Werte auslesen und in Winkel umrechnen

Dependencies:   mbed

Committer:
Heidl
Date:
Wed Sep 30 16:08:36 2015 +0000
Revision:
0:d1960beb98fe
Werte von Beschleunigungssensor auslesen

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Heidl 0:d1960beb98fe 1 //ported from arduino library: https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
Heidl 0:d1960beb98fe 2 //written by szymon gaertig (email: szymon@gaertig.com.pl)
Heidl 0:d1960beb98fe 3 //
Heidl 0:d1960beb98fe 4 //Changelog:
Heidl 0:d1960beb98fe 5 //2013-01-08 - first beta release
Heidl 0:d1960beb98fe 6
Heidl 0:d1960beb98fe 7 // I2Cdev library collection - MPU6050 I2C device class
Heidl 0:d1960beb98fe 8 // Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
Heidl 0:d1960beb98fe 9 // 8/24/2011 by Jeff Rowberg <jeff@rowberg.net>
Heidl 0:d1960beb98fe 10 // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
Heidl 0:d1960beb98fe 11 //
Heidl 0:d1960beb98fe 12 // Changelog:
Heidl 0:d1960beb98fe 13 // ... - ongoing debug release
Heidl 0:d1960beb98fe 14
Heidl 0:d1960beb98fe 15 // NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
Heidl 0:d1960beb98fe 16 // DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
Heidl 0:d1960beb98fe 17 // YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
Heidl 0:d1960beb98fe 18
Heidl 0:d1960beb98fe 19 /* ============================================
Heidl 0:d1960beb98fe 20 I2Cdev device library code is placed under the MIT license
Heidl 0:d1960beb98fe 21 Copyright (c) 2012 Jeff Rowberg
Heidl 0:d1960beb98fe 22
Heidl 0:d1960beb98fe 23 Permission is hereby granted, free of charge, to any person obtaining a copy
Heidl 0:d1960beb98fe 24 of this software and associated documentation files (the "Software"), to deal
Heidl 0:d1960beb98fe 25 in the Software without restriction, including without limitation the rights
Heidl 0:d1960beb98fe 26 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
Heidl 0:d1960beb98fe 27 copies of the Software, and to permit persons to whom the Software is
Heidl 0:d1960beb98fe 28 furnished to do so, subject to the following conditions:
Heidl 0:d1960beb98fe 29
Heidl 0:d1960beb98fe 30 The above copyright notice and this permission notice shall be included in
Heidl 0:d1960beb98fe 31 all copies or substantial portions of the Software.
Heidl 0:d1960beb98fe 32
Heidl 0:d1960beb98fe 33 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
Heidl 0:d1960beb98fe 34 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
Heidl 0:d1960beb98fe 35 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
Heidl 0:d1960beb98fe 36 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
Heidl 0:d1960beb98fe 37 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
Heidl 0:d1960beb98fe 38 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
Heidl 0:d1960beb98fe 39 THE SOFTWARE.
Heidl 0:d1960beb98fe 40 ===============================================
Heidl 0:d1960beb98fe 41 */
Heidl 0:d1960beb98fe 42
Heidl 0:d1960beb98fe 43 #include "MPU6050.h"
Heidl 0:d1960beb98fe 44
Heidl 0:d1960beb98fe 45 #define useDebugSerial
Heidl 0:d1960beb98fe 46
Heidl 0:d1960beb98fe 47 //instead of using pgmspace.h
Heidl 0:d1960beb98fe 48 typedef const unsigned char prog_uchar;
Heidl 0:d1960beb98fe 49 #define pgm_read_byte_near(x) (*(prog_uchar*)x)
Heidl 0:d1960beb98fe 50 #define pgm_read_byte(x) (*(prog_uchar*)x)
Heidl 0:d1960beb98fe 51
Heidl 0:d1960beb98fe 52 /** Default constructor, uses default I2C address.
Heidl 0:d1960beb98fe 53 * @see MPU6050_DEFAULT_ADDRESS
Heidl 0:d1960beb98fe 54 */
Heidl 0:d1960beb98fe 55 MPU6050::MPU6050() : debugSerial(USBTX, USBRX)
Heidl 0:d1960beb98fe 56 {
Heidl 0:d1960beb98fe 57 devAddr = MPU6050_DEFAULT_ADDRESS;
Heidl 0:d1960beb98fe 58 }
Heidl 0:d1960beb98fe 59
Heidl 0:d1960beb98fe 60 /** Specific address constructor.
Heidl 0:d1960beb98fe 61 * @param address I2C address
Heidl 0:d1960beb98fe 62 * @see MPU6050_DEFAULT_ADDRESS
Heidl 0:d1960beb98fe 63 * @see MPU6050_ADDRESS_AD0_LOW
Heidl 0:d1960beb98fe 64 * @see MPU6050_ADDRESS_AD0_HIGH
Heidl 0:d1960beb98fe 65 */
Heidl 0:d1960beb98fe 66 MPU6050::MPU6050(uint8_t address) : debugSerial(USBTX, USBRX)
Heidl 0:d1960beb98fe 67 {
Heidl 0:d1960beb98fe 68 devAddr = address;
Heidl 0:d1960beb98fe 69 }
Heidl 0:d1960beb98fe 70
Heidl 0:d1960beb98fe 71
Heidl 0:d1960beb98fe 72 /** Power on and prepare for general usage.
Heidl 0:d1960beb98fe 73 * This will activate the device and take it out of sleep mode (which must be done
Heidl 0:d1960beb98fe 74 * after start-up). This function also sets both the accelerometer and the gyroscope
Heidl 0:d1960beb98fe 75 * to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets
Heidl 0:d1960beb98fe 76 * the clock source to use the X Gyro for reference, which is slightly better than
Heidl 0:d1960beb98fe 77 * the default internal clock source.
Heidl 0:d1960beb98fe 78 */
Heidl 0:d1960beb98fe 79 void MPU6050::initialize()
Heidl 0:d1960beb98fe 80 {
Heidl 0:d1960beb98fe 81
Heidl 0:d1960beb98fe 82 #ifdef useDebugSerial
Heidl 0:d1960beb98fe 83 //debugSerial.printf("MPU6050::initialize start\n");
Heidl 0:d1960beb98fe 84 #endif
Heidl 0:d1960beb98fe 85
Heidl 0:d1960beb98fe 86 setClockSource(MPU6050_CLOCK_PLL_XGYRO);
Heidl 0:d1960beb98fe 87 setFullScaleGyroRange(MPU6050_GYRO_FS_250);
Heidl 0:d1960beb98fe 88 setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
Heidl 0:d1960beb98fe 89 setSleepEnabled(false); // thanks to Jack Elston for pointing this one out!
Heidl 0:d1960beb98fe 90
Heidl 0:d1960beb98fe 91 #ifdef useDebugSerial
Heidl 0:d1960beb98fe 92 //debugSerial.printf("MPU6050::initialize end\n");
Heidl 0:d1960beb98fe 93 #endif
Heidl 0:d1960beb98fe 94 }
Heidl 0:d1960beb98fe 95
Heidl 0:d1960beb98fe 96 /** Verify the I2C connection.
Heidl 0:d1960beb98fe 97 * Make sure the device is connected and responds as expected.
Heidl 0:d1960beb98fe 98 * @return True if connection is valid, false otherwise
Heidl 0:d1960beb98fe 99 */
Heidl 0:d1960beb98fe 100 bool MPU6050::testConnection()
Heidl 0:d1960beb98fe 101 {
Heidl 0:d1960beb98fe 102 #ifdef useDebugSerial
Heidl 0:d1960beb98fe 103 debugSerial.printf("MPU6050::testConnection start\n");
Heidl 0:d1960beb98fe 104 #endif
Heidl 0:d1960beb98fe 105 uint8_t deviceId = getDeviceID();
Heidl 0:d1960beb98fe 106 #ifdef useDebugSerial
Heidl 0:d1960beb98fe 107 debugSerial.printf("DeviceId = %d\n",deviceId);
Heidl 0:d1960beb98fe 108 #endif
Heidl 0:d1960beb98fe 109 return deviceId == 0x34;
Heidl 0:d1960beb98fe 110 }
Heidl 0:d1960beb98fe 111
Heidl 0:d1960beb98fe 112 // AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC)
Heidl 0:d1960beb98fe 113
Heidl 0:d1960beb98fe 114 /** Get the auxiliary I2C supply voltage level.
Heidl 0:d1960beb98fe 115 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
Heidl 0:d1960beb98fe 116 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
Heidl 0:d1960beb98fe 117 * the MPU-6000, which does not have a VLOGIC pin.
Heidl 0:d1960beb98fe 118 * @return I2C supply voltage level (0=VLOGIC, 1=VDD)
Heidl 0:d1960beb98fe 119 */
Heidl 0:d1960beb98fe 120 uint8_t MPU6050::getAuxVDDIOLevel()
Heidl 0:d1960beb98fe 121 {
Heidl 0:d1960beb98fe 122 i2Cdev.readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer);
Heidl 0:d1960beb98fe 123 return buffer[0];
Heidl 0:d1960beb98fe 124 }
Heidl 0:d1960beb98fe 125 /** Set the auxiliary I2C supply voltage level.
Heidl 0:d1960beb98fe 126 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
Heidl 0:d1960beb98fe 127 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
Heidl 0:d1960beb98fe 128 * the MPU-6000, which does not have a VLOGIC pin.
Heidl 0:d1960beb98fe 129 * @param level I2C supply voltage level (0=VLOGIC, 1=VDD)
Heidl 0:d1960beb98fe 130 */
Heidl 0:d1960beb98fe 131 void MPU6050::setAuxVDDIOLevel(uint8_t level)
Heidl 0:d1960beb98fe 132 {
Heidl 0:d1960beb98fe 133 i2Cdev.writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level);
Heidl 0:d1960beb98fe 134 }
Heidl 0:d1960beb98fe 135
Heidl 0:d1960beb98fe 136 // SMPLRT_DIV register
Heidl 0:d1960beb98fe 137
Heidl 0:d1960beb98fe 138 /** Get gyroscope output rate divider.
Heidl 0:d1960beb98fe 139 * The sensor register output, FIFO output, DMP sampling, Motion detection, Zero
Heidl 0:d1960beb98fe 140 * Motion detection, and Free Fall detection are all based on the Sample Rate.
Heidl 0:d1960beb98fe 141 * The Sample Rate is generated by dividing the gyroscope output rate by
Heidl 0:d1960beb98fe 142 * SMPLRT_DIV:
Heidl 0:d1960beb98fe 143 *
Heidl 0:d1960beb98fe 144 * Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
Heidl 0:d1960beb98fe 145 *
Heidl 0:d1960beb98fe 146 * where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or
Heidl 0:d1960beb98fe 147 * 7), and 1kHz when the DLPF is enabled (see Register 26).
Heidl 0:d1960beb98fe 148 *
Heidl 0:d1960beb98fe 149 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
Heidl 0:d1960beb98fe 150 * Rate greater than 1kHz, the same accelerometer sample may be output to the
Heidl 0:d1960beb98fe 151 * FIFO, DMP, and sensor registers more than once.
Heidl 0:d1960beb98fe 152 *
Heidl 0:d1960beb98fe 153 * For a diagram of the gyroscope and accelerometer signal paths, see Section 8
Heidl 0:d1960beb98fe 154 * of the MPU-6000/MPU-6050 Product Specification document.
Heidl 0:d1960beb98fe 155 *
Heidl 0:d1960beb98fe 156 * @return Current sample rate
Heidl 0:d1960beb98fe 157 * @see MPU6050_RA_SMPLRT_DIV
Heidl 0:d1960beb98fe 158 */
Heidl 0:d1960beb98fe 159 uint8_t MPU6050::getRate()
Heidl 0:d1960beb98fe 160 {
Heidl 0:d1960beb98fe 161 i2Cdev.readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer);
Heidl 0:d1960beb98fe 162 return buffer[0];
Heidl 0:d1960beb98fe 163 }
Heidl 0:d1960beb98fe 164 /** Set gyroscope sample rate divider.
Heidl 0:d1960beb98fe 165 * @param rate New sample rate divider
Heidl 0:d1960beb98fe 166 * @see getRate()
Heidl 0:d1960beb98fe 167 * @see MPU6050_RA_SMPLRT_DIV
Heidl 0:d1960beb98fe 168 */
Heidl 0:d1960beb98fe 169 void MPU6050::setRate(uint8_t rate)
Heidl 0:d1960beb98fe 170 {
Heidl 0:d1960beb98fe 171 i2Cdev.writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate);
Heidl 0:d1960beb98fe 172 }
Heidl 0:d1960beb98fe 173
Heidl 0:d1960beb98fe 174 // CONFIG register
Heidl 0:d1960beb98fe 175
Heidl 0:d1960beb98fe 176 /** Get external FSYNC configuration.
Heidl 0:d1960beb98fe 177 * Configures the external Frame Synchronization (FSYNC) pin sampling. An
Heidl 0:d1960beb98fe 178 * external signal connected to the FSYNC pin can be sampled by configuring
Heidl 0:d1960beb98fe 179 * EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short
Heidl 0:d1960beb98fe 180 * strobes may be captured. The latched FSYNC signal will be sampled at the
Heidl 0:d1960beb98fe 181 * Sampling Rate, as defined in register 25. After sampling, the latch will
Heidl 0:d1960beb98fe 182 * reset to the current FSYNC signal state.
Heidl 0:d1960beb98fe 183 *
Heidl 0:d1960beb98fe 184 * The sampled value will be reported in place of the least significant bit in
Heidl 0:d1960beb98fe 185 * a sensor data register determined by the value of EXT_SYNC_SET according to
Heidl 0:d1960beb98fe 186 * the following table.
Heidl 0:d1960beb98fe 187 *
Heidl 0:d1960beb98fe 188 * <pre>
Heidl 0:d1960beb98fe 189 * EXT_SYNC_SET | FSYNC Bit Location
Heidl 0:d1960beb98fe 190 * -------------+-------------------
Heidl 0:d1960beb98fe 191 * 0 | Input disabled
Heidl 0:d1960beb98fe 192 * 1 | TEMP_OUT_L[0]
Heidl 0:d1960beb98fe 193 * 2 | GYRO_XOUT_L[0]
Heidl 0:d1960beb98fe 194 * 3 | GYRO_YOUT_L[0]
Heidl 0:d1960beb98fe 195 * 4 | GYRO_ZOUT_L[0]
Heidl 0:d1960beb98fe 196 * 5 | ACCEL_XOUT_L[0]
Heidl 0:d1960beb98fe 197 * 6 | ACCEL_YOUT_L[0]
Heidl 0:d1960beb98fe 198 * 7 | ACCEL_ZOUT_L[0]
Heidl 0:d1960beb98fe 199 * </pre>
Heidl 0:d1960beb98fe 200 *
Heidl 0:d1960beb98fe 201 * @return FSYNC configuration value
Heidl 0:d1960beb98fe 202 */
Heidl 0:d1960beb98fe 203 uint8_t MPU6050::getExternalFrameSync()
Heidl 0:d1960beb98fe 204 {
Heidl 0:d1960beb98fe 205 i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer);
Heidl 0:d1960beb98fe 206 return buffer[0];
Heidl 0:d1960beb98fe 207 }
Heidl 0:d1960beb98fe 208 /** Set external FSYNC configuration.
Heidl 0:d1960beb98fe 209 * @see getExternalFrameSync()
Heidl 0:d1960beb98fe 210 * @see MPU6050_RA_CONFIG
Heidl 0:d1960beb98fe 211 * @param sync New FSYNC configuration value
Heidl 0:d1960beb98fe 212 */
Heidl 0:d1960beb98fe 213 void MPU6050::setExternalFrameSync(uint8_t sync)
Heidl 0:d1960beb98fe 214 {
Heidl 0:d1960beb98fe 215 i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync);
Heidl 0:d1960beb98fe 216 }
Heidl 0:d1960beb98fe 217 /** Get digital low-pass filter configuration.
Heidl 0:d1960beb98fe 218 * The DLPF_CFG parameter sets the digital low pass filter configuration. It
Heidl 0:d1960beb98fe 219 * also determines the internal sampling rate used by the device as shown in
Heidl 0:d1960beb98fe 220 * the table below.
Heidl 0:d1960beb98fe 221 *
Heidl 0:d1960beb98fe 222 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
Heidl 0:d1960beb98fe 223 * Rate greater than 1kHz, the same accelerometer sample may be output to the
Heidl 0:d1960beb98fe 224 * FIFO, DMP, and sensor registers more than once.
Heidl 0:d1960beb98fe 225 *
Heidl 0:d1960beb98fe 226 * <pre>
Heidl 0:d1960beb98fe 227 * | ACCELEROMETER | GYROSCOPE
Heidl 0:d1960beb98fe 228 * DLPF_CFG | Bandwidth | Delay | Bandwidth | Delay | Sample Rate
Heidl 0:d1960beb98fe 229 * ---------+-----------+--------+-----------+--------+-------------
Heidl 0:d1960beb98fe 230 * 0 | 260Hz | 0ms | 256Hz | 0.98ms | 8kHz
Heidl 0:d1960beb98fe 231 * 1 | 184Hz | 2.0ms | 188Hz | 1.9ms | 1kHz
Heidl 0:d1960beb98fe 232 * 2 | 94Hz | 3.0ms | 98Hz | 2.8ms | 1kHz
Heidl 0:d1960beb98fe 233 * 3 | 44Hz | 4.9ms | 42Hz | 4.8ms | 1kHz
Heidl 0:d1960beb98fe 234 * 4 | 21Hz | 8.5ms | 20Hz | 8.3ms | 1kHz
Heidl 0:d1960beb98fe 235 * 5 | 10Hz | 13.8ms | 10Hz | 13.4ms | 1kHz
Heidl 0:d1960beb98fe 236 * 6 | 5Hz | 19.0ms | 5Hz | 18.6ms | 1kHz
Heidl 0:d1960beb98fe 237 * 7 | -- Reserved -- | -- Reserved -- | Reserved
Heidl 0:d1960beb98fe 238 * </pre>
Heidl 0:d1960beb98fe 239 *
Heidl 0:d1960beb98fe 240 * @return DLFP configuration
Heidl 0:d1960beb98fe 241 * @see MPU6050_RA_CONFIG
Heidl 0:d1960beb98fe 242 * @see MPU6050_CFG_DLPF_CFG_BIT
Heidl 0:d1960beb98fe 243 * @see MPU6050_CFG_DLPF_CFG_LENGTH
Heidl 0:d1960beb98fe 244 */
Heidl 0:d1960beb98fe 245 uint8_t MPU6050::getDLPFMode()
Heidl 0:d1960beb98fe 246 {
Heidl 0:d1960beb98fe 247 i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer);
Heidl 0:d1960beb98fe 248 return buffer[0];
Heidl 0:d1960beb98fe 249 }
Heidl 0:d1960beb98fe 250 /** Set digital low-pass filter configuration.
