ARES
/
TestMyPathFind
Test du path finding
Fork of TestMyPathFind by
main.cpp
- Committer:
- IceTeam
- Date:
- 2016-04-13
- Revision:
- 39:ca4dd3faffa8
- Parent:
- 38:da3a2c781672
- Child:
- 41:53d5990ff99d
File content as of revision 39:ca4dd3faffa8:
#include "Odometry/Odometry.h" #include "map/map.h" #define dt 10000 #define ATTENTE 0 #define GO 1 #define STOP 2 #define ENTRAXE 248.25 InterruptIn mybutton(USER_BUTTON); DigitalIn button(USER_BUTTON); DigitalOut led(LED1); Ticker ticker; //Serial pc(USBTX, USBRX); Serial logger (PA_9, PA_10); RoboClaw roboclaw(460800, PA_11, PA_12); Odometry odo(63.2, 63.3, ENTRAXE, 4096, roboclaw); int i = 0; void update_main(void); void init(void); void pressed(void); void unpressed(void); /** Debut du programme */ int main(void) { init(); double angle_v = 2*PI/5; double distance_v = 200.0; float the; odo.setPos(0, 1000, 0); point dep (odo.getX(), odo.getY()); point arr (1400, 1000); map m; m.addObs(obsCarr (550, 1030, 250, 230)); m.addObs(obsCarr (740, 720, 240, 240)); m.addObs(obsCarr (1170, 1260, 220, 220)); /*m.addObst (carre (1000, 1000, 210, 210)); m.addObst (carre (1300, 700, 180, 180));*/ m.FindWay (dep, arr); logger.printf("On a cherche un chemin\n\r"); if (m.getEnded()) { nVector<pointParcours> p = m.getParc (); logger.printf ("Il y a %d points de parcours\n\r", p.size()); for (int i = 0; i < p.size (); i++) { logger.printf("Goto [%f, %f]\n\r", p[i].getX(), p[i].getY()); //the = (float) atan2((double) (p[i].gety() - odo.getY()), (double) (p[i].getx() - odo.getX())); odo.GotoXY(p[i].getX(), p[i].getY()); } } else { logger.printf("Chemin pas trouve ..."); } //odo.GotoThet(PI); odo.GotoThet(0); //odo.TestEntraxe(3); //odo.GotoThet(-PI/2); wait(2000); while (1); //odo.GotoXYT(2250,500,0);*/ /*roboclaw.ForwardM1(ADR, 0); roboclaw.ForwardM2(ADR, 0); int state = 0; while(1) { // while(logger.readable()) //{ char c = logger.getc(); if(c=='z') { if (state != 1) { state = 1; logger.printf("Z\r\n"); roboclaw.SpeedAccelM1(ADR, accel_angle, vitesse_angle); roboclaw.SpeedAccelM2(ADR, accel_angle, vitesse_angle); } } else if(c == 's') { if (state != 2) { state = 2; roboclaw.ForwardM1(ADR, 0); roboclaw.ForwardM2(ADR, 0); } } else if(c == 'd') { if (state != 3) { state = 3; logger.printf("D\r\n"); roboclaw.SpeedAccelM1(ADR, accel_angle, vitesse_angle); roboclaw.SpeedAccelM2(ADR, accel_angle, -vitesse_angle); } } else if(c == 'q') { if (state != 4) { state = 4; logger.printf("Q\r\n"); roboclaw.SpeedAccelM1(ADR, accel_angle, -vitesse_angle); roboclaw.SpeedAccelM2(ADR, accel_angle, vitesse_angle); } } else if(c == 'x') { if (state != 5) { state = 5; roboclaw.SpeedAccelM1M2(ADR, accel_angle, -vitesse_angle, accel_angle, -vitesse_angle); } } else if (c == '\0') { ; } else { if (state != 0) { roboclaw.SpeedAccelM1M2(ADR, accel_angle, 0, accel_angle, 0); state = 0; } } // } // roboclaw.ForwardM1(ADR, 0); // roboclaw.ForwardM2(ADR, 0); }*/ } void init(void) { roboclaw.ForwardM1(ADR, 0); roboclaw.ForwardM2(ADR, 0); logger.baud(9600); logger.printf("Hello from main !\n\r"); wait_ms(500); odo.setPos(0, 1000, 0); while(button); wait(1); mybutton.fall(&pressed); mybutton.rise(&unpressed); ticker.attach_us(&update_main,dt); // 100 Hz logger.printf("End init\n\r"); } void update_main(void) { odo.update_odo(); //pc.printf("X : %3.2f\tY : %3.2f\tTheta : %3.2f\n\r", odo.getX(), odo.getY(), odo.getTheta()*180/PI); //if(pc.readable()) if(pc.getc()=='l') led = !led; } void pressed(void) { if(i==0) { roboclaw.ForwardM1(ADR, 0); roboclaw.ForwardM2(ADR, 0); //pc.printf("X : %3.2f\tY : %3.2f\tTheta : %3.2f\n\r", odo.getX(), odo.getY(), odo.getTheta()*180/PI); i++; } } void unpressed(void) { if(i==1) { i--; } }