+ if(abs(erreur_distance) > 55.0f)
+ {
+ if(cmd_g > limite) cmd_g = limite;
+ else if(cmd_g < -limite) cmd_g = -limite;
+
+ if(cmd_d > limite) cmd_d = limite;
+ else if(cmd_d < -limite) cmd_d = -limite;
+ }
+ else
+ {
+ Kd_distance = 0.01;
+ if(cmd_g > lim_max) cmd_g = lim_max;
+ else if(cmd_g < -lim_max) cmd_g = -lim_max;
+
+ if(cmd_d > lim_max) cmd_d = lim_max;
+ else if(cmd_d < -lim_max) cmd_d = -lim_max;
+ }
+
+ if(cmd_g > 0.01f && cmd_g < lim_min) cmd_g = lim_min;
+ if(cmd_g < -0.01f && cmd_g > -lim_min) cmd_g = -lim_min;
+
+ if(cmd_d > 0.01f && cmd_d < lim_min) cmd_d = lim_min;
+ if(cmd_d < -0.01f && cmd_d > -lim_min) cmd_d = -lim_min;
+
+ m_motorL.setSpeed(cmd_g);
+ m_motorR.setSpeed(cmd_d);
+
+ if(abs(erreur_distance) < 5.0f) N++;
+ else N = 0;
+ if(N > 10)
+ {
+ delta_erreur_theta = 0;
+ erreur_precedente_theta = 0;
+ somme_erreur_theta = 0;
+ erreur_theta = 0;
+ m_motorL.setSpeed(0);
+ m_motorR.setSpeed(0);
+ if(squip == true)
+ {
+ arrived = true;
+ squip = false;
+ state = 0;
+ }
+ else state = 3;
+ //logger.printf("Erreur distance : %.2f, Arrived : %d, Etat = %d\r\n", erreur_distance, arrived, (int)state);
+ }
+ }
+
+ // Etat 3 : Placement au bon angle Phi souhaité au point M(x,y)
+ if(state == 3)
+ {
+ erreur_theta = m_goalPhi-m_odometry.getTheta();
+
+ if(erreur_theta <= PI) erreur_theta += 2.0f*PI;
+ if(erreur_theta >= PI) erreur_theta -= 2.0f*PI;
+
+ cmd = erreur_theta*Kp_angle;
+
+ if(cmd > limite) cmd = limite;
+ else if(cmd < -limite) cmd = -limite;
+
+ m_motorL.setSpeed(-cmd);
+ m_motorR.setSpeed(cmd);
+
+ if(abs(erreur_theta)< 0.05) N++;
+ else N = 0;
+ if(N > 10)
+ {
+ //logger.printf("Erreur theta : %.2f\r\n", erreur_theta*180/PI);
+ somme_erreur_theta = 0;
+ arrived = true;
+ squip = false;
+ state = 0;
+ m_motorL.setSpeed(0);
+ m_motorR.setSpeed(0);
+ }
+ }
+}