Heidl 0:d1960beb98fe 251 * @param mode New DLFP configuration setting
Heidl 0:d1960beb98fe 252 * @see getDLPFBandwidth()
Heidl 0:d1960beb98fe 253 * @see MPU6050_DLPF_BW_256
Heidl 0:d1960beb98fe 254 * @see MPU6050_RA_CONFIG
Heidl 0:d1960beb98fe 255 * @see MPU6050_CFG_DLPF_CFG_BIT
Heidl 0:d1960beb98fe 256 * @see MPU6050_CFG_DLPF_CFG_LENGTH
Heidl 0:d1960beb98fe 257 */
Heidl 0:d1960beb98fe 258 void MPU6050::setDLPFMode(uint8_t mode)
Heidl 0:d1960beb98fe 259 {
Heidl 0:d1960beb98fe 260 i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode);
Heidl 0:d1960beb98fe 261 }
Heidl 0:d1960beb98fe 262
Heidl 0:d1960beb98fe 263 // GYRO_CONFIG register
Heidl 0:d1960beb98fe 264
Heidl 0:d1960beb98fe 265 /** Get full-scale gyroscope range.
Heidl 0:d1960beb98fe 266 * The FS_SEL parameter allows setting the full-scale range of the gyro sensors,
Heidl 0:d1960beb98fe 267 * as described in the table below.
Heidl 0:d1960beb98fe 268 *
Heidl 0:d1960beb98fe 269 * <pre>
Heidl 0:d1960beb98fe 270 * 0 = +/- 250 degrees/sec
Heidl 0:d1960beb98fe 271 * 1 = +/- 500 degrees/sec
Heidl 0:d1960beb98fe 272 * 2 = +/- 1000 degrees/sec
Heidl 0:d1960beb98fe 273 * 3 = +/- 2000 degrees/sec
Heidl 0:d1960beb98fe 274 * </pre>
Heidl 0:d1960beb98fe 275 *
Heidl 0:d1960beb98fe 276 * @return Current full-scale gyroscope range setting
Heidl 0:d1960beb98fe 277 * @see MPU6050_GYRO_FS_250
Heidl 0:d1960beb98fe 278 * @see MPU6050_RA_GYRO_CONFIG
Heidl 0:d1960beb98fe 279 * @see MPU6050_GCONFIG_FS_SEL_BIT
Heidl 0:d1960beb98fe 280 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
Heidl 0:d1960beb98fe 281 */
Heidl 0:d1960beb98fe 282 uint8_t MPU6050::getFullScaleGyroRange()
Heidl 0:d1960beb98fe 283 {
Heidl 0:d1960beb98fe 284 i2Cdev.readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer);
Heidl 0:d1960beb98fe 285 return buffer[0];
Heidl 0:d1960beb98fe 286 }
Heidl 0:d1960beb98fe 287 /** Set full-scale gyroscope range.
Heidl 0:d1960beb98fe 288 * @param range New full-scale gyroscope range value
Heidl 0:d1960beb98fe 289 * @see getFullScaleRange()
Heidl 0:d1960beb98fe 290 * @see MPU6050_GYRO_FS_250
Heidl 0:d1960beb98fe 291 * @see MPU6050_RA_GYRO_CONFIG
Heidl 0:d1960beb98fe 292 * @see MPU6050_GCONFIG_FS_SEL_BIT
Heidl 0:d1960beb98fe 293 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
Heidl 0:d1960beb98fe 294 */
Heidl 0:d1960beb98fe 295 void MPU6050::setFullScaleGyroRange(uint8_t range)
Heidl 0:d1960beb98fe 296 {
Heidl 0:d1960beb98fe 297 i2Cdev.writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range);
Heidl 0:d1960beb98fe 298 }
Heidl 0:d1960beb98fe 299
Heidl 0:d1960beb98fe 300 // ACCEL_CONFIG register
Heidl 0:d1960beb98fe 301
Heidl 0:d1960beb98fe 302 /** Get self-test enabled setting for accelerometer X axis.
Heidl 0:d1960beb98fe 303 * @return Self-test enabled value
Heidl 0:d1960beb98fe 304 * @see MPU6050_RA_ACCEL_CONFIG
Heidl 0:d1960beb98fe 305 */
Heidl 0:d1960beb98fe 306 bool MPU6050::getAccelXSelfTest()
Heidl 0:d1960beb98fe 307 {
Heidl 0:d1960beb98fe 308 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer);
Heidl 0:d1960beb98fe 309 return buffer[0];
Heidl 0:d1960beb98fe 310 }
Heidl 0:d1960beb98fe 311 /** Get self-test enabled setting for accelerometer X axis.
Heidl 0:d1960beb98fe 312 * @param enabled Self-test enabled value
Heidl 0:d1960beb98fe 313 * @see MPU6050_RA_ACCEL_CONFIG
Heidl 0:d1960beb98fe 314 */
Heidl 0:d1960beb98fe 315 void MPU6050::setAccelXSelfTest(bool enabled)
Heidl 0:d1960beb98fe 316 {
Heidl 0:d1960beb98fe 317 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled);
Heidl 0:d1960beb98fe 318 }
Heidl 0:d1960beb98fe 319 /** Get self-test enabled value for accelerometer Y axis.
Heidl 0:d1960beb98fe 320 * @return Self-test enabled value
Heidl 0:d1960beb98fe 321 * @see MPU6050_RA_ACCEL_CONFIG
Heidl 0:d1960beb98fe 322 */
Heidl 0:d1960beb98fe 323 bool MPU6050::getAccelYSelfTest()
Heidl 0:d1960beb98fe 324 {
Heidl 0:d1960beb98fe 325 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer);
Heidl 0:d1960beb98fe 326 return buffer[0];
Heidl 0:d1960beb98fe 327 }
Heidl 0:d1960beb98fe 328 /** Get self-test enabled value for accelerometer Y axis.
Heidl 0:d1960beb98fe 329 * @param enabled Self-test enabled value
Heidl 0:d1960beb98fe 330 * @see MPU6050_RA_ACCEL_CONFIG
Heidl 0:d1960beb98fe 331 */
Heidl 0:d1960beb98fe 332 void MPU6050::setAccelYSelfTest(bool enabled)
Heidl 0:d1960beb98fe 333 {
Heidl 0:d1960beb98fe 334 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled);
Heidl 0:d1960beb98fe 335 }
Heidl 0:d1960beb98fe 336 /** Get self-test enabled value for accelerometer Z axis.
Heidl 0:d1960beb98fe 337 * @return Self-test enabled value
Heidl 0:d1960beb98fe 338 * @see MPU6050_RA_ACCEL_CONFIG
Heidl 0:d1960beb98fe 339 */
Heidl 0:d1960beb98fe 340 bool MPU6050::getAccelZSelfTest()
Heidl 0:d1960beb98fe 341 {
Heidl 0:d1960beb98fe 342 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer);
Heidl 0:d1960beb98fe 343 return buffer[0];
Heidl 0:d1960beb98fe 344 }
Heidl 0:d1960beb98fe 345 /** Set self-test enabled value for accelerometer Z axis.
Heidl 0:d1960beb98fe 346 * @param enabled Self-test enabled value
Heidl 0:d1960beb98fe 347 * @see MPU6050_RA_ACCEL_CONFIG
Heidl 0:d1960beb98fe 348 */
Heidl 0:d1960beb98fe 349 void MPU6050::setAccelZSelfTest(bool enabled)
Heidl 0:d1960beb98fe 350 {
Heidl 0:d1960beb98fe 351 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled);
Heidl 0:d1960beb98fe 352 }
Heidl 0:d1960beb98fe 353 /** Get full-scale accelerometer range.
Heidl 0:d1960beb98fe 354 * The FS_SEL parameter allows setting the full-scale range of the accelerometer
Heidl 0:d1960beb98fe 355 * sensors, as described in the table below.
Heidl 0:d1960beb98fe 356 *
Heidl 0:d1960beb98fe 357 * <pre>
Heidl 0:d1960beb98fe 358 * 0 = +/- 2g
Heidl 0:d1960beb98fe 359 * 1 = +/- 4g
Heidl 0:d1960beb98fe 360 * 2 = +/- 8g
Heidl 0:d1960beb98fe 361 * 3 = +/- 16g
Heidl 0:d1960beb98fe 362 * </pre>
Heidl 0:d1960beb98fe 363 *
Heidl 0:d1960beb98fe 364 * @return Current full-scale accelerometer range setting
Heidl 0:d1960beb98fe 365 * @see MPU6050_ACCEL_FS_2
Heidl 0:d1960beb98fe 366 * @see MPU6050_RA_ACCEL_CONFIG
Heidl 0:d1960beb98fe 367 * @see MPU6050_ACONFIG_AFS_SEL_BIT
Heidl 0:d1960beb98fe 368 * @see MPU6050_ACONFIG_AFS_SEL_LENGTH
Heidl 0:d1960beb98fe 369 */
Heidl 0:d1960beb98fe 370 uint8_t MPU6050::getFullScaleAccelRange()
Heidl 0:d1960beb98fe 371 {
Heidl 0:d1960beb98fe 372 i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer);
Heidl 0:d1960beb98fe 373 return buffer[0];
Heidl 0:d1960beb98fe 374 }
Heidl 0:d1960beb98fe 375 /** Set full-scale accelerometer range.
Heidl 0:d1960beb98fe 376 * @param range New full-scale accelerometer range setting
Heidl 0:d1960beb98fe 377 * @see getFullScaleAccelRange()
Heidl 0:d1960beb98fe 378 */
Heidl 0:d1960beb98fe 379 void MPU6050::setFullScaleAccelRange(uint8_t range)
Heidl 0:d1960beb98fe 380 {
Heidl 0:d1960beb98fe 381 i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range);
Heidl 0:d1960beb98fe 382 }
Heidl 0:d1960beb98fe 383 /** Get the high-pass filter configuration.
Heidl 0:d1960beb98fe 384 * The DHPF is a filter module in the path leading to motion detectors (Free
Heidl 0:d1960beb98fe 385 * Fall, Motion threshold, and Zero Motion). The high pass filter output is not
Heidl 0:d1960beb98fe 386 * available to the data registers (see Figure in Section 8 of the MPU-6000/
Heidl 0:d1960beb98fe 387 * MPU-6050 Product Specification document).
Heidl 0:d1960beb98fe 388 *
Heidl 0:d1960beb98fe 389 * The high pass filter has three modes:
Heidl 0:d1960beb98fe 390 *
Heidl 0:d1960beb98fe 391 * <pre>
Heidl 0:d1960beb98fe 392 * Reset: The filter output settles to zero within one sample. This
Heidl 0:d1960beb98fe 393 * effectively disables the high pass filter. This mode may be toggled
Heidl 0:d1960beb98fe 394 * to quickly settle the filter.
Heidl 0:d1960beb98fe 395 *
Heidl 0:d1960beb98fe 396 * On: The high pass filter will pass signals above the cut off frequency.
Heidl 0:d1960beb98fe 397 *
Heidl 0:d1960beb98fe 398 * Hold: When triggered, the filter holds the present sample. The filter
Heidl 0:d1960beb98fe 399 * output will be the difference between the input sample and the held
Heidl 0:d1960beb98fe 400 * sample.
Heidl 0:d1960beb98fe 401 * </pre>
Heidl 0:d1960beb98fe 402 *
Heidl 0:d1960beb98fe 403 * <pre>
Heidl 0:d1960beb98fe 404 * ACCEL_HPF | Filter Mode | Cut-off Frequency
Heidl 0:d1960beb98fe 405 * ----------+-------------+------------------
Heidl 0:d1960beb98fe 406 * 0 | Reset | None
Heidl 0:d1960beb98fe 407 * 1 | On | 5Hz
Heidl 0:d1960beb98fe 408 * 2 | On | 2.5Hz
Heidl 0:d1960beb98fe 409 * 3 | On | 1.25Hz
Heidl 0:d1960beb98fe 410 * 4 | On | 0.63Hz
Heidl 0:d1960beb98fe 411 * 7 | Hold | None
Heidl 0:d1960beb98fe 412 * </pre>
Heidl 0:d1960beb98fe 413 *
Heidl 0:d1960beb98fe 414 * @return Current high-pass filter configuration
Heidl 0:d1960beb98fe 415 * @see MPU6050_DHPF_RESET
Heidl 0:d1960beb98fe 416 * @see MPU6050_RA_ACCEL_CONFIG
Heidl 0:d1960beb98fe 417 */
Heidl 0:d1960beb98fe 418 uint8_t MPU6050::getDHPFMode()
Heidl 0:d1960beb98fe 419 {
Heidl 0:d1960beb98fe 420 i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, buffer);
Heidl 0:d1960beb98fe 421 return buffer[0];
Heidl 0:d1960beb98fe 422 }
Heidl 0:d1960beb98fe 423 /** Set the high-pass filter configuration.
Heidl 0:d1960beb98fe 424 * @param bandwidth New high-pass filter configuration
Heidl 0:d1960beb98fe 425 * @see setDHPFMode()
Heidl 0:d1960beb98fe 426 * @see MPU6050_DHPF_RESET
Heidl 0:d1960beb98fe 427 * @see MPU6050_RA_ACCEL_CONFIG
Heidl 0:d1960beb98fe 428 */
Heidl 0:d1960beb98fe 429 void MPU6050::setDHPFMode(uint8_t bandwidth)
Heidl 0:d1960beb98fe 430 {
Heidl 0:d1960beb98fe 431 i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, bandwidth);
Heidl 0:d1960beb98fe 432 }
Heidl 0:d1960beb98fe 433
Heidl 0:d1960beb98fe 434 // FF_THR register
Heidl 0:d1960beb98fe 435
Heidl 0:d1960beb98fe 436 /** Get free-fall event acceleration threshold.
Heidl 0:d1960beb98fe 437 * This register configures the detection threshold for Free Fall event
Heidl 0:d1960beb98fe 438 * detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the
Heidl 0:d1960beb98fe 439 * absolute value of the accelerometer measurements for the three axes are each
Heidl 0:d1960beb98fe 440 * less than the detection threshold. This condition increments the Free Fall
Heidl 0:d1960beb98fe 441 * duration counter (Register 30). The Free Fall interrupt is triggered when the
Heidl 0:d1960beb98fe 442 * Free Fall duration counter reaches the time specified in FF_DUR.
Heidl 0:d1960beb98fe 443 *
Heidl 0:d1960beb98fe 444 * For more details on the Free Fall detection interrupt, see Section 8.2 of the
Heidl 0:d1960beb98fe 445 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
Heidl 0:d1960beb98fe 446 * 58 of this document.
Heidl 0:d1960beb98fe 447 *
Heidl 0:d1960beb98fe 448 * @return Current free-fall acceleration threshold value (LSB = 2mg)
Heidl 0:d1960beb98fe 449 * @see MPU6050_RA_FF_THR
Heidl 0:d1960beb98fe 450 */
Heidl 0:d1960beb98fe 451 uint8_t MPU6050::getFreefallDetectionThreshold()
Heidl 0:d1960beb98fe 452 {
Heidl 0:d1960beb98fe 453 i2Cdev.readByte(devAddr, MPU6050_RA_FF_THR, buffer);
Heidl 0:d1960beb98fe 454 return buffer[0];
Heidl 0:d1960beb98fe 455 }
Heidl 0:d1960beb98fe 456 /** Get free-fall event acceleration threshold.
Heidl 0:d1960beb98fe 457 * @param threshold New free-fall acceleration threshold value (LSB = 2mg)
Heidl 0:d1960beb98fe 458 * @see getFreefallDetectionThreshold()
Heidl 0:d1960beb98fe 459 * @see MPU6050_RA_FF_THR
Heidl 0:d1960beb98fe 460 */
Heidl 0:d1960beb98fe 461 void MPU6050::setFreefallDetectionThreshold(uint8_t threshold)
Heidl 0:d1960beb98fe 462 {
Heidl 0:d1960beb98fe 463 i2Cdev.writeByte(devAddr, MPU6050_RA_FF_THR, threshold);
Heidl 0:d1960beb98fe 464 }
Heidl 0:d1960beb98fe 465
Heidl 0:d1960beb98fe 466 // FF_DUR register
Heidl 0:d1960beb98fe 467
Heidl 0:d1960beb98fe 468 /** Get free-fall event duration threshold.
Heidl 0:d1960beb98fe 469 * This register configures the duration counter threshold for Free Fall event
Heidl 0:d1960beb98fe 470 * detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit
Heidl 0:d1960beb98fe 471 * of 1 LSB = 1 ms.
Heidl 0:d1960beb98fe 472 *
Heidl 0:d1960beb98fe 473 * The Free Fall duration counter increments while the absolute value of the
Heidl 0:d1960beb98fe 474 * accelerometer measurements are each less than the detection threshold
Heidl 0:d1960beb98fe 475 * (Register 29). The Free Fall interrupt is triggered when the Free Fall
Heidl 0:d1960beb98fe 476 * duration counter reaches the time specified in this register.
