Robot secondaire
Dependencies: RoboClaw mbed StepperMotor
Fork of RoboClaw by
Diff: Odometry/Odometry.cpp
- Revision:
- 10:ae3178aa94e9
- Parent:
- 4:3e6e78d6d3d9
- Child:
- 12:d5e21f71c2a9
diff -r e39b218ab20d -r ae3178aa94e9 Odometry/Odometry.cpp --- a/Odometry/Odometry.cpp Tue Nov 24 23:05:12 2015 +0000 +++ b/Odometry/Odometry.cpp Fri Dec 04 11:18:13 2015 +0000 @@ -2,106 +2,152 @@ // M1 = Moteur droit, M2 = Moteur gauche -Odometry::Odometry(double diameter_right, double diameter_left, double v, RoboClaw &rc) : roboclaw(rc){ +Odometry::Odometry(double diameter_right, double diameter_left, double v, uint16_t quadrature, RoboClaw &rc) : roboclaw(rc) +{ m_v = v; - m_distPerTick_left = diameter_left*PI/37400; - m_distPerTick_right = diameter_right*PI/37400; + m_distPerTick_left = diameter_left*PI/quadrature; + m_distPerTick_right = diameter_right*PI/quadrature; roboclaw.ForwardM1(ADR, 0); roboclaw.ForwardM2(ADR, 0); - + roboclaw.ResetEnc(ADR); // Erreur autorisée sur le déplacement en angle erreur_ang = 0.01; m_pulses_right = 0; m_pulses_left = 0; + pos_prog = 0; wait_ms(100); } -void Odometry::setPos(double x, double y, double theta){ +void Odometry::setPos(double x, double y, double theta) +{ this->x = x; this->y = y; this->theta = theta; } -void Odometry::setX(double x){ +void Odometry::setX(double x) +{ this->x = x; } -void Odometry::setY(double y){ +void Odometry::setY(double y) +{ this->y = y; } -void Odometry::setTheta(double theta){ +void Odometry::setTheta(double theta) +{ this->theta = theta; } -void Odometry::update_odo(void){ +void Odometry::update_odo(void) +{ int32_t delta_right = roboclaw.ReadEncM1(ADR) - m_pulses_right; m_pulses_right = roboclaw.ReadEncM1(ADR); int32_t delta_left = roboclaw.ReadEncM2(ADR) - m_pulses_left; m_pulses_left = roboclaw.ReadEncM2(ADR); double deltaS = (m_distPerTick_left*delta_left + m_distPerTick_right*delta_right) / 2.0f; - double deltaTheta = (m_distPerTick_right*delta_right - m_distPerTick_left*delta_left)*C / m_v; + double deltaTheta = (m_distPerTick_left*delta_left - m_distPerTick_right*delta_right) / m_v; - double radius = deltaS/deltaTheta; - double xO = x - radius*sin(theta); - double yO = y + radius*cos(theta); + double R = deltaS/deltaTheta; + + double xO = x - R*sin(theta); + double yO = y + R*cos(theta); theta += deltaTheta; - x = xO + radius*sin(theta); - y = yO - radius*cos(theta); + if(deltaTheta == 0) { + x = x + deltaS*cos(theta); + y = y + deltaS*sin(theta); + } + else { + x = xO + R*sin(theta); + y = yO - R*cos(theta); + } + + /*double dx = deltaS*cos(theta); + double dy = deltaS*sin(theta); + x += dx; + y += dy; + theta += deltaTheta;*/ while(theta > PI) theta -= 2*PI; while(theta <= -PI) theta += 2*PI; } -void Odometry::GotoXYT(double x_goal, double y_goal, double theta_goal){ +void Odometry::GotoXYT(double x_goal, double y_goal, double theta_goal) +{ double theta_ = atan2(y_goal-y, x_goal-x); double dist_ = sqrt(carre(x_goal-x)+carre(y_goal-y)); + //pc.printf("Dist : %3.2f\tTheta : %3.2f\n\r", dist_, theta_*180/PI); + //pc.printf("X : %3.2f\tY : %3.2f\tTheta : %3.2f\n\r", getX(), getY(), getTheta()*180/PI); GotoThet(theta_); GotoDist(dist_); } -void Odometry::GotoThet(double theta_) { - double distance_ticks_left; - double distance_ticks_right; +void Odometry::GotoThet(double theta_) +{ + led = 0; + //pos_prog++; + //pc.printf("Theta : %3.2f\n\r", theta_*180/PI); + //arrived = false; + + int32_t distance_ticks_left; + int32_t distance_ticks_right; + + int32_t pos_initiale_right = m_pulses_right, pos_initiale_left = m_pulses_left; // Le calcul d'erreur est bon (testé), tu peux le vérifier par dessin double erreur_theta = theta_ - getTheta(); - bool arrived = false; while(erreur_theta >= PI) erreur_theta -= 2*PI; while(erreur_theta <= -PI) erreur_theta += 2*PI; if(erreur_theta <= 0) { - distance_ticks_left = -(erreur_theta*m_v/2)/m_distPerTick_left; - distance_ticks_right = (erreur_theta*m_v/2)/m_distPerTick_right; + distance_ticks_left = (int32_t) -(erreur_theta*m_v/2)/m_distPerTick_left + pos_initiale_left; + distance_ticks_right = (int32_t) (erreur_theta*m_v/2)/m_distPerTick_right + pos_initiale_right; } else { - distance_ticks_left = (erreur_theta*m_v/2)/m_distPerTick_left; - distance_ticks_right = -(erreur_theta*m_v/2)/m_distPerTick_right; + distance_ticks_left = (int32_t) (erreur_theta*m_v/2)/m_distPerTick_left + pos_initiale_left; + distance_ticks_right = (int32_t) -(erreur_theta*m_v/2)/m_distPerTick_right + pos_initiale_right; } + + //pc.printf("ET : %3.2f\n\r", erreur_theta*180/PI); pc.printf("TV %3.2f\tTh %3.2f\tET %3.2f\n\r",theta_*180/PI,getTheta()*180/PI,erreur_theta*180/PI); - roboclaw.SpeedAccelDeccelPositionM1M2(ADR, 150000, 150000, 100000, (int32_t)distance_ticks_right, 150000, 150000, 100000, (int32_t)distance_ticks_left, 1); - // Il faut ici faire un espèce de bouclage pour vérifier qu'il est bien arrivé, j'avais pensé à : - /* - while(!arrived){ - - } - */ + //pc.printf("M1 %6d\tM2 %6d\n\r",distance_ticks_right, distance_ticks_left); + + roboclaw.SpeedAccelDeccelPositionM1M2(ADR, accel_angle, vitesse_angle, deccel_angle, distance_ticks_right, accel_angle, vitesse_angle, deccel_angle, distance_ticks_left, 1); + + //pc.printf("IniR:%6d\tDistR:%6d\tIniL:%6d\tDistL:%6d\n\r", pos_initiale_right, distance_ticks_right, pos_initiale_left, distance_ticks_left); + + while((m_pulses_right != distance_ticks_right)&&(m_pulses_left != distance_ticks_left)); //pc.printf("%6d\t%6d\t%6d\t%6d\t%6d\n\r",m_pulses_right - pos_initiale_right, distance_ticks_right, m_pulses_left - pos_initiale_left, distance_ticks_left); + //setTheta(theta_); + led = 1; + //arrived = true; + //pc.printf("arrivey %d\n\r",pos_prog); } -void Odometry::GotoDist(double distance) { - double temp1 = roboclaw.ReadEncM1(ADR), temp2 = roboclaw.ReadEncM2(ADR); - double distance_ticks_left = distance/m_distPerTick_left - temp2; - double distance_ticks_right = distance/m_distPerTick_right - temp1; - roboclaw.SpeedAccelDeccelPositionM1M2(ADR, 150000, 200000, 150000, (int32_t)distance_ticks_right, 150000, 200000, 150000, (int32_t)distance_ticks_left, 1); +void Odometry::GotoDist(double distance) +{ + led = 0; + //pos_prog++; + //pc.printf("Dist : %3.2f\n\r", distance); + //arrived = false; + + int32_t pos_initiale_right = m_pulses_right, pos_initiale_left = m_pulses_left; + + int32_t distance_ticks_right = (int32_t) distance/m_distPerTick_right + pos_initiale_right; + int32_t distance_ticks_left = (int32_t) distance/m_distPerTick_left + pos_initiale_left; + + roboclaw.SpeedAccelDeccelPositionM1M2(ADR, accel_dista, vitesse_dista, deccel_dista, distance_ticks_right, accel_dista, vitesse_dista, deccel_dista, distance_ticks_left, 1); + + //pc.printf("IniR:%6d\tDistR:%6d\tIniL:%6d\tDistL:%6d\n\r", pos_initiale_right, distance_ticks_right, pos_initiale_left, distance_ticks_left); + + while((m_pulses_right != distance_ticks_right)&&(m_pulses_left != distance_ticks_left)); //pc.printf("PR:%6d\tIR:%6d\tDR:%6d\tPL:%6d\tIL:%6d\tDL:%6d\n\r",m_pulses_right, pos_initiale_right, distance_ticks_right, m_pulses_left, pos_initiale_left, distance_ticks_left); + + led = 1; + //pc.printf("arrivey %d\n\r",pos_prog); + //pc.printf("X : %3.2f\tY : %3.2f\tTheta : %3.2f\n\r", getX(), getY(), getTheta()*180/PI); } - -bool Odometry::isArrivedRot(double theta_) { - if(abs_d(getTheta()) <= abs_d(theta_+erreur_ang)) return true; - else if(abs_d(getTheta()) >= abs_d(theta_-erreur_ang)) return true; - else return false; -}