Heidl 0:d1960beb98fe 477 *
Heidl 0:d1960beb98fe 478 * For more details on the Free Fall detection interrupt, see Section 8.2 of
Heidl 0:d1960beb98fe 479 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
Heidl 0:d1960beb98fe 480 * and 58 of this document.
Heidl 0:d1960beb98fe 481 *
Heidl 0:d1960beb98fe 482 * @return Current free-fall duration threshold value (LSB = 1ms)
Heidl 0:d1960beb98fe 483 * @see MPU6050_RA_FF_DUR
Heidl 0:d1960beb98fe 484 */
Heidl 0:d1960beb98fe 485 uint8_t MPU6050::getFreefallDetectionDuration()
Heidl 0:d1960beb98fe 486 {
Heidl 0:d1960beb98fe 487 i2Cdev.readByte(devAddr, MPU6050_RA_FF_DUR, buffer);
Heidl 0:d1960beb98fe 488 return buffer[0];
Heidl 0:d1960beb98fe 489 }
Heidl 0:d1960beb98fe 490 /** Get free-fall event duration threshold.
Heidl 0:d1960beb98fe 491 * @param duration New free-fall duration threshold value (LSB = 1ms)
Heidl 0:d1960beb98fe 492 * @see getFreefallDetectionDuration()
Heidl 0:d1960beb98fe 493 * @see MPU6050_RA_FF_DUR
Heidl 0:d1960beb98fe 494 */
Heidl 0:d1960beb98fe 495 void MPU6050::setFreefallDetectionDuration(uint8_t duration)
Heidl 0:d1960beb98fe 496 {
Heidl 0:d1960beb98fe 497 i2Cdev.writeByte(devAddr, MPU6050_RA_FF_DUR, duration);
Heidl 0:d1960beb98fe 498 }
Heidl 0:d1960beb98fe 499
Heidl 0:d1960beb98fe 500 // MOT_THR register
Heidl 0:d1960beb98fe 501
Heidl 0:d1960beb98fe 502 /** Get motion detection event acceleration threshold.
Heidl 0:d1960beb98fe 503 * This register configures the detection threshold for Motion interrupt
Heidl 0:d1960beb98fe 504 * generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the
Heidl 0:d1960beb98fe 505 * absolute value of any of the accelerometer measurements exceeds this Motion
Heidl 0:d1960beb98fe 506 * detection threshold. This condition increments the Motion detection duration
Heidl 0:d1960beb98fe 507 * counter (Register 32). The Motion detection interrupt is triggered when the
Heidl 0:d1960beb98fe 508 * Motion Detection counter reaches the time count specified in MOT_DUR
Heidl 0:d1960beb98fe 509 * (Register 32).
Heidl 0:d1960beb98fe 510 *
Heidl 0:d1960beb98fe 511 * The Motion interrupt will indicate the axis and polarity of detected motion
Heidl 0:d1960beb98fe 512 * in MOT_DETECT_STATUS (Register 97).
Heidl 0:d1960beb98fe 513 *
Heidl 0:d1960beb98fe 514 * For more details on the Motion detection interrupt, see Section 8.3 of the
Heidl 0:d1960beb98fe 515 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
Heidl 0:d1960beb98fe 516 * 58 of this document.
Heidl 0:d1960beb98fe 517 *
Heidl 0:d1960beb98fe 518 * @return Current motion detection acceleration threshold value (LSB = 2mg)
Heidl 0:d1960beb98fe 519 * @see MPU6050_RA_MOT_THR
Heidl 0:d1960beb98fe 520 */
Heidl 0:d1960beb98fe 521 uint8_t MPU6050::getMotionDetectionThreshold()
Heidl 0:d1960beb98fe 522 {
Heidl 0:d1960beb98fe 523 i2Cdev.readByte(devAddr, MPU6050_RA_MOT_THR, buffer);
Heidl 0:d1960beb98fe 524 return buffer[0];
Heidl 0:d1960beb98fe 525 }
Heidl 0:d1960beb98fe 526 /** Set free-fall event acceleration threshold.
Heidl 0:d1960beb98fe 527 * @param threshold New motion detection acceleration threshold value (LSB = 2mg)
Heidl 0:d1960beb98fe 528 * @see getMotionDetectionThreshold()
Heidl 0:d1960beb98fe 529 * @see MPU6050_RA_MOT_THR
Heidl 0:d1960beb98fe 530 */
Heidl 0:d1960beb98fe 531 void MPU6050::setMotionDetectionThreshold(uint8_t threshold)
Heidl 0:d1960beb98fe 532 {
Heidl 0:d1960beb98fe 533 i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_THR, threshold);
Heidl 0:d1960beb98fe 534 }
Heidl 0:d1960beb98fe 535
Heidl 0:d1960beb98fe 536 // MOT_DUR register
Heidl 0:d1960beb98fe 537
Heidl 0:d1960beb98fe 538 /** Get motion detection event duration threshold.
Heidl 0:d1960beb98fe 539 * This register configures the duration counter threshold for Motion interrupt
Heidl 0:d1960beb98fe 540 * generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit
Heidl 0:d1960beb98fe 541 * of 1LSB = 1ms. The Motion detection duration counter increments when the
Heidl 0:d1960beb98fe 542 * absolute value of any of the accelerometer measurements exceeds the Motion
Heidl 0:d1960beb98fe 543 * detection threshold (Register 31). The Motion detection interrupt is
Heidl 0:d1960beb98fe 544 * triggered when the Motion detection counter reaches the time count specified
Heidl 0:d1960beb98fe 545 * in this register.
Heidl 0:d1960beb98fe 546 *
Heidl 0:d1960beb98fe 547 * For more details on the Motion detection interrupt, see Section 8.3 of the
Heidl 0:d1960beb98fe 548 * MPU-6000/MPU-6050 Product Specification document.
Heidl 0:d1960beb98fe 549 *
Heidl 0:d1960beb98fe 550 * @return Current motion detection duration threshold value (LSB = 1ms)
Heidl 0:d1960beb98fe 551 * @see MPU6050_RA_MOT_DUR
Heidl 0:d1960beb98fe 552 */
Heidl 0:d1960beb98fe 553 uint8_t MPU6050::getMotionDetectionDuration()
Heidl 0:d1960beb98fe 554 {
Heidl 0:d1960beb98fe 555 i2Cdev.readByte(devAddr, MPU6050_RA_MOT_DUR, buffer);
Heidl 0:d1960beb98fe 556 return buffer[0];
Heidl 0:d1960beb98fe 557 }
Heidl 0:d1960beb98fe 558 /** Set motion detection event duration threshold.
Heidl 0:d1960beb98fe 559 * @param duration New motion detection duration threshold value (LSB = 1ms)
Heidl 0:d1960beb98fe 560 * @see getMotionDetectionDuration()
Heidl 0:d1960beb98fe 561 * @see MPU6050_RA_MOT_DUR
Heidl 0:d1960beb98fe 562 */
Heidl 0:d1960beb98fe 563 void MPU6050::setMotionDetectionDuration(uint8_t duration)
Heidl 0:d1960beb98fe 564 {
Heidl 0:d1960beb98fe 565 i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_DUR, duration);
Heidl 0:d1960beb98fe 566 }
Heidl 0:d1960beb98fe 567
Heidl 0:d1960beb98fe 568 // ZRMOT_THR register
Heidl 0:d1960beb98fe 569
Heidl 0:d1960beb98fe 570 /** Get zero motion detection event acceleration threshold.
Heidl 0:d1960beb98fe 571 * This register configures the detection threshold for Zero Motion interrupt
Heidl 0:d1960beb98fe 572 * generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when
Heidl 0:d1960beb98fe 573 * the absolute value of the accelerometer measurements for the 3 axes are each
Heidl 0:d1960beb98fe 574 * less than the detection threshold. This condition increments the Zero Motion
Heidl 0:d1960beb98fe 575 * duration counter (Register 34). The Zero Motion interrupt is triggered when
Heidl 0:d1960beb98fe 576 * the Zero Motion duration counter reaches the time count specified in
Heidl 0:d1960beb98fe 577 * ZRMOT_DUR (Register 34).
Heidl 0:d1960beb98fe 578 *
Heidl 0:d1960beb98fe 579 * Unlike Free Fall or Motion detection, Zero Motion detection triggers an
Heidl 0:d1960beb98fe 580 * interrupt both when Zero Motion is first detected and when Zero Motion is no
Heidl 0:d1960beb98fe 581 * longer detected.
Heidl 0:d1960beb98fe 582 *
Heidl 0:d1960beb98fe 583 * When a zero motion event is detected, a Zero Motion Status will be indicated
Heidl 0:d1960beb98fe 584 * in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion
Heidl 0:d1960beb98fe 585 * condition is detected, the status bit is set to 1. When a zero-motion-to-
Heidl 0:d1960beb98fe 586 * motion condition is detected, the status bit is set to 0.
Heidl 0:d1960beb98fe 587 *
Heidl 0:d1960beb98fe 588 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
Heidl 0:d1960beb98fe 589 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
Heidl 0:d1960beb98fe 590 * and 58 of this document.
Heidl 0:d1960beb98fe 591 *
Heidl 0:d1960beb98fe 592 * @return Current zero motion detection acceleration threshold value (LSB = 2mg)
Heidl 0:d1960beb98fe 593 * @see MPU6050_RA_ZRMOT_THR
Heidl 0:d1960beb98fe 594 */
Heidl 0:d1960beb98fe 595 uint8_t MPU6050::getZeroMotionDetectionThreshold()
Heidl 0:d1960beb98fe 596 {
Heidl 0:d1960beb98fe 597 i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer);
Heidl 0:d1960beb98fe 598 return buffer[0];
Heidl 0:d1960beb98fe 599 }
Heidl 0:d1960beb98fe 600 /** Set zero motion detection event acceleration threshold.
Heidl 0:d1960beb98fe 601 * @param threshold New zero motion detection acceleration threshold value (LSB = 2mg)
Heidl 0:d1960beb98fe 602 * @see getZeroMotionDetectionThreshold()
Heidl 0:d1960beb98fe 603 * @see MPU6050_RA_ZRMOT_THR
Heidl 0:d1960beb98fe 604 */
Heidl 0:d1960beb98fe 605 void MPU6050::setZeroMotionDetectionThreshold(uint8_t threshold)
Heidl 0:d1960beb98fe 606 {
Heidl 0:d1960beb98fe 607 i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold);
Heidl 0:d1960beb98fe 608 }
Heidl 0:d1960beb98fe 609
Heidl 0:d1960beb98fe 610 // ZRMOT_DUR register
Heidl 0:d1960beb98fe 611
Heidl 0:d1960beb98fe 612 /** Get zero motion detection event duration threshold.
Heidl 0:d1960beb98fe 613 * This register configures the duration counter threshold for Zero Motion
Heidl 0:d1960beb98fe 614 * interrupt generation. The duration counter ticks at 16 Hz, therefore
Heidl 0:d1960beb98fe 615 * ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter
Heidl 0:d1960beb98fe 616 * increments while the absolute value of the accelerometer measurements are
Heidl 0:d1960beb98fe 617 * each less than the detection threshold (Register 33). The Zero Motion
Heidl 0:d1960beb98fe 618 * interrupt is triggered when the Zero Motion duration counter reaches the time
Heidl 0:d1960beb98fe 619 * count specified in this register.
Heidl 0:d1960beb98fe 620 *
Heidl 0:d1960beb98fe 621 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
Heidl 0:d1960beb98fe 622 * the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56
Heidl 0:d1960beb98fe 623 * and 58 of this document.
Heidl 0:d1960beb98fe 624 *
Heidl 0:d1960beb98fe 625 * @return Current zero motion detection duration threshold value (LSB = 64ms)
Heidl 0:d1960beb98fe 626 * @see MPU6050_RA_ZRMOT_DUR
Heidl 0:d1960beb98fe 627 */
Heidl 0:d1960beb98fe 628 uint8_t MPU6050::getZeroMotionDetectionDuration()
Heidl 0:d1960beb98fe 629 {
Heidl 0:d1960beb98fe 630 i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer);
Heidl 0:d1960beb98fe 631 return buffer[0];
Heidl 0:d1960beb98fe 632 }
Heidl 0:d1960beb98fe 633 /** Set zero motion detection event duration threshold.
Heidl 0:d1960beb98fe 634 * @param duration New zero motion detection duration threshold value (LSB = 1ms)
Heidl 0:d1960beb98fe 635 * @see getZeroMotionDetectionDuration()
Heidl 0:d1960beb98fe 636 * @see MPU6050_RA_ZRMOT_DUR
Heidl 0:d1960beb98fe 637 */
Heidl 0:d1960beb98fe 638 void MPU6050::setZeroMotionDetectionDuration(uint8_t duration)
Heidl 0:d1960beb98fe 639 {
Heidl 0:d1960beb98fe 640 i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration);
Heidl 0:d1960beb98fe 641 }
Heidl 0:d1960beb98fe 642
Heidl 0:d1960beb98fe 643 // FIFO_EN register
Heidl 0:d1960beb98fe 644
Heidl 0:d1960beb98fe 645 /** Get temperature FIFO enabled value.
Heidl 0:d1960beb98fe 646 * When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and
Heidl 0:d1960beb98fe 647 * 66) to be written into the FIFO buffer.
Heidl 0:d1960beb98fe 648 * @return Current temperature FIFO enabled value
Heidl 0:d1960beb98fe 649 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 650 */
Heidl 0:d1960beb98fe 651 bool MPU6050::getTempFIFOEnabled()
Heidl 0:d1960beb98fe 652 {
Heidl 0:d1960beb98fe 653 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer);
Heidl 0:d1960beb98fe 654 return buffer[0];
Heidl 0:d1960beb98fe 655 }
Heidl 0:d1960beb98fe 656 /** Set temperature FIFO enabled value.
Heidl 0:d1960beb98fe 657 * @param enabled New temperature FIFO enabled value
Heidl 0:d1960beb98fe 658 * @see getTempFIFOEnabled()
Heidl 0:d1960beb98fe 659 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 660 */
Heidl 0:d1960beb98fe 661 void MPU6050::setTempFIFOEnabled(bool enabled)
Heidl 0:d1960beb98fe 662 {
Heidl 0:d1960beb98fe 663 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled);
Heidl 0:d1960beb98fe 664 }
Heidl 0:d1960beb98fe 665 /** Get gyroscope X-axis FIFO enabled value.
Heidl 0:d1960beb98fe 666 * When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and
Heidl 0:d1960beb98fe 667 * 68) to be written into the FIFO buffer.
Heidl 0:d1960beb98fe 668 * @return Current gyroscope X-axis FIFO enabled value
Heidl 0:d1960beb98fe 669 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 670 */
Heidl 0:d1960beb98fe 671 bool MPU6050::getXGyroFIFOEnabled()
Heidl 0:d1960beb98fe 672 {
Heidl 0:d1960beb98fe 673 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer);
Heidl 0:d1960beb98fe 674 return buffer[0];
Heidl 0:d1960beb98fe 675 }
Heidl 0:d1960beb98fe 676 /** Set gyroscope X-axis FIFO enabled value.
Heidl 0:d1960beb98fe 677 * @param enabled New gyroscope X-axis FIFO enabled value
Heidl 0:d1960beb98fe 678 * @see getXGyroFIFOEnabled()
Heidl 0:d1960beb98fe 679 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 680 */
Heidl 0:d1960beb98fe 681 void MPU6050::setXGyroFIFOEnabled(bool enabled)
Heidl 0:d1960beb98fe 682 {
Heidl 0:d1960beb98fe 683 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled);
Heidl 0:d1960beb98fe 684 }
Heidl 0:d1960beb98fe 685 /** Get gyroscope Y-axis FIFO enabled value.
Heidl 0:d1960beb98fe 686 * When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and
Heidl 0:d1960beb98fe 687 * 70) to be written into the FIFO buffer.
Heidl 0:d1960beb98fe 688 * @return Current gyroscope Y-axis FIFO enabled value
Heidl 0:d1960beb98fe 689 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 690 */
Heidl 0:d1960beb98fe 691 bool MPU6050::getYGyroFIFOEnabled()
Heidl 0:d1960beb98fe 692 {
Heidl 0:d1960beb98fe 693 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer);
Heidl 0:d1960beb98fe 694 return buffer[0];
Heidl 0:d1960beb98fe 695 }
Heidl 0:d1960beb98fe 696 /** Set gyroscope Y-axis FIFO enabled value.
Heidl 0:d1960beb98fe 697 * @param enabled New gyroscope Y-axis FIFO enabled value
Heidl 0:d1960beb98fe 698 * @see getYGyroFIFOEnabled()
Heidl 0:d1960beb98fe 699 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 700 */
Heidl 0:d1960beb98fe 701 void MPU6050::setYGyroFIFOEnabled(bool enabled)
Heidl 0:d1960beb98fe 702 {
Heidl 0:d1960beb98fe 703 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled);
Heidl 0:d1960beb98fe 704 }
Heidl 0:d1960beb98fe 705 /** Get gyroscope Z-axis FIFO enabled value.
Heidl 0:d1960beb98fe 706 * When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and
Heidl 0:d1960beb98fe 707 * 72) to be written into the FIFO buffer.
Heidl 0:d1960beb98fe 708 * @return Current gyroscope Z-axis FIFO enabled value
Heidl 0:d1960beb98fe 709 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 710 */
Heidl 0:d1960beb98fe 711 bool MPU6050::getZGyroFIFOEnabled()
Heidl 0:d1960beb98fe 712 {
Heidl 0:d1960beb98fe 713 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer);
Heidl 0:d1960beb98fe 714 return buffer[0];
Heidl 0:d1960beb98fe 715 }
Heidl 0:d1960beb98fe 716 /** Set gyroscope Z-axis FIFO enabled value.
Heidl 0:d1960beb98fe 717 * @param enabled New gyroscope Z-axis FIFO enabled value
Heidl 0:d1960beb98fe 718 * @see getZGyroFIFOEnabled()
Heidl 0:d1960beb98fe 719 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 720 */
Heidl 0:d1960beb98fe 721 void MPU6050::setZGyroFIFOEnabled(bool enabled)
Heidl 0:d1960beb98fe 722 {
Heidl 0:d1960beb98fe 723 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled);
Heidl 0:d1960beb98fe 724 }
Heidl 0:d1960beb98fe 725 /** Get accelerometer FIFO enabled value.
Heidl 0:d1960beb98fe 726 * When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H,
Heidl 0:d1960beb98fe 727 * ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be
Heidl 0:d1960beb98fe 728 * written into the FIFO buffer.
Heidl 0:d1960beb98fe 729 * @return Current accelerometer FIFO enabled value
Heidl 0:d1960beb98fe 730 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 731 */
Heidl 0:d1960beb98fe 732 bool MPU6050::getAccelFIFOEnabled()
Heidl 0:d1960beb98fe 733 {
Heidl 0:d1960beb98fe 734 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer);
Heidl 0:d1960beb98fe 735 return buffer[0];
Heidl 0:d1960beb98fe 736 }
Heidl 0:d1960beb98fe 737 /** Set accelerometer FIFO enabled value.
Heidl 0:d1960beb98fe 738 * @param enabled New accelerometer FIFO enabled value
Heidl 0:d1960beb98fe 739 * @see getAccelFIFOEnabled()
Heidl 0:d1960beb98fe 740 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 741 */
Heidl 0:d1960beb98fe 742 void MPU6050::setAccelFIFOEnabled(bool enabled)
Heidl 0:d1960beb98fe 743 {
Heidl 0:d1960beb98fe 744 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled);
Heidl 0:d1960beb98fe 745 }
Heidl 0:d1960beb98fe 746 /** Get Slave 2 FIFO enabled value.
Heidl 0:d1960beb98fe 747 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
Heidl 0:d1960beb98fe 748 * associated with Slave 2 to be written into the FIFO buffer.
Heidl 0:d1960beb98fe 749 * @return Current Slave 2 FIFO enabled value
Heidl 0:d1960beb98fe 750 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 751 */
Heidl 0:d1960beb98fe 752 bool MPU6050::getSlave2FIFOEnabled()
Heidl 0:d1960beb98fe 753 {
Heidl 0:d1960beb98fe 754 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer);
Heidl 0:d1960beb98fe 755 return buffer[0];
Heidl 0:d1960beb98fe 756 }
Heidl 0:d1960beb98fe 757 /** Set Slave 2 FIFO enabled value.
Heidl 0:d1960beb98fe 758 * @param enabled New Slave 2 FIFO enabled value
Heidl 0:d1960beb98fe 759 * @see getSlave2FIFOEnabled()
Heidl 0:d1960beb98fe 760 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 761 */
Heidl 0:d1960beb98fe 762 void MPU6050::setSlave2FIFOEnabled(bool enabled)
Heidl 0:d1960beb98fe 763 {
Heidl 0:d1960beb98fe 764 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled);
Heidl 0:d1960beb98fe 765 }
Heidl 0:d1960beb98fe 766 /** Get Slave 1 FIFO enabled value.
Heidl 0:d1960beb98fe 767 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
Heidl 0:d1960beb98fe 768 * associated with Slave 1 to be written into the FIFO buffer.
Heidl 0:d1960beb98fe 769 * @return Current Slave 1 FIFO enabled value
Heidl 0:d1960beb98fe 770 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 771 */
Heidl 0:d1960beb98fe 772 bool MPU6050::getSlave1FIFOEnabled()
Heidl 0:d1960beb98fe 773 {
Heidl 0:d1960beb98fe 774 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer);
Heidl 0:d1960beb98fe 775 return buffer[0];
Heidl 0:d1960beb98fe 776 }
Heidl 0:d1960beb98fe 777 /** Set Slave 1 FIFO enabled value.
Heidl 0:d1960beb98fe 778 * @param enabled New Slave 1 FIFO enabled value
Heidl 0:d1960beb98fe 779 * @see getSlave1FIFOEnabled()
Heidl 0:d1960beb98fe 780 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 781 */
Heidl 0:d1960beb98fe 782 void MPU6050::setSlave1FIFOEnabled(bool enabled)
Heidl 0:d1960beb98fe 783 {
Heidl 0:d1960beb98fe 784 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled);
Heidl 0:d1960beb98fe 785 }
Heidl 0:d1960beb98fe 786 /** Get Slave 0 FIFO enabled value.
Heidl 0:d1960beb98fe 787 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
Heidl 0:d1960beb98fe 788 * associated with Slave 0 to be written into the FIFO buffer.
Heidl 0:d1960beb98fe 789 * @return Current Slave 0 FIFO enabled value
Heidl 0:d1960beb98fe 790 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 791 */
Heidl 0:d1960beb98fe 792 bool MPU6050::getSlave0FIFOEnabled()
Heidl 0:d1960beb98fe 793 {
Heidl 0:d1960beb98fe 794 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer);
Heidl 0:d1960beb98fe 795 return buffer[0];
Heidl 0:d1960beb98fe 796 }
Heidl 0:d1960beb98fe 797 /** Set Slave 0 FIFO enabled value.
Heidl 0:d1960beb98fe 798 * @param enabled New Slave 0 FIFO enabled value
Heidl 0:d1960beb98fe 799 * @see getSlave0FIFOEnabled()
Heidl 0:d1960beb98fe 800 * @see MPU6050_RA_FIFO_EN
Heidl 0:d1960beb98fe 801 */
Heidl 0:d1960beb98fe 802 void MPU6050::setSlave0FIFOEnabled(bool enabled)
Heidl 0:d1960beb98fe 803 {
Heidl 0:d1960beb98fe 804 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled);
Heidl 0:d1960beb98fe 805 }
Heidl 0:d1960beb98fe 806
Heidl 0:d1960beb98fe 807 // I2C_MST_CTRL register
Heidl 0:d1960beb98fe 808
Heidl 0:d1960beb98fe 809 /** Get multi-master enabled value.
Heidl 0:d1960beb98fe 810 * Multi-master capability allows multiple I2C masters to operate on the same
Heidl 0:d1960beb98fe 811 * bus. In circuits where multi-master capability is required, set MULT_MST_EN
Heidl 0:d1960beb98fe 812 * to 1. This will increase current drawn by approximately 30uA.
Heidl 0:d1960beb98fe 813 *
Heidl 0:d1960beb98fe 814 * In circuits where multi-master capability is required, the state of the I2C
Heidl 0:d1960beb98fe 815 * bus must always be monitored by each separate I2C Master. Before an I2C
Heidl 0:d1960beb98fe 816 * Master can assume arbitration of the bus, it must first confirm that no other
Heidl 0:d1960beb98fe 817 * I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the
Heidl 0:d1960beb98fe 818 * MPU-60X0's bus arbitration detection logic is turned on, enabling it to
Heidl 0:d1960beb98fe 819 * detect when the bus is available.
Heidl 0:d1960beb98fe 820 *
Heidl 0:d1960beb98fe 821 * @return Current multi-master enabled value
Heidl 0:d1960beb98fe 822 * @see MPU6050_RA_I2C_MST_CTRL
Heidl 0:d1960beb98fe 823 */
Heidl 0:d1960beb98fe 824 bool MPU6050::getMultiMasterEnabled()
Heidl 0:d1960beb98fe 825 {
Heidl 0:d1960beb98fe 826 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer);
Heidl 0:d1960beb98fe 827 return buffer[0];
Heidl 0:d1960beb98fe 828 }
Heidl 0:d1960beb98fe 829 /** Set multi-master enabled value.
Heidl 0:d1960beb98fe 830 * @param enabled New multi-master enabled value
Heidl 0:d1960beb98fe 831 * @see getMultiMasterEnabled()
Heidl 0:d1960beb98fe 832 * @see MPU6050_RA_I2C_MST_CTRL
Heidl 0:d1960beb98fe 833 */
Heidl 0:d1960beb98fe 834 void MPU6050::setMultiMasterEnabled(bool enabled)
Heidl 0:d1960beb98fe 835 {
Heidl 0:d1960beb98fe 836 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled);
Heidl 0:d1960beb98fe 837 }
Heidl 0:d1960beb98fe 838 /** Get wait-for-external-sensor-data enabled value.
Heidl 0:d1960beb98fe 839 * When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be
Heidl 0:d1960beb98fe 840 * delayed until External Sensor data from the Slave Devices are loaded into the
Heidl 0:d1960beb98fe 841 * EXT_SENS_DATA registers. This is used to ensure that both the internal sensor
Heidl 0:d1960beb98fe 842 * data (i.e. from gyro and accel) and external sensor data have been loaded to
Heidl 0:d1960beb98fe 843 * their respective data registers (i.e. the data is synced) when the Data Ready
Heidl 0:d1960beb98fe 844 * interrupt is triggered.
Heidl 0:d1960beb98fe 845 *
Heidl 0:d1960beb98fe 846 * @return Current wait-for-external-sensor-data enabled value
Heidl 0:d1960beb98fe 847 * @see MPU6050_RA_I2C_MST_CTRL
Heidl 0:d1960beb98fe 848 */
Heidl 0:d1960beb98fe 849 bool MPU6050::getWaitForExternalSensorEnabled()
Heidl 0:d1960beb98fe 850 {
Heidl 0:d1960beb98fe 851 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer);
Heidl 0:d1960beb98fe 852 return buffer[0];
Heidl 0:d1960beb98fe 853 }
Heidl 0:d1960beb98fe 854 /** Set wait-for-external-sensor-data enabled value.
Heidl 0:d1960beb98fe 855 * @param enabled New wait-for-external-sensor-data enabled value
Heidl 0:d1960beb98fe 856 * @see getWaitForExternalSensorEnabled()
Heidl 0:d1960beb98fe 857 * @see MPU6050_RA_I2C_MST_CTRL
Heidl 0:d1960beb98fe 858 */
Heidl 0:d1960beb98fe 859 void MPU6050::setWaitForExternalSensorEnabled(bool enabled)
Heidl 0:d1960beb98fe 860 {
Heidl 0:d1960beb98fe 861 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled);
Heidl 0:d1960beb98fe 862 }
Heidl 0:d1960beb98fe 863 /** Get Slave 3 FIFO enabled value.
Heidl 0:d1960beb98fe 864 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
Heidl 0:d1960beb98fe 865 * associated with Slave 3 to be written into the FIFO buffer.
Heidl 0:d1960beb98fe 866 * @return Current Slave 3 FIFO enabled value
Heidl 0:d1960beb98fe 867 * @see MPU6050_RA_MST_CTRL
Heidl 0:d1960beb98fe 868 */
Heidl 0:d1960beb98fe 869 bool MPU6050::getSlave3FIFOEnabled()
Heidl 0:d1960beb98fe 870 {
Heidl 0:d1960beb98fe 871 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer);
Heidl 0:d1960beb98fe 872 return buffer[0];
Heidl 0:d1960beb98fe 873 }
Heidl 0:d1960beb98fe 874 /** Set Slave 3 FIFO enabled value.
Heidl 0:d1960beb98fe 875 * @param enabled New Slave 3 FIFO enabled value
Heidl 0:d1960beb98fe 876 * @see getSlave3FIFOEnabled()
Heidl 0:d1960beb98fe 877 * @see MPU6050_RA_MST_CTRL
Heidl 0:d1960beb98fe 878 */
Heidl 0:d1960beb98fe 879 void MPU6050::setSlave3FIFOEnabled(bool enabled)
Heidl 0:d1960beb98fe 880 {
Heidl 0:d1960beb98fe 881 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled);
Heidl 0:d1960beb98fe 882 }
Heidl 0:d1960beb98fe 883 /** Get slave read/write transition enabled value.
Heidl 0:d1960beb98fe 884 * The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave
Heidl 0:d1960beb98fe 885 * read to the next slave read. If the bit equals 0, there will be a restart
Heidl 0:d1960beb98fe 886 * between reads. If the bit equals 1, there will be a stop followed by a start
Heidl 0:d1960beb98fe 887 * of the following read. When a write transaction follows a read transaction,
Heidl 0:d1960beb98fe 888 * the stop followed by a start of the successive write will be always used.
Heidl 0:d1960beb98fe 889 *
Heidl 0:d1960beb98fe 890 * @return Current slave read/write transition enabled value
Heidl 0:d1960beb98fe 891 * @see MPU6050_RA_I2C_MST_CTRL
Heidl 0:d1960beb98fe 892 */
Heidl 0:d1960beb98fe 893 bool MPU6050::getSlaveReadWriteTransitionEnabled()
Heidl 0:d1960beb98fe 894 {
Heidl 0:d1960beb98fe 895 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer);
Heidl 0:d1960beb98fe 896 return buffer[0];
Heidl 0:d1960beb98fe 897 }
Heidl 0:d1960beb98fe 898 /** Set slave read/write transition enabled value.
Heidl 0:d1960beb98fe 899 * @param enabled New slave read/write transition enabled value
Heidl 0:d1960beb98fe 900 * @see getSlaveReadWriteTransitionEnabled()
Heidl 0:d1960beb98fe 901 * @see MPU6050_RA_I2C_MST_CTRL
Heidl 0:d1960beb98fe 902 */
Heidl 0:d1960beb98fe 903 void MPU6050::setSlaveReadWriteTransitionEnabled(bool enabled)
Heidl 0:d1960beb98fe 904 {
Heidl 0:d1960beb98fe 905 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled);
Heidl 0:d1960beb98fe 906 }
Heidl 0:d1960beb98fe 907 /** Get I2C master clock speed.
Heidl 0:d1960beb98fe 908 * I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the
Heidl 0:d1960beb98fe 909 * MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to
Heidl 0:d1960beb98fe 910 * the following table:
Heidl 0:d1960beb98fe 911 *
Heidl 0:d1960beb98fe 912 * <pre>
Heidl 0:d1960beb98fe 913 * I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
Heidl 0:d1960beb98fe 914 * ------------+------------------------+-------------------
Heidl 0:d1960beb98fe 915 * 0 | 348kHz | 23
Heidl 0:d1960beb98fe 916 * 1 | 333kHz | 24
Heidl 0:d1960beb98fe 917 * 2 | 320kHz | 25
Heidl 0:d1960beb98fe 918 * 3 | 308kHz | 26
Heidl 0:d1960beb98fe 919 * 4 | 296kHz | 27
Heidl 0:d1960beb98fe 920 * 5 | 286kHz | 28
Heidl 0:d1960beb98fe 921 * 6 | 276kHz | 29
Heidl 0:d1960beb98fe 922 * 7 | 267kHz | 30
Heidl 0:d1960beb98fe 923 * 8 | 258kHz | 31
Heidl 0:d1960beb98fe 924 * 9 | 500kHz | 16
Heidl 0:d1960beb98fe 925 * 10 | 471kHz | 17
Heidl 0:d1960beb98fe 926 * 11 | 444kHz | 18
Heidl 0:d1960beb98fe 927 * 12 | 421kHz | 19
Heidl 0:d1960beb98fe 928 * 13 | 400kHz | 20
Heidl 0:d1960beb98fe 929 * 14 | 381kHz | 21
Heidl 0:d1960beb98fe 930 * 15 | 364kHz | 22
Heidl 0:d1960beb98fe 931 * </pre>
Heidl 0:d1960beb98fe 932 *
Heidl 0:d1960beb98fe 933 * @return Current I2C master clock speed
Heidl 0:d1960beb98fe 934 * @see MPU6050_RA_I2C_MST_CTRL
Heidl 0:d1960beb98fe 935 */
Heidl 0:d1960beb98fe 936 uint8_t MPU6050::getMasterClockSpeed()
Heidl 0:d1960beb98fe 937 {
Heidl 0:d1960beb98fe 938 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer);
Heidl 0:d1960beb98fe 939 return buffer[0];
Heidl 0:d1960beb98fe 940 }
Heidl 0:d1960beb98fe 941 /** Set I2C master clock speed.
Heidl 0:d1960beb98fe 942 * @reparam speed Current I2C master clock speed
Heidl 0:d1960beb98fe 943 * @see MPU6050_RA_I2C_MST_CTRL
Heidl 0:d1960beb98fe 944 */
Heidl 0:d1960beb98fe 945 void MPU6050::setMasterClockSpeed(uint8_t speed)
Heidl 0:d1960beb98fe 946 {
Heidl 0:d1960beb98fe 947 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed);
Heidl 0:d1960beb98fe 948 }
Heidl 0:d1960beb98fe 949
Heidl 0:d1960beb98fe 950 // I2C_SLV* registers (Slave 0-3)
Heidl 0:d1960beb98fe 951
Heidl 0:d1960beb98fe 952 /** Get the I2C address of the specified slave (0-3).
Heidl 0:d1960beb98fe 953 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
Heidl 0:d1960beb98fe 954 * operation, and if it is cleared, then it's a write operation. The remaining
Heidl 0:d1960beb98fe 955 * bits (6-0) are the 7-bit device address of the slave device.
Heidl 0:d1960beb98fe 956 *
Heidl 0:d1960beb98fe 957 * In read mode, the result of the read is placed in the lowest available
Heidl 0:d1960beb98fe 958 * EXT_SENS_DATA register. For further information regarding the allocation of
Heidl 0:d1960beb98fe 959 * read results, please refer to the EXT_SENS_DATA register description
Heidl 0:d1960beb98fe 960 * (Registers 73 - 96).
Heidl 0:d1960beb98fe 961 *
Heidl 0:d1960beb98fe 962 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
Heidl 0:d1960beb98fe 963 * characteristics, and so it has its own functions (getSlave4* and setSlave4*).
Heidl 0:d1960beb98fe 964 *
Heidl 0:d1960beb98fe 965 * I2C data transactions are performed at the Sample Rate, as defined in
Heidl 0:d1960beb98fe 966 * Register 25. The user is responsible for ensuring that I2C data transactions
Heidl 0:d1960beb98fe 967 * to and from each enabled Slave can be completed within a single period of the
Heidl 0:d1960beb98fe 968 * Sample Rate.
Heidl 0:d1960beb98fe 969 *
Heidl 0:d1960beb98fe 970 * The I2C slave access rate can be reduced relative to the Sample Rate. This
Heidl 0:d1960beb98fe 971 * reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a
Heidl 0:d1960beb98fe 972 * slave's access rate is reduced relative to the Sample Rate is determined by
Heidl 0:d1960beb98fe 973 * I2C_MST_DELAY_CTRL (Register 103).
Heidl 0:d1960beb98fe 974 *
Heidl 0:d1960beb98fe 975 * The processing order for the slaves is fixed. The sequence followed for
Heidl 0:d1960beb98fe 976 * processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a
Heidl 0:d1960beb98fe 977 * particular Slave is disabled it will be skipped.
Heidl 0:d1960beb98fe 978 *
Heidl 0:d1960beb98fe 979 * Each slave can either be accessed at the sample rate or at a reduced sample
Heidl 0:d1960beb98fe 980 * rate. In a case where some slaves are accessed at the Sample Rate and some
Heidl 0:d1960beb98fe 981 * slaves are accessed at the reduced rate, the sequence of accessing the slaves
Heidl 0:d1960beb98fe 982 * (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will
Heidl 0:d1960beb98fe 983 * be skipped if their access rate dictates that they should not be accessed
Heidl 0:d1960beb98fe 984 * during that particular cycle. For further information regarding the reduced
Heidl 0:d1960beb98fe 985 * access rate, please refer to Register 52. Whether a slave is accessed at the
Heidl 0:d1960beb98fe 986 * Sample Rate or at the reduced rate is determined by the Delay Enable bits in
Heidl 0:d1960beb98fe 987 * Register 103.
Heidl 0:d1960beb98fe 988 *
Heidl 0:d1960beb98fe 989 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 990 * @return Current address for specified slave
Heidl 0:d1960beb98fe 991 * @see MPU6050_RA_I2C_SLV0_ADDR
Heidl 0:d1960beb98fe 992 */
Heidl 0:d1960beb98fe 993 uint8_t MPU6050::getSlaveAddress(uint8_t num)
Heidl 0:d1960beb98fe 994 {
Heidl 0:d1960beb98fe 995 if (num > 3) return 0;
Heidl 0:d1960beb98fe 996 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, buffer);
Heidl 0:d1960beb98fe 997 return buffer[0];
Heidl 0:d1960beb98fe 998 }
Heidl 0:d1960beb98fe 999 /** Set the I2C address of the specified slave (0-3).
Heidl 0:d1960beb98fe 1000 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 1001 * @param address New address for specified slave
Heidl 0:d1960beb98fe 1002 * @see getSlaveAddress()
Heidl 0:d1960beb98fe 1003 * @see MPU6050_RA_I2C_SLV0_ADDR
Heidl 0:d1960beb98fe 1004 */
Heidl 0:d1960beb98fe 1005 void MPU6050::setSlaveAddress(uint8_t num, uint8_t address)
Heidl 0:d1960beb98fe 1006 {
Heidl 0:d1960beb98fe 1007 if (num > 3) return;
Heidl 0:d1960beb98fe 1008 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, address);
Heidl 0:d1960beb98fe 1009 }
Heidl 0:d1960beb98fe 1010 /** Get the active internal register for the specified slave (0-3).
Heidl 0:d1960beb98fe 1011 * Read/write operations for this slave will be done to whatever internal
Heidl 0:d1960beb98fe 1012 * register address is stored in this MPU register.
Heidl 0:d1960beb98fe 1013 *
Heidl 0:d1960beb98fe 1014 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
Heidl 0:d1960beb98fe 1015 * characteristics, and so it has its own functions.
Heidl 0:d1960beb98fe 1016 *
Heidl 0:d1960beb98fe 1017 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 1018 * @return Current active register for specified slave
Heidl 0:d1960beb98fe 1019 * @see MPU6050_RA_I2C_SLV0_REG
Heidl 0:d1960beb98fe 1020 */
Heidl 0:d1960beb98fe 1021 uint8_t MPU6050::getSlaveRegister(uint8_t num)
Heidl 0:d1960beb98fe 1022 {
Heidl 0:d1960beb98fe 1023 if (num > 3) return 0;
Heidl 0:d1960beb98fe 1024 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, buffer);
Heidl 0:d1960beb98fe 1025 return buffer[0];
Heidl 0:d1960beb98fe 1026 }
Heidl 0:d1960beb98fe 1027 /** Set the active internal register for the specified slave (0-3).
Heidl 0:d1960beb98fe 1028 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 1029 * @param reg New active register for specified slave
Heidl 0:d1960beb98fe 1030 * @see getSlaveRegister()
Heidl 0:d1960beb98fe 1031 * @see MPU6050_RA_I2C_SLV0_REG
Heidl 0:d1960beb98fe 1032 */
Heidl 0:d1960beb98fe 1033 void MPU6050::setSlaveRegister(uint8_t num, uint8_t reg)
Heidl 0:d1960beb98fe 1034 {
Heidl 0:d1960beb98fe 1035 if (num > 3) return;
Heidl 0:d1960beb98fe 1036 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, reg);
Heidl 0:d1960beb98fe 1037 }
Heidl 0:d1960beb98fe 1038 /** Get the enabled value for the specified slave (0-3).
Heidl 0:d1960beb98fe 1039 * When set to 1, this bit enables Slave 0 for data transfer operations. When
Heidl 0:d1960beb98fe 1040 * cleared to 0, this bit disables Slave 0 from data transfer operations.
Heidl 0:d1960beb98fe 1041 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 1042 * @return Current enabled value for specified slave
Heidl 0:d1960beb98fe 1043 * @see MPU6050_RA_I2C_SLV0_CTRL
Heidl 0:d1960beb98fe 1044 */
Heidl 0:d1960beb98fe 1045 bool MPU6050::getSlaveEnabled(uint8_t num)
Heidl 0:d1960beb98fe 1046 {
Heidl 0:d1960beb98fe 1047 if (num > 3) return 0;
Heidl 0:d1960beb98fe 1048 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, buffer);
Heidl 0:d1960beb98fe 1049 return buffer[0];
Heidl 0:d1960beb98fe 1050 }
Heidl 0:d1960beb98fe 1051 /** Set the enabled value for the specified slave (0-3).
Heidl 0:d1960beb98fe 1052 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 1053 * @param enabled New enabled value for specified slave
Heidl 0:d1960beb98fe 1054 * @see getSlaveEnabled()
Heidl 0:d1960beb98fe 1055 * @see MPU6050_RA_I2C_SLV0_CTRL
Heidl 0:d1960beb98fe 1056 */
Heidl 0:d1960beb98fe 1057 void MPU6050::setSlaveEnabled(uint8_t num, bool enabled)
Heidl 0:d1960beb98fe 1058 {
Heidl 0:d1960beb98fe 1059 if (num > 3) return;
Heidl 0:d1960beb98fe 1060 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, enabled);
Heidl 0:d1960beb98fe 1061 }
Heidl 0:d1960beb98fe 1062 /** Get word pair byte-swapping enabled for the specified slave (0-3).
Heidl 0:d1960beb98fe 1063 * When set to 1, this bit enables byte swapping. When byte swapping is enabled,
Heidl 0:d1960beb98fe 1064 * the high and low bytes of a word pair are swapped. Please refer to
Heidl 0:d1960beb98fe 1065 * I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0,
Heidl 0:d1960beb98fe 1066 * bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA
Heidl 0:d1960beb98fe 1067 * registers in the order they were transferred.
Heidl 0:d1960beb98fe 1068 *
Heidl 0:d1960beb98fe 1069 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 1070 * @return Current word pair byte-swapping enabled value for specified slave
Heidl 0:d1960beb98fe 1071 * @see MPU6050_RA_I2C_SLV0_CTRL
Heidl 0:d1960beb98fe 1072 */
Heidl 0:d1960beb98fe 1073 bool MPU6050::getSlaveWordByteSwap(uint8_t num)
Heidl 0:d1960beb98fe 1074 {
Heidl 0:d1960beb98fe 1075 if (num > 3) return 0;
Heidl 0:d1960beb98fe 1076 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer);
Heidl 0:d1960beb98fe 1077 return buffer[0];
Heidl 0:d1960beb98fe 1078 }
Heidl 0:d1960beb98fe 1079 /** Set word pair byte-swapping enabled for the specified slave (0-3).
Heidl 0:d1960beb98fe 1080 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 1081 * @param enabled New word pair byte-swapping enabled value for specified slave
Heidl 0:d1960beb98fe 1082 * @see getSlaveWordByteSwap()
Heidl 0:d1960beb98fe 1083 * @see MPU6050_RA_I2C_SLV0_CTRL
Heidl 0:d1960beb98fe 1084 */
Heidl 0:d1960beb98fe 1085 void MPU6050::setSlaveWordByteSwap(uint8_t num, bool enabled)
Heidl 0:d1960beb98fe 1086 {
Heidl 0:d1960beb98fe 1087 if (num > 3) return;
Heidl 0:d1960beb98fe 1088 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled);
Heidl 0:d1960beb98fe 1089 }
Heidl 0:d1960beb98fe 1090 /** Get write mode for the specified slave (0-3).
Heidl 0:d1960beb98fe 1091 * When set to 1, the transaction will read or write data only. When cleared to
Heidl 0:d1960beb98fe 1092 * 0, the transaction will write a register address prior to reading or writing
Heidl 0:d1960beb98fe 1093 * data. This should equal 0 when specifying the register address within the
Heidl 0:d1960beb98fe 1094 * Slave device to/from which the ensuing data transaction will take place.
Heidl 0:d1960beb98fe 1095 *
Heidl 0:d1960beb98fe 1096 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 1097 * @return Current write mode for specified slave (0 = register address + data, 1 = data only)
Heidl 0:d1960beb98fe 1098 * @see MPU6050_RA_I2C_SLV0_CTRL
Heidl 0:d1960beb98fe 1099 */
Heidl 0:d1960beb98fe 1100 bool MPU6050::getSlaveWriteMode(uint8_t num)
Heidl 0:d1960beb98fe 1101 {
Heidl 0:d1960beb98fe 1102 if (num > 3) return 0;
Heidl 0:d1960beb98fe 1103 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer);
Heidl 0:d1960beb98fe 1104 return buffer[0];
Heidl 0:d1960beb98fe 1105 }
Heidl 0:d1960beb98fe 1106 /** Set write mode for the specified slave (0-3).
Heidl 0:d1960beb98fe 1107 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 1108 * @param mode New write mode for specified slave (0 = register address + data, 1 = data only)
Heidl 0:d1960beb98fe 1109 * @see getSlaveWriteMode()
Heidl 0:d1960beb98fe 1110 * @see MPU6050_RA_I2C_SLV0_CTRL
Heidl 0:d1960beb98fe 1111 */
Heidl 0:d1960beb98fe 1112 void MPU6050::setSlaveWriteMode(uint8_t num, bool mode)
Heidl 0:d1960beb98fe 1113 {
Heidl 0:d1960beb98fe 1114 if (num > 3) return;
Heidl 0:d1960beb98fe 1115 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, mode);
Heidl 0:d1960beb98fe 1116 }
Heidl 0:d1960beb98fe 1117 /** Get word pair grouping order offset for the specified slave (0-3).
Heidl 0:d1960beb98fe 1118 * This sets specifies the grouping order of word pairs received from registers.
Heidl 0:d1960beb98fe 1119 * When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even,
Heidl 0:d1960beb98fe 1120 * then odd register addresses) are paired to form a word. When set to 1, bytes
Heidl 0:d1960beb98fe 1121 * from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even
Heidl 0:d1960beb98fe 1122 * register addresses) are paired to form a word.
Heidl 0:d1960beb98fe 1123 *
Heidl 0:d1960beb98fe 1124 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 1125 * @return Current word pair grouping order offset for specified slave
Heidl 0:d1960beb98fe 1126 * @see MPU6050_RA_I2C_SLV0_CTRL
Heidl 0:d1960beb98fe 1127 */
Heidl 0:d1960beb98fe 1128 bool MPU6050::getSlaveWordGroupOffset(uint8_t num)
Heidl 0:d1960beb98fe 1129 {
Heidl 0:d1960beb98fe 1130 if (num > 3) return 0;
Heidl 0:d1960beb98fe 1131 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, buffer);
Heidl 0:d1960beb98fe 1132 return buffer[0];
Heidl 0:d1960beb98fe 1133 }
Heidl 0:d1960beb98fe 1134 /** Set word pair grouping order offset for the specified slave (0-3).
Heidl 0:d1960beb98fe 1135 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 1136 * @param enabled New word pair grouping order offset for specified slave
Heidl 0:d1960beb98fe 1137 * @see getSlaveWordGroupOffset()
Heidl 0:d1960beb98fe 1138 * @see MPU6050_RA_I2C_SLV0_CTRL
Heidl 0:d1960beb98fe 1139 */
Heidl 0:d1960beb98fe 1140 void MPU6050::setSlaveWordGroupOffset(uint8_t num, bool enabled)
Heidl 0:d1960beb98fe 1141 {
Heidl 0:d1960beb98fe 1142 if (num > 3) return;
Heidl 0:d1960beb98fe 1143 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, enabled);
Heidl 0:d1960beb98fe 1144 }
Heidl 0:d1960beb98fe 1145 /** Get number of bytes to read for the specified slave (0-3).
Heidl 0:d1960beb98fe 1146 * Specifies the number of bytes transferred to and from Slave 0. Clearing this
Heidl 0:d1960beb98fe 1147 * bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN.
Heidl 0:d1960beb98fe 1148 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 1149 * @return Number of bytes to read for specified slave
Heidl 0:d1960beb98fe 1150 * @see MPU6050_RA_I2C_SLV0_CTRL
Heidl 0:d1960beb98fe 1151 */
Heidl 0:d1960beb98fe 1152 uint8_t MPU6050::getSlaveDataLength(uint8_t num)
Heidl 0:d1960beb98fe 1153 {
Heidl 0:d1960beb98fe 1154 if (num > 3) return 0;
Heidl 0:d1960beb98fe 1155 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, buffer);
Heidl 0:d1960beb98fe 1156 return buffer[0];
Heidl 0:d1960beb98fe 1157 }
Heidl 0:d1960beb98fe 1158 /** Set number of bytes to read for the specified slave (0-3).
Heidl 0:d1960beb98fe 1159 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 1160 * @param length Number of bytes to read for specified slave
Heidl 0:d1960beb98fe 1161 * @see getSlaveDataLength()
Heidl 0:d1960beb98fe 1162 * @see MPU6050_RA_I2C_SLV0_CTRL
Heidl 0:d1960beb98fe 1163 */
Heidl 0:d1960beb98fe 1164 void MPU6050::setSlaveDataLength(uint8_t num, uint8_t length)
Heidl 0:d1960beb98fe 1165 {
Heidl 0:d1960beb98fe 1166 if (num > 3) return;
Heidl 0:d1960beb98fe 1167 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, length);
Heidl 0:d1960beb98fe 1168 }
Heidl 0:d1960beb98fe 1169
Heidl 0:d1960beb98fe 1170 // I2C_SLV* registers (Slave 4)
Heidl 0:d1960beb98fe 1171
Heidl 0:d1960beb98fe 1172 /** Get the I2C address of Slave 4.
Heidl 0:d1960beb98fe 1173 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
Heidl 0:d1960beb98fe 1174 * operation, and if it is cleared, then it's a write operation. The remaining
Heidl 0:d1960beb98fe 1175 * bits (6-0) are the 7-bit device address of the slave device.
Heidl 0:d1960beb98fe 1176 *
Heidl 0:d1960beb98fe 1177 * @return Current address for Slave 4
Heidl 0:d1960beb98fe 1178 * @see getSlaveAddress()
Heidl 0:d1960beb98fe 1179 * @see MPU6050_RA_I2C_SLV4_ADDR
Heidl 0:d1960beb98fe 1180 */
Heidl 0:d1960beb98fe 1181 uint8_t MPU6050::getSlave4Address()
Heidl 0:d1960beb98fe 1182 {
Heidl 0:d1960beb98fe 1183 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer);
Heidl 0:d1960beb98fe 1184 return buffer[0];
Heidl 0:d1960beb98fe 1185 }
Heidl 0:d1960beb98fe 1186 /** Set the I2C address of Slave 4.
Heidl 0:d1960beb98fe 1187 * @param address New address for Slave 4
Heidl 0:d1960beb98fe 1188 * @see getSlave4Address()
Heidl 0:d1960beb98fe 1189 * @see MPU6050_RA_I2C_SLV4_ADDR
Heidl 0:d1960beb98fe 1190 */
Heidl 0:d1960beb98fe 1191 void MPU6050::setSlave4Address(uint8_t address)
Heidl 0:d1960beb98fe 1192 {
Heidl 0:d1960beb98fe 1193 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address);
Heidl 0:d1960beb98fe 1194 }
Heidl 0:d1960beb98fe 1195 /** Get the active internal register for the Slave 4.
Heidl 0:d1960beb98fe 1196 * Read/write operations for this slave will be done to whatever internal
Heidl 0:d1960beb98fe 1197 * register address is stored in this MPU register.
Heidl 0:d1960beb98fe 1198 *
Heidl 0:d1960beb98fe 1199 * @return Current active register for Slave 4
Heidl 0:d1960beb98fe 1200 * @see MPU6050_RA_I2C_SLV4_REG
Heidl 0:d1960beb98fe 1201 */
Heidl 0:d1960beb98fe 1202 uint8_t MPU6050::getSlave4Register()
Heidl 0:d1960beb98fe 1203 {
Heidl 0:d1960beb98fe 1204 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer);
Heidl 0:d1960beb98fe 1205 return buffer[0];
Heidl 0:d1960beb98fe 1206 }
Heidl 0:d1960beb98fe 1207 /** Set the active internal register for Slave 4.
Heidl 0:d1960beb98fe 1208 * @param reg New active register for Slave 4
Heidl 0:d1960beb98fe 1209 * @see getSlave4Register()
Heidl 0:d1960beb98fe 1210 * @see MPU6050_RA_I2C_SLV4_REG
Heidl 0:d1960beb98fe 1211 */
Heidl 0:d1960beb98fe 1212 void MPU6050::setSlave4Register(uint8_t reg)
Heidl 0:d1960beb98fe 1213 {
Heidl 0:d1960beb98fe 1214 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg);
Heidl 0:d1960beb98fe 1215 }
Heidl 0:d1960beb98fe 1216 /** Set new byte to write to Slave 4.
Heidl 0:d1960beb98fe 1217 * This register stores the data to be written into the Slave 4. If I2C_SLV4_RW
Heidl 0:d1960beb98fe 1218 * is set 1 (set to read), this register has no effect.
Heidl 0:d1960beb98fe 1219 * @param data New byte to write to Slave 4
Heidl 0:d1960beb98fe 1220 * @see MPU6050_RA_I2C_SLV4_DO
Heidl 0:d1960beb98fe 1221 */
Heidl 0:d1960beb98fe 1222 void MPU6050::setSlave4OutputByte(uint8_t data)
Heidl 0:d1960beb98fe 1223 {
Heidl 0:d1960beb98fe 1224 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data);
Heidl 0:d1960beb98fe 1225 }
Heidl 0:d1960beb98fe 1226 /** Get the enabled value for the Slave 4.
Heidl 0:d1960beb98fe 1227 * When set to 1, this bit enables Slave 4 for data transfer operations. When
Heidl 0:d1960beb98fe 1228 * cleared to 0, this bit disables Slave 4 from data transfer operations.
Heidl 0:d1960beb98fe 1229 * @return Current enabled value for Slave 4
Heidl 0:d1960beb98fe 1230 * @see MPU6050_RA_I2C_SLV4_CTRL
Heidl 0:d1960beb98fe 1231 */
Heidl 0:d1960beb98fe 1232 bool MPU6050::getSlave4Enabled()
Heidl 0:d1960beb98fe 1233 {
Heidl 0:d1960beb98fe 1234 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer);
Heidl 0:d1960beb98fe 1235 return buffer[0];
Heidl 0:d1960beb98fe 1236 }
Heidl 0:d1960beb98fe 1237 /** Set the enabled value for Slave 4.
Heidl 0:d1960beb98fe 1238 * @param enabled New enabled value for Slave 4
Heidl 0:d1960beb98fe 1239 * @see getSlave4Enabled()
Heidl 0:d1960beb98fe 1240 * @see MPU6050_RA_I2C_SLV4_CTRL
Heidl 0:d1960beb98fe 1241 */
Heidl 0:d1960beb98fe 1242 void MPU6050::setSlave4Enabled(bool enabled)
Heidl 0:d1960beb98fe 1243 {
Heidl 0:d1960beb98fe 1244 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled);
Heidl 0:d1960beb98fe 1245 }
Heidl 0:d1960beb98fe 1246 /** Get the enabled value for Slave 4 transaction interrupts.
Heidl 0:d1960beb98fe 1247 * When set to 1, this bit enables the generation of an interrupt signal upon
Heidl 0:d1960beb98fe 1248 * completion of a Slave 4 transaction. When cleared to 0, this bit disables the
Heidl 0:d1960beb98fe 1249 * generation of an interrupt signal upon completion of a Slave 4 transaction.
Heidl 0:d1960beb98fe 1250 * The interrupt status can be observed in Register 54.
Heidl 0:d1960beb98fe 1251 *
Heidl 0:d1960beb98fe 1252 * @return Current enabled value for Slave 4 transaction interrupts.
Heidl 0:d1960beb98fe 1253 * @see MPU6050_RA_I2C_SLV4_CTRL
Heidl 0:d1960beb98fe 1254 */
Heidl 0:d1960beb98fe 1255 bool MPU6050::getSlave4InterruptEnabled()
Heidl 0:d1960beb98fe 1256 {
Heidl 0:d1960beb98fe 1257 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer);
Heidl 0:d1960beb98fe 1258 return buffer[0];
Heidl 0:d1960beb98fe 1259 }
Heidl 0:d1960beb98fe 1260 /** Set the enabled value for Slave 4 transaction interrupts.
Heidl 0:d1960beb98fe 1261 * @param enabled New enabled value for Slave 4 transaction interrupts.
Heidl 0:d1960beb98fe 1262 * @see getSlave4InterruptEnabled()
Heidl 0:d1960beb98fe 1263 * @see MPU6050_RA_I2C_SLV4_CTRL
Heidl 0:d1960beb98fe 1264 */
Heidl 0:d1960beb98fe 1265 void MPU6050::setSlave4InterruptEnabled(bool enabled)
Heidl 0:d1960beb98fe 1266 {
Heidl 0:d1960beb98fe 1267 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled);
Heidl 0:d1960beb98fe 1268 }
Heidl 0:d1960beb98fe 1269 /** Get write mode for Slave 4.
Heidl 0:d1960beb98fe 1270 * When set to 1, the transaction will read or write data only. When cleared to
Heidl 0:d1960beb98fe 1271 * 0, the transaction will write a register address prior to reading or writing
Heidl 0:d1960beb98fe 1272 * data. This should equal 0 when specifying the register address within the
Heidl 0:d1960beb98fe 1273 * Slave device to/from which the ensuing data transaction will take place.
Heidl 0:d1960beb98fe 1274 *
Heidl 0:d1960beb98fe 1275 * @return Current write mode for Slave 4 (0 = register address + data, 1 = data only)
Heidl 0:d1960beb98fe 1276 * @see MPU6050_RA_I2C_SLV4_CTRL
Heidl 0:d1960beb98fe 1277 */
Heidl 0:d1960beb98fe 1278 bool MPU6050::getSlave4WriteMode()
Heidl 0:d1960beb98fe 1279 {
Heidl 0:d1960beb98fe 1280 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer);
Heidl 0:d1960beb98fe 1281 return buffer[0];
Heidl 0:d1960beb98fe 1282 }
Heidl 0:d1960beb98fe 1283 /** Set write mode for the Slave 4.
Heidl 0:d1960beb98fe 1284 * @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only)
Heidl 0:d1960beb98fe 1285 * @see getSlave4WriteMode()
Heidl 0:d1960beb98fe 1286 * @see MPU6050_RA_I2C_SLV4_CTRL
Heidl 0:d1960beb98fe 1287 */
Heidl 0:d1960beb98fe 1288 void MPU6050::setSlave4WriteMode(bool mode)
Heidl 0:d1960beb98fe 1289 {
Heidl 0:d1960beb98fe 1290 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode);
Heidl 0:d1960beb98fe 1291 }
Heidl 0:d1960beb98fe 1292 /** Get Slave 4 master delay value.
Heidl 0:d1960beb98fe 1293 * This configures the reduced access rate of I2C slaves relative to the Sample
Heidl 0:d1960beb98fe 1294 * Rate. When a slave's access rate is decreased relative to the Sample Rate,
Heidl 0:d1960beb98fe 1295 * the slave is accessed every:
Heidl 0:d1960beb98fe 1296 *
Heidl 0:d1960beb98fe 1297 * 1 / (1 + I2C_MST_DLY) samples
Heidl 0:d1960beb98fe 1298 *
Heidl 0:d1960beb98fe 1299 * This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and
Heidl 0:d1960beb98fe 1300 * DLPF_CFG (register 26). Whether a slave's access rate is reduced relative to
Heidl 0:d1960beb98fe 1301 * the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For
Heidl 0:d1960beb98fe 1302 * further information regarding the Sample Rate, please refer to register 25.
Heidl 0:d1960beb98fe 1303 *
Heidl 0:d1960beb98fe 1304 * @return Current Slave 4 master delay value
Heidl 0:d1960beb98fe 1305 * @see MPU6050_RA_I2C_SLV4_CTRL
Heidl 0:d1960beb98fe 1306 */
Heidl 0:d1960beb98fe 1307 uint8_t MPU6050::getSlave4MasterDelay()
Heidl 0:d1960beb98fe 1308 {
Heidl 0:d1960beb98fe 1309 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, buffer);
Heidl 0:d1960beb98fe 1310 return buffer[0];
Heidl 0:d1960beb98fe 1311 }
Heidl 0:d1960beb98fe 1312 /** Set Slave 4 master delay value.
Heidl 0:d1960beb98fe 1313 * @param delay New Slave 4 master delay value
Heidl 0:d1960beb98fe 1314 * @see getSlave4MasterDelay()
Heidl 0:d1960beb98fe 1315 * @see MPU6050_RA_I2C_SLV4_CTRL
Heidl 0:d1960beb98fe 1316 */
Heidl 0:d1960beb98fe 1317 void MPU6050::setSlave4MasterDelay(uint8_t delay)
Heidl 0:d1960beb98fe 1318 {
Heidl 0:d1960beb98fe 1319 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, delay);
Heidl 0:d1960beb98fe 1320 }
Heidl 0:d1960beb98fe 1321 /** Get last available byte read from Slave 4.
Heidl 0:d1960beb98fe 1322 * This register stores the data read from Slave 4. This field is populated
Heidl 0:d1960beb98fe 1323 * after a read transaction.
Heidl 0:d1960beb98fe 1324 * @return Last available byte read from to Slave 4
Heidl 0:d1960beb98fe 1325 * @see MPU6050_RA_I2C_SLV4_DI
Heidl 0:d1960beb98fe 1326 */
Heidl 0:d1960beb98fe 1327 uint8_t MPU6050::getSlate4InputByte()
Heidl 0:d1960beb98fe 1328 {
Heidl 0:d1960beb98fe 1329 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer);
Heidl 0:d1960beb98fe 1330 return buffer[0];
Heidl 0:d1960beb98fe 1331 }
Heidl 0:d1960beb98fe 1332
Heidl 0:d1960beb98fe 1333 // I2C_MST_STATUS register
Heidl 0:d1960beb98fe 1334
Heidl 0:d1960beb98fe 1335 /** Get FSYNC interrupt status.
Heidl 0:d1960beb98fe 1336 * This bit reflects the status of the FSYNC interrupt from an external device
Heidl 0:d1960beb98fe 1337 * into the MPU-60X0. This is used as a way to pass an external interrupt
Heidl 0:d1960beb98fe 1338 * through the MPU-60X0 to the host application processor. When set to 1, this
Heidl 0:d1960beb98fe 1339 * bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG
Heidl 0:d1960beb98fe 1340 * (Register 55).
Heidl 0:d1960beb98fe 1341 * @return FSYNC interrupt status
Heidl 0:d1960beb98fe 1342 * @see MPU6050_RA_I2C_MST_STATUS
Heidl 0:d1960beb98fe 1343 */
Heidl 0:d1960beb98fe 1344 bool MPU6050::getPassthroughStatus()
Heidl 0:d1960beb98fe 1345 {
Heidl 0:d1960beb98fe 1346 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer);
Heidl 0:d1960beb98fe 1347 return buffer[0];
Heidl 0:d1960beb98fe 1348 }
Heidl 0:d1960beb98fe 1349 /** Get Slave 4 transaction done status.
Heidl 0:d1960beb98fe 1350 * Automatically sets to 1 when a Slave 4 transaction has completed. This
Heidl 0:d1960beb98fe 1351 * triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register
Heidl 0:d1960beb98fe 1352 * (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the
Heidl 0:d1960beb98fe 1353 * I2C_SLV4_CTRL register (Register 52).
Heidl 0:d1960beb98fe 1354 * @return Slave 4 transaction done status
Heidl 0:d1960beb98fe 1355 * @see MPU6050_RA_I2C_MST_STATUS
Heidl 0:d1960beb98fe 1356 */
Heidl 0:d1960beb98fe 1357 bool MPU6050::getSlave4IsDone()
Heidl 0:d1960beb98fe 1358 {
Heidl 0:d1960beb98fe 1359 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer);
Heidl 0:d1960beb98fe 1360 return buffer[0];
Heidl 0:d1960beb98fe 1361 }
Heidl 0:d1960beb98fe 1362 /** Get master arbitration lost status.
Heidl 0:d1960beb98fe 1363 * This bit automatically sets to 1 when the I2C Master has lost arbitration of
Heidl 0:d1960beb98fe 1364 * the auxiliary I2C bus (an error condition). This triggers an interrupt if the
Heidl 0:d1960beb98fe 1365 * I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted.
Heidl 0:d1960beb98fe 1366 * @return Master arbitration lost status
Heidl 0:d1960beb98fe 1367 * @see MPU6050_RA_I2C_MST_STATUS
Heidl 0:d1960beb98fe 1368 */
Heidl 0:d1960beb98fe 1369 bool MPU6050::getLostArbitration()
Heidl 0:d1960beb98fe 1370 {
Heidl 0:d1960beb98fe 1371 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer);
Heidl 0:d1960beb98fe 1372 return buffer[0];
Heidl 0:d1960beb98fe 1373 }
Heidl 0:d1960beb98fe 1374 /** Get Slave 4 NACK status.
Heidl 0:d1960beb98fe 1375 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Heidl 0:d1960beb98fe 1376 * transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN
Heidl 0:d1960beb98fe 1377 * bit in the INT_ENABLE register (Register 56) is asserted.
Heidl 0:d1960beb98fe 1378 * @return Slave 4 NACK interrupt status
Heidl 0:d1960beb98fe 1379 * @see MPU6050_RA_I2C_MST_STATUS
Heidl 0:d1960beb98fe 1380 */
Heidl 0:d1960beb98fe 1381 bool MPU6050::getSlave4Nack()
Heidl 0:d1960beb98fe 1382 {
Heidl 0:d1960beb98fe 1383 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer);
Heidl 0:d1960beb98fe 1384 return buffer[0];
Heidl 0:d1960beb98fe 1385 }
Heidl 0:d1960beb98fe 1386 /** Get Slave 3 NACK status.
Heidl 0:d1960beb98fe 1387 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Heidl 0:d1960beb98fe 1388 * transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN
Heidl 0:d1960beb98fe 1389 * bit in the INT_ENABLE register (Register 56) is asserted.
Heidl 0:d1960beb98fe 1390 * @return Slave 3 NACK interrupt status
Heidl 0:d1960beb98fe 1391 * @see MPU6050_RA_I2C_MST_STATUS
Heidl 0:d1960beb98fe 1392 */
Heidl 0:d1960beb98fe 1393 bool MPU6050::getSlave3Nack()
Heidl 0:d1960beb98fe 1394 {
Heidl 0:d1960beb98fe 1395 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer);
Heidl 0:d1960beb98fe 1396 return buffer[0];
Heidl 0:d1960beb98fe 1397 }
Heidl 0:d1960beb98fe 1398 /** Get Slave 2 NACK status.
Heidl 0:d1960beb98fe 1399 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Heidl 0:d1960beb98fe 1400 * transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN
Heidl 0:d1960beb98fe 1401 * bit in the INT_ENABLE register (Register 56) is asserted.
Heidl 0:d1960beb98fe 1402 * @return Slave 2 NACK interrupt status
Heidl 0:d1960beb98fe 1403 * @see MPU6050_RA_I2C_MST_STATUS
Heidl 0:d1960beb98fe 1404 */
Heidl 0:d1960beb98fe 1405 bool MPU6050::getSlave2Nack()
Heidl 0:d1960beb98fe 1406 {
Heidl 0:d1960beb98fe 1407 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer);
Heidl 0:d1960beb98fe 1408 return buffer[0];
Heidl 0:d1960beb98fe 1409 }
Heidl 0:d1960beb98fe 1410 /** Get Slave 1 NACK status.
Heidl 0:d1960beb98fe 1411 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Heidl 0:d1960beb98fe 1412 * transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN
Heidl 0:d1960beb98fe 1413 * bit in the INT_ENABLE register (Register 56) is asserted.
Heidl 0:d1960beb98fe 1414 * @return Slave 1 NACK interrupt status
Heidl 0:d1960beb98fe 1415 * @see MPU6050_RA_I2C_MST_STATUS
Heidl 0:d1960beb98fe 1416 */
Heidl 0:d1960beb98fe 1417 bool MPU6050::getSlave1Nack()
Heidl 0:d1960beb98fe 1418 {
Heidl 0:d1960beb98fe 1419 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer);
Heidl 0:d1960beb98fe 1420 return buffer[0];
Heidl 0:d1960beb98fe 1421 }
Heidl 0:d1960beb98fe 1422 /** Get Slave 0 NACK status.
Heidl 0:d1960beb98fe 1423 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Heidl 0:d1960beb98fe 1424 * transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN
Heidl 0:d1960beb98fe 1425 * bit in the INT_ENABLE register (Register 56) is asserted.
Heidl 0:d1960beb98fe 1426 * @return Slave 0 NACK interrupt status
Heidl 0:d1960beb98fe 1427 * @see MPU6050_RA_I2C_MST_STATUS
Heidl 0:d1960beb98fe 1428 */
Heidl 0:d1960beb98fe 1429 bool MPU6050::getSlave0Nack()
Heidl 0:d1960beb98fe 1430 {
Heidl 0:d1960beb98fe 1431 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer);
Heidl 0:d1960beb98fe 1432 return buffer[0];
Heidl 0:d1960beb98fe 1433 }
Heidl 0:d1960beb98fe 1434
Heidl 0:d1960beb98fe 1435 // INT_PIN_CFG register
Heidl 0:d1960beb98fe 1436
Heidl 0:d1960beb98fe 1437 /** Get interrupt logic level mode.
Heidl 0:d1960beb98fe 1438 * Will be set 0 for active-high, 1 for active-low.
Heidl 0:d1960beb98fe 1439 * @return Current interrupt mode (0=active-high, 1=active-low)
Heidl 0:d1960beb98fe 1440 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1441 * @see MPU6050_INTCFG_INT_LEVEL_BIT
Heidl 0:d1960beb98fe 1442 */
Heidl 0:d1960beb98fe 1443 bool MPU6050::getInterruptMode()
Heidl 0:d1960beb98fe 1444 {
Heidl 0:d1960beb98fe 1445 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer);
Heidl 0:d1960beb98fe 1446 return buffer[0];
Heidl 0:d1960beb98fe 1447 }
Heidl 0:d1960beb98fe 1448 /** Set interrupt logic level mode.
Heidl 0:d1960beb98fe 1449 * @param mode New interrupt mode (0=active-high, 1=active-low)
Heidl 0:d1960beb98fe 1450 * @see getInterruptMode()
Heidl 0:d1960beb98fe 1451 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1452 * @see MPU6050_INTCFG_INT_LEVEL_BIT
Heidl 0:d1960beb98fe 1453 */
Heidl 0:d1960beb98fe 1454 void MPU6050::setInterruptMode(bool mode)
Heidl 0:d1960beb98fe 1455 {
Heidl 0:d1960beb98fe 1456 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode);
Heidl 0:d1960beb98fe 1457 }
Heidl 0:d1960beb98fe 1458 /** Get interrupt drive mode.
Heidl 0:d1960beb98fe 1459 * Will be set 0 for push-pull, 1 for open-drain.
Heidl 0:d1960beb98fe 1460 * @return Current interrupt drive mode (0=push-pull, 1=open-drain)
Heidl 0:d1960beb98fe 1461 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1462 * @see MPU6050_INTCFG_INT_OPEN_BIT
Heidl 0:d1960beb98fe 1463 */
Heidl 0:d1960beb98fe 1464 bool MPU6050::getInterruptDrive()
Heidl 0:d1960beb98fe 1465 {
Heidl 0:d1960beb98fe 1466 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer);
Heidl 0:d1960beb98fe 1467 return buffer[0];
Heidl 0:d1960beb98fe 1468 }
Heidl 0:d1960beb98fe 1469 /** Set interrupt drive mode.
Heidl 0:d1960beb98fe 1470 * @param drive New interrupt drive mode (0=push-pull, 1=open-drain)
Heidl 0:d1960beb98fe 1471 * @see getInterruptDrive()
Heidl 0:d1960beb98fe 1472 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1473 * @see MPU6050_INTCFG_INT_OPEN_BIT
Heidl 0:d1960beb98fe 1474 */
Heidl 0:d1960beb98fe 1475 void MPU6050::setInterruptDrive(bool drive)
Heidl 0:d1960beb98fe 1476 {
Heidl 0:d1960beb98fe 1477 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive);
Heidl 0:d1960beb98fe 1478 }
Heidl 0:d1960beb98fe 1479 /** Get interrupt latch mode.
Heidl 0:d1960beb98fe 1480 * Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared.
Heidl 0:d1960beb98fe 1481 * @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared)
Heidl 0:d1960beb98fe 1482 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1483 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
Heidl 0:d1960beb98fe 1484 */
Heidl 0:d1960beb98fe 1485 bool MPU6050::getInterruptLatch()
Heidl 0:d1960beb98fe 1486 {
Heidl 0:d1960beb98fe 1487 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer);
Heidl 0:d1960beb98fe 1488 return buffer[0];
Heidl 0:d1960beb98fe 1489 }
Heidl 0:d1960beb98fe 1490 /** Set interrupt latch mode.
Heidl 0:d1960beb98fe 1491 * @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared)
Heidl 0:d1960beb98fe 1492 * @see getInterruptLatch()
Heidl 0:d1960beb98fe 1493 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1494 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
Heidl 0:d1960beb98fe 1495 */
Heidl 0:d1960beb98fe 1496 void MPU6050::setInterruptLatch(bool latch)
Heidl 0:d1960beb98fe 1497 {
Heidl 0:d1960beb98fe 1498 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch);
Heidl 0:d1960beb98fe 1499 }
Heidl 0:d1960beb98fe 1500 /** Get interrupt latch clear mode.
Heidl 0:d1960beb98fe 1501 * Will be set 0 for status-read-only, 1 for any-register-read.
Heidl 0:d1960beb98fe 1502 * @return Current latch clear mode (0=status-read-only, 1=any-register-read)
Heidl 0:d1960beb98fe 1503 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1504 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
Heidl 0:d1960beb98fe 1505 */
Heidl 0:d1960beb98fe 1506 bool MPU6050::getInterruptLatchClear()
Heidl 0:d1960beb98fe 1507 {
Heidl 0:d1960beb98fe 1508 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer);
Heidl 0:d1960beb98fe 1509 return buffer[0];
Heidl 0:d1960beb98fe 1510 }
Heidl 0:d1960beb98fe 1511 /** Set interrupt latch clear mode.
Heidl 0:d1960beb98fe 1512 * @param clear New latch clear mode (0=status-read-only, 1=any-register-read)
Heidl 0:d1960beb98fe 1513 * @see getInterruptLatchClear()
Heidl 0:d1960beb98fe 1514 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1515 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
Heidl 0:d1960beb98fe 1516 */
Heidl 0:d1960beb98fe 1517 void MPU6050::setInterruptLatchClear(bool clear)
Heidl 0:d1960beb98fe 1518 {
Heidl 0:d1960beb98fe 1519 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear);
Heidl 0:d1960beb98fe 1520 }
Heidl 0:d1960beb98fe 1521 /** Get FSYNC interrupt logic level mode.
Heidl 0:d1960beb98fe 1522 * @return Current FSYNC interrupt mode (0=active-high, 1=active-low)
Heidl 0:d1960beb98fe 1523 * @see getFSyncInterruptMode()
Heidl 0:d1960beb98fe 1524 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1525 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
Heidl 0:d1960beb98fe 1526 */
Heidl 0:d1960beb98fe 1527 bool MPU6050::getFSyncInterruptLevel()
Heidl 0:d1960beb98fe 1528 {
Heidl 0:d1960beb98fe 1529 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer);
Heidl 0:d1960beb98fe 1530 return buffer[0];
Heidl 0:d1960beb98fe 1531 }
Heidl 0:d1960beb98fe 1532 /** Set FSYNC interrupt logic level mode.
Heidl 0:d1960beb98fe 1533 * @param mode New FSYNC interrupt mode (0=active-high, 1=active-low)
Heidl 0:d1960beb98fe 1534 * @see getFSyncInterruptMode()
Heidl 0:d1960beb98fe 1535 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1536 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
Heidl 0:d1960beb98fe 1537 */
Heidl 0:d1960beb98fe 1538 void MPU6050::setFSyncInterruptLevel(bool level)
Heidl 0:d1960beb98fe 1539 {
Heidl 0:d1960beb98fe 1540 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level);
Heidl 0:d1960beb98fe 1541 }
Heidl 0:d1960beb98fe 1542 /** Get FSYNC pin interrupt enabled setting.
Heidl 0:d1960beb98fe 1543 * Will be set 0 for disabled, 1 for enabled.
Heidl 0:d1960beb98fe 1544 * @return Current interrupt enabled setting
Heidl 0:d1960beb98fe 1545 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1546 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
Heidl 0:d1960beb98fe 1547 */
Heidl 0:d1960beb98fe 1548 bool MPU6050::getFSyncInterruptEnabled()
Heidl 0:d1960beb98fe 1549 {
Heidl 0:d1960beb98fe 1550 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer);
Heidl 0:d1960beb98fe 1551 return buffer[0];
Heidl 0:d1960beb98fe 1552 }
Heidl 0:d1960beb98fe 1553 /** Set FSYNC pin interrupt enabled setting.
Heidl 0:d1960beb98fe 1554 * @param enabled New FSYNC pin interrupt enabled setting
Heidl 0:d1960beb98fe 1555 * @see getFSyncInterruptEnabled()
Heidl 0:d1960beb98fe 1556 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1557 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
Heidl 0:d1960beb98fe 1558 */
Heidl 0:d1960beb98fe 1559 void MPU6050::setFSyncInterruptEnabled(bool enabled)
Heidl 0:d1960beb98fe 1560 {
Heidl 0:d1960beb98fe 1561 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled);
Heidl 0:d1960beb98fe 1562 }
Heidl 0:d1960beb98fe 1563 /** Get I2C bypass enabled status.
Heidl 0:d1960beb98fe 1564 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
Heidl 0:d1960beb98fe 1565 * 0, the host application processor will be able to directly access the
Heidl 0:d1960beb98fe 1566 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
Heidl 0:d1960beb98fe 1567 * application processor will not be able to directly access the auxiliary I2C
Heidl 0:d1960beb98fe 1568 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
Heidl 0:d1960beb98fe 1569 * bit[5]).
Heidl 0:d1960beb98fe 1570 * @return Current I2C bypass enabled status
Heidl 0:d1960beb98fe 1571 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1572 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
Heidl 0:d1960beb98fe 1573 */
Heidl 0:d1960beb98fe 1574 bool MPU6050::getI2CBypassEnabled()
Heidl 0:d1960beb98fe 1575 {
Heidl 0:d1960beb98fe 1576 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer);
Heidl 0:d1960beb98fe 1577 return buffer[0];
Heidl 0:d1960beb98fe 1578 }
Heidl 0:d1960beb98fe 1579 /** Set I2C bypass enabled status.
Heidl 0:d1960beb98fe 1580 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
Heidl 0:d1960beb98fe 1581 * 0, the host application processor will be able to directly access the
Heidl 0:d1960beb98fe 1582 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
Heidl 0:d1960beb98fe 1583 * application processor will not be able to directly access the auxiliary I2C
Heidl 0:d1960beb98fe 1584 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
Heidl 0:d1960beb98fe 1585 * bit[5]).
Heidl 0:d1960beb98fe 1586 * @param enabled New I2C bypass enabled status
Heidl 0:d1960beb98fe 1587 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1588 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
Heidl 0:d1960beb98fe 1589 */
Heidl 0:d1960beb98fe 1590 void MPU6050::setI2CBypassEnabled(bool enabled)
Heidl 0:d1960beb98fe 1591 {
Heidl 0:d1960beb98fe 1592 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled);
Heidl 0:d1960beb98fe 1593 }
Heidl 0:d1960beb98fe 1594 /** Get reference clock output enabled status.
Heidl 0:d1960beb98fe 1595 * When this bit is equal to 1, a reference clock output is provided at the
Heidl 0:d1960beb98fe 1596 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
Heidl 0:d1960beb98fe 1597 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
Heidl 0:d1960beb98fe 1598 * Specification document.
Heidl 0:d1960beb98fe 1599 * @return Current reference clock output enabled status
Heidl 0:d1960beb98fe 1600 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1601 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
Heidl 0:d1960beb98fe 1602 */
Heidl 0:d1960beb98fe 1603 bool MPU6050::getClockOutputEnabled()
Heidl 0:d1960beb98fe 1604 {
Heidl 0:d1960beb98fe 1605 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer);
Heidl 0:d1960beb98fe 1606 return buffer[0];
Heidl 0:d1960beb98fe 1607 }
Heidl 0:d1960beb98fe 1608 /** Set reference clock output enabled status.
Heidl 0:d1960beb98fe 1609 * When this bit is equal to 1, a reference clock output is provided at the
Heidl 0:d1960beb98fe 1610 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
Heidl 0:d1960beb98fe 1611 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
Heidl 0:d1960beb98fe 1612 * Specification document.
Heidl 0:d1960beb98fe 1613 * @param enabled New reference clock output enabled status
Heidl 0:d1960beb98fe 1614 * @see MPU6050_RA_INT_PIN_CFG
Heidl 0:d1960beb98fe 1615 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
Heidl 0:d1960beb98fe 1616 */
Heidl 0:d1960beb98fe 1617 void MPU6050::setClockOutputEnabled(bool enabled)
Heidl 0:d1960beb98fe 1618 {
Heidl 0:d1960beb98fe 1619 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled);
Heidl 0:d1960beb98fe 1620 }
Heidl 0:d1960beb98fe 1621
Heidl 0:d1960beb98fe 1622 // INT_ENABLE register
Heidl 0:d1960beb98fe 1623
Heidl 0:d1960beb98fe 1624 /** Get full interrupt enabled status.
Heidl 0:d1960beb98fe 1625 * Full register byte for all interrupts, for quick reading. Each bit will be
Heidl 0:d1960beb98fe 1626 * set 0 for disabled, 1 for enabled.
Heidl 0:d1960beb98fe 1627 * @return Current interrupt enabled status
Heidl 0:d1960beb98fe 1628 * @see MPU6050_RA_INT_ENABLE
Heidl 0:d1960beb98fe 1629 * @see MPU6050_INTERRUPT_FF_BIT
Heidl 0:d1960beb98fe 1630 **/
Heidl 0:d1960beb98fe 1631 uint8_t MPU6050::getIntEnabled()
Heidl 0:d1960beb98fe 1632 {
Heidl 0:d1960beb98fe 1633 i2Cdev.readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer);
Heidl 0:d1960beb98fe 1634 return buffer[0];
Heidl 0:d1960beb98fe 1635 }
Heidl 0:d1960beb98fe 1636 /** Set full interrupt enabled status.
Heidl 0:d1960beb98fe 1637 * Full register byte for all interrupts, for quick reading. Each bit should be
Heidl 0:d1960beb98fe 1638 * set 0 for disabled, 1 for enabled.
Heidl 0:d1960beb98fe 1639 * @param enabled New interrupt enabled status
Heidl 0:d1960beb98fe 1640 * @see getIntFreefallEnabled()
Heidl 0:d1960beb98fe 1641 * @see MPU6050_RA_INT_ENABLE
Heidl 0:d1960beb98fe 1642 * @see MPU6050_INTERRUPT_FF_BIT
Heidl 0:d1960beb98fe 1643 **/
Heidl 0:d1960beb98fe 1644 void MPU6050::setIntEnabled(uint8_t enabled)
Heidl 0:d1960beb98fe 1645 {
Heidl 0:d1960beb98fe 1646 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled);
Heidl 0:d1960beb98fe 1647 }
Heidl 0:d1960beb98fe 1648 /** Get Free Fall interrupt enabled status.
Heidl 0:d1960beb98fe 1649 * Will be set 0 for disabled, 1 for enabled.
Heidl 0:d1960beb98fe 1650 * @return Current interrupt enabled status
Heidl 0:d1960beb98fe 1651 * @see MPU6050_RA_INT_ENABLE
Heidl 0:d1960beb98fe 1652 * @see MPU6050_INTERRUPT_FF_BIT
Heidl 0:d1960beb98fe 1653 **/
Heidl 0:d1960beb98fe 1654 bool MPU6050::getIntFreefallEnabled()
Heidl 0:d1960beb98fe 1655 {
Heidl 0:d1960beb98fe 1656 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer);
Heidl 0:d1960beb98fe 1657 return buffer[0];
Heidl 0:d1960beb98fe 1658 }
Heidl 0:d1960beb98fe 1659 /** Set Free Fall interrupt enabled status.
Heidl 0:d1960beb98fe 1660 * @param enabled New interrupt enabled status
Heidl 0:d1960beb98fe 1661 * @see getIntFreefallEnabled()
Heidl 0:d1960beb98fe 1662 * @see MPU6050_RA_INT_ENABLE
Heidl 0:d1960beb98fe 1663 * @see MPU6050_INTERRUPT_FF_BIT
Heidl 0:d1960beb98fe 1664 **/
Heidl 0:d1960beb98fe 1665 void MPU6050::setIntFreefallEnabled(bool enabled)
Heidl 0:d1960beb98fe 1666 {
Heidl 0:d1960beb98fe 1667 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled);
Heidl 0:d1960beb98fe 1668 }
Heidl 0:d1960beb98fe 1669 /** Get Motion Detection interrupt enabled status.
Heidl 0:d1960beb98fe 1670 * Will be set 0 for disabled, 1 for enabled.
Heidl 0:d1960beb98fe 1671 * @return Current interrupt enabled status
Heidl 0:d1960beb98fe 1672 * @see MPU6050_RA_INT_ENABLE
Heidl 0:d1960beb98fe 1673 * @see MPU6050_INTERRUPT_MOT_BIT
Heidl 0:d1960beb98fe 1674 **/
Heidl 0:d1960beb98fe 1675 bool MPU6050::getIntMotionEnabled()
Heidl 0:d1960beb98fe 1676 {
Heidl 0:d1960beb98fe 1677 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer);
Heidl 0:d1960beb98fe 1678 return buffer[0];
Heidl 0:d1960beb98fe 1679 }
Heidl 0:d1960beb98fe 1680 /** Set Motion Detection interrupt enabled status.
Heidl 0:d1960beb98fe 1681 * @param enabled New interrupt enabled status
Heidl 0:d1960beb98fe 1682 * @see getIntMotionEnabled()
Heidl 0:d1960beb98fe 1683 * @see MPU6050_RA_INT_ENABLE
Heidl 0:d1960beb98fe 1684 * @see MPU6050_INTERRUPT_MOT_BIT
Heidl 0:d1960beb98fe 1685 **/
Heidl 0:d1960beb98fe 1686 void MPU6050::setIntMotionEnabled(bool enabled)
Heidl 0:d1960beb98fe 1687 {
Heidl 0:d1960beb98fe 1688 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled);
Heidl 0:d1960beb98fe 1689 }
Heidl 0:d1960beb98fe 1690 /** Get Zero Motion Detection interrupt enabled status.
Heidl 0:d1960beb98fe 1691 * Will be set 0 for disabled, 1 for enabled.
Heidl 0:d1960beb98fe 1692 * @return Current interrupt enabled status
Heidl 0:d1960beb98fe 1693 * @see MPU6050_RA_INT_ENABLE
Heidl 0:d1960beb98fe 1694 * @see MPU6050_INTERRUPT_ZMOT_BIT
Heidl 0:d1960beb98fe 1695 **/
Heidl 0:d1960beb98fe 1696 bool MPU6050::getIntZeroMotionEnabled()
Heidl 0:d1960beb98fe 1697 {
Heidl 0:d1960beb98fe 1698 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
Heidl 0:d1960beb98fe 1699 return buffer[0];
Heidl 0:d1960beb98fe 1700 }
Heidl 0:d1960beb98fe 1701 /** Set Zero Motion Detection interrupt enabled status.
Heidl 0:d1960beb98fe 1702 * @param enabled New interrupt enabled status
Heidl 0:d1960beb98fe 1703 * @see getIntZeroMotionEnabled()
Heidl 0:d1960beb98fe 1704 * @see MPU6050_RA_INT_ENABLE
Heidl 0:d1960beb98fe 1705 * @see MPU6050_INTERRUPT_ZMOT_BIT
Heidl 0:d1960beb98fe 1706 **/
Heidl 0:d1960beb98fe 1707 void MPU6050::setIntZeroMotionEnabled(bool enabled)
Heidl 0:d1960beb98fe 1708 {
Heidl 0:d1960beb98fe 1709 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled);
Heidl 0:d1960beb98fe 1710 }
Heidl 0:d1960beb98fe 1711 /** Get FIFO Buffer Overflow interrupt enabled status.
Heidl 0:d1960beb98fe 1712 * Will be set 0 for disabled, 1 for enabled.
Heidl 0:d1960beb98fe 1713 * @return Current interrupt enabled status
Heidl 0:d1960beb98fe 1714 * @see MPU6050_RA_INT_ENABLE
Heidl 0:d1960beb98fe 1715 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
Heidl 0:d1960beb98fe 1716 **/
Heidl 0:d1960beb98fe 1717 bool MPU6050::getIntFIFOBufferOverflowEnabled()
Heidl 0:d1960beb98fe 1718 {
Heidl 0:d1960beb98fe 1719 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
Heidl 0:d1960beb98fe 1720 return buffer[0];
Heidl 0:d1960beb98fe 1721 }
Heidl 0:d1960beb98fe 1722 /** Set FIFO Buffer Overflow interrupt enabled status.
Heidl 0:d1960beb98fe 1723 * @param enabled New interrupt enabled status
Heidl 0:d1960beb98fe 1724 * @see getIntFIFOBufferOverflowEnabled()
Heidl 0:d1960beb98fe 1725 * @see MPU6050_RA_INT_ENABLE
Heidl 0:d1960beb98fe 1726 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
Heidl 0:d1960beb98fe 1727 **/
Heidl 0:d1960beb98fe 1728 void MPU6050::setIntFIFOBufferOverflowEnabled(bool enabled)
Heidl 0:d1960beb98fe 1729 {
Heidl 0:d1960beb98fe 1730 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled);
Heidl 0:d1960beb98fe 1731 }
Heidl 0:d1960beb98fe 1732 /** Get I2C Master interrupt enabled status.
Heidl 0:d1960beb98fe 1733 * This enables any of the I2C Master interrupt sources to generate an
Heidl 0:d1960beb98fe 1734 * interrupt. Will be set 0 for disabled, 1 for enabled.
Heidl 0:d1960beb98fe 1735 * @return Current interrupt enabled status
Heidl 0:d1960beb98fe 1736 * @see MPU6050_RA_INT_ENABLE
Heidl 0:d1960beb98fe 1737 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
Heidl 0:d1960beb98fe 1738 **/
Heidl 0:d1960beb98fe 1739 bool MPU6050::getIntI2CMasterEnabled()
Heidl 0:d1960beb98fe 1740 {
Heidl 0:d1960beb98fe 1741 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
Heidl 0:d1960beb98fe 1742 return buffer[0];
Heidl 0:d1960beb98fe 1743 }
Heidl 0:d1960beb98fe 1744 /** Set I2C Master interrupt enabled status.
Heidl 0:d1960beb98fe 1745 * @param enabled New interrupt enabled status
Heidl 0:d1960beb98fe 1746 * @see getIntI2CMasterEnabled()
Heidl 0:d1960beb98fe 1747 * @see MPU6050_RA_INT_ENABLE
Heidl 0:d1960beb98fe 1748 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
Heidl 0:d1960beb98fe 1749 **/
Heidl 0:d1960beb98fe 1750 void MPU6050::setIntI2CMasterEnabled(bool enabled)
Heidl 0:d1960beb98fe 1751 {
Heidl 0:d1960beb98fe 1752 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled);
Heidl 0:d1960beb98fe 1753 }
Heidl 0:d1960beb98fe 1754 /** Get Data Ready interrupt enabled setting.
Heidl 0:d1960beb98fe 1755 * This event occurs each time a write operation to all of the sensor registers
Heidl 0:d1960beb98fe 1756 * has been completed. Will be set 0 for disabled, 1 for enabled.
Heidl 0:d1960beb98fe 1757 * @return Current interrupt enabled status
Heidl 0:d1960beb98fe 1758 * @see MPU6050_RA_INT_ENABLE
Heidl 0:d1960beb98fe 1759 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
Heidl 0:d1960beb98fe 1760 */
Heidl 0:d1960beb98fe 1761 bool MPU6050::getIntDataReadyEnabled()
Heidl 0:d1960beb98fe 1762 {
Heidl 0:d1960beb98fe 1763 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
Heidl 0:d1960beb98fe 1764 return buffer[0];
Heidl 0:d1960beb98fe 1765 }
Heidl 0:d1960beb98fe 1766 /** Set Data Ready interrupt enabled status.
Heidl 0:d1960beb98fe 1767 * @param enabled New interrupt enabled status
Heidl 0:d1960beb98fe 1768 * @see getIntDataReadyEnabled()
Heidl 0:d1960beb98fe 1769 * @see MPU6050_RA_INT_CFG
Heidl 0:d1960beb98fe 1770 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
Heidl 0:d1960beb98fe 1771 */
Heidl 0:d1960beb98fe 1772 void MPU6050::setIntDataReadyEnabled(bool enabled)
Heidl 0:d1960beb98fe 1773 {
Heidl 0:d1960beb98fe 1774 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled);
Heidl 0:d1960beb98fe 1775 }
Heidl 0:d1960beb98fe 1776
Heidl 0:d1960beb98fe 1777 // INT_STATUS register
Heidl 0:d1960beb98fe 1778
Heidl 0:d1960beb98fe 1779 /** Get full set of interrupt status bits.
Heidl 0:d1960beb98fe 1780 * These bits clear to 0 after the register has been read. Very useful
Heidl 0:d1960beb98fe 1781 * for getting multiple INT statuses, since each single bit read clears
Heidl 0:d1960beb98fe 1782 * all of them because it has to read the whole byte.
Heidl 0:d1960beb98fe 1783 * @return Current interrupt status
Heidl 0:d1960beb98fe 1784 * @see MPU6050_RA_INT_STATUS
Heidl 0:d1960beb98fe 1785 */
Heidl 0:d1960beb98fe 1786 uint8_t MPU6050::getIntStatus()
Heidl 0:d1960beb98fe 1787 {
Heidl 0:d1960beb98fe 1788 i2Cdev.readByte(devAddr, MPU6050_RA_INT_STATUS, buffer);
Heidl 0:d1960beb98fe 1789 return buffer[0];
Heidl 0:d1960beb98fe 1790 }
Heidl 0:d1960beb98fe 1791 /** Get Free Fall interrupt status.
Heidl 0:d1960beb98fe 1792 * This bit automatically sets to 1 when a Free Fall interrupt has been
Heidl 0:d1960beb98fe 1793 * generated. The bit clears to 0 after the register has been read.
Heidl 0:d1960beb98fe 1794 * @return Current interrupt status
Heidl 0:d1960beb98fe 1795 * @see MPU6050_RA_INT_STATUS
Heidl 0:d1960beb98fe 1796 * @see MPU6050_INTERRUPT_FF_BIT
Heidl 0:d1960beb98fe 1797 */
Heidl 0:d1960beb98fe 1798 bool MPU6050::getIntFreefallStatus()
Heidl 0:d1960beb98fe 1799 {
Heidl 0:d1960beb98fe 1800 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer);
Heidl 0:d1960beb98fe 1801 return buffer[0];
Heidl 0:d1960beb98fe 1802 }
Heidl 0:d1960beb98fe 1803 /** Get Motion Detection interrupt status.
Heidl 0:d1960beb98fe 1804 * This bit automatically sets to 1 when a Motion Detection interrupt has been
Heidl 0:d1960beb98fe 1805 * generated. The bit clears to 0 after the register has been read.
Heidl 0:d1960beb98fe 1806 * @return Current interrupt status
Heidl 0:d1960beb98fe 1807 * @see MPU6050_RA_INT_STATUS
Heidl 0:d1960beb98fe 1808 * @see MPU6050_INTERRUPT_MOT_BIT
Heidl 0:d1960beb98fe 1809 */
Heidl 0:d1960beb98fe 1810 bool MPU6050::getIntMotionStatus()
Heidl 0:d1960beb98fe 1811 {
Heidl 0:d1960beb98fe 1812 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer);
Heidl 0:d1960beb98fe 1813 return buffer[0];
Heidl 0:d1960beb98fe 1814 }
Heidl 0:d1960beb98fe 1815 /** Get Zero Motion Detection interrupt status.
Heidl 0:d1960beb98fe 1816 * This bit automatically sets to 1 when a Zero Motion Detection interrupt has
Heidl 0:d1960beb98fe 1817 * been generated. The bit clears to 0 after the register has been read.
Heidl 0:d1960beb98fe 1818 * @return Current interrupt status
Heidl 0:d1960beb98fe 1819 * @see MPU6050_RA_INT_STATUS
Heidl 0:d1960beb98fe 1820 * @see MPU6050_INTERRUPT_ZMOT_BIT
Heidl 0:d1960beb98fe 1821 */
Heidl 0:d1960beb98fe 1822 bool MPU6050::getIntZeroMotionStatus()
Heidl 0:d1960beb98fe 1823 {
Heidl 0:d1960beb98fe 1824 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
Heidl 0:d1960beb98fe 1825 return buffer[0];
Heidl 0:d1960beb98fe 1826 }
Heidl 0:d1960beb98fe 1827 /** Get FIFO Buffer Overflow interrupt status.
Heidl 0:d1960beb98fe 1828 * This bit automatically sets to 1 when a Free Fall interrupt has been
Heidl 0:d1960beb98fe 1829 * generated. The bit clears to 0 after the register has been read.
Heidl 0:d1960beb98fe 1830 * @return Current interrupt status
Heidl 0:d1960beb98fe 1831 * @see MPU6050_RA_INT_STATUS
Heidl 0:d1960beb98fe 1832 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
Heidl 0:d1960beb98fe 1833 */
Heidl 0:d1960beb98fe 1834 bool MPU6050::getIntFIFOBufferOverflowStatus()
Heidl 0:d1960beb98fe 1835 {
Heidl 0:d1960beb98fe 1836 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
Heidl 0:d1960beb98fe 1837 return buffer[0];
Heidl 0:d1960beb98fe 1838 }
Heidl 0:d1960beb98fe 1839 /** Get I2C Master interrupt status.
Heidl 0:d1960beb98fe 1840 * This bit automatically sets to 1 when an I2C Master interrupt has been
Heidl 0:d1960beb98fe 1841 * generated. For a list of I2C Master interrupts, please refer to Register 54.
Heidl 0:d1960beb98fe 1842 * The bit clears to 0 after the register has been read.
Heidl 0:d1960beb98fe 1843 * @return Current interrupt status
Heidl 0:d1960beb98fe 1844 * @see MPU6050_RA_INT_STATUS
Heidl 0:d1960beb98fe 1845 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
Heidl 0:d1960beb98fe 1846 */
Heidl 0:d1960beb98fe 1847 bool MPU6050::getIntI2CMasterStatus()
Heidl 0:d1960beb98fe 1848 {
Heidl 0:d1960beb98fe 1849 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
Heidl 0:d1960beb98fe 1850 return buffer[0];
Heidl 0:d1960beb98fe 1851 }
Heidl 0:d1960beb98fe 1852 /** Get Data Ready interrupt status.
Heidl 0:d1960beb98fe 1853 * This bit automatically sets to 1 when a Data Ready interrupt has been
Heidl 0:d1960beb98fe 1854 * generated. The bit clears to 0 after the register has been read.
Heidl 0:d1960beb98fe 1855 * @return Current interrupt status
Heidl 0:d1960beb98fe 1856 * @see MPU6050_RA_INT_STATUS
Heidl 0:d1960beb98fe 1857 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
Heidl 0:d1960beb98fe 1858 */
Heidl 0:d1960beb98fe 1859 bool MPU6050::getIntDataReadyStatus()
Heidl 0:d1960beb98fe 1860 {
Heidl 0:d1960beb98fe 1861 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
Heidl 0:d1960beb98fe 1862 return buffer[0];
Heidl 0:d1960beb98fe 1863 }
Heidl 0:d1960beb98fe 1864
Heidl 0:d1960beb98fe 1865 // ACCEL_*OUT_* registers
Heidl 0:d1960beb98fe 1866
Heidl 0:d1960beb98fe 1867 /** Get raw 9-axis motion sensor readings (accel/gyro/compass).
Heidl 0:d1960beb98fe 1868 * FUNCTION NOT FULLY IMPLEMENTED YET.
Heidl 0:d1960beb98fe 1869 * @param ax 16-bit signed integer container for accelerometer X-axis value
Heidl 0:d1960beb98fe 1870 * @param ay 16-bit signed integer container for accelerometer Y-axis value
Heidl 0:d1960beb98fe 1871 * @param az 16-bit signed integer container for accelerometer Z-axis value
Heidl 0:d1960beb98fe 1872 * @param gx 16-bit signed integer container for gyroscope X-axis value
Heidl 0:d1960beb98fe 1873 * @param gy 16-bit signed integer container for gyroscope Y-axis value
Heidl 0:d1960beb98fe 1874 * @param gz 16-bit signed integer container for gyroscope Z-axis value
Heidl 0:d1960beb98fe 1875 * @param mx 16-bit signed integer container for magnetometer X-axis value
Heidl 0:d1960beb98fe 1876 * @param my 16-bit signed integer container for magnetometer Y-axis value
Heidl 0:d1960beb98fe 1877 * @param mz 16-bit signed integer container for magnetometer Z-axis value
Heidl 0:d1960beb98fe 1878 * @see getMotion6()
Heidl 0:d1960beb98fe 1879 * @see getAcceleration()
Heidl 0:d1960beb98fe 1880 * @see getRotation()
Heidl 0:d1960beb98fe 1881 * @see MPU6050_RA_ACCEL_XOUT_H
Heidl 0:d1960beb98fe 1882 */
Heidl 0:d1960beb98fe 1883 void MPU6050::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz)
Heidl 0:d1960beb98fe 1884 {
Heidl 0:d1960beb98fe 1885 getMotion6(ax, ay, az, gx, gy, gz);
Heidl 0:d1960beb98fe 1886 // TODO: magnetometer integration
Heidl 0:d1960beb98fe 1887 }
Heidl 0:d1960beb98fe 1888 /** Get raw 6-axis motion sensor readings (accel/gyro).
Heidl 0:d1960beb98fe 1889 * Retrieves all currently available motion sensor values.
Heidl 0:d1960beb98fe 1890 * @param ax 16-bit signed integer container for accelerometer X-axis value
Heidl 0:d1960beb98fe 1891 * @param ay 16-bit signed integer container for accelerometer Y-axis value
Heidl 0:d1960beb98fe 1892 * @param az 16-bit signed integer container for accelerometer Z-axis value
Heidl 0:d1960beb98fe 1893 * @param gx 16-bit signed integer container for gyroscope X-axis value
Heidl 0:d1960beb98fe 1894 * @param gy 16-bit signed integer container for gyroscope Y-axis value
Heidl 0:d1960beb98fe 1895 * @param gz 16-bit signed integer container for gyroscope Z-axis value
Heidl 0:d1960beb98fe 1896 * @see getAcceleration()
Heidl 0:d1960beb98fe 1897 * @see getRotation()
Heidl 0:d1960beb98fe 1898 * @see MPU6050_RA_ACCEL_XOUT_H
Heidl 0:d1960beb98fe 1899 */
Heidl 0:d1960beb98fe 1900 void MPU6050::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz)
Heidl 0:d1960beb98fe 1901 {
Heidl 0:d1960beb98fe 1902 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer);
Heidl 0:d1960beb98fe 1903 *ax = (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 1904 *ay = (((int16_t)buffer[2]) << 8) | buffer[3];
Heidl 0:d1960beb98fe 1905 *az = (((int16_t)buffer[4]) << 8) | buffer[5];
Heidl 0:d1960beb98fe 1906 *gx = (((int16_t)buffer[8]) << 8) | buffer[9];
Heidl 0:d1960beb98fe 1907 *gy = (((int16_t)buffer[10]) << 8) | buffer[11];
Heidl 0:d1960beb98fe 1908 *gz = (((int16_t)buffer[12]) << 8) | buffer[13];
Heidl 0:d1960beb98fe 1909 }
Heidl 0:d1960beb98fe 1910 /** Get 3-axis accelerometer readings.
Heidl 0:d1960beb98fe 1911 * These registers store the most recent accelerometer measurements.
Heidl 0:d1960beb98fe 1912 * Accelerometer measurements are written to these registers at the Sample Rate
Heidl 0:d1960beb98fe 1913 * as defined in Register 25.
Heidl 0:d1960beb98fe 1914 *
Heidl 0:d1960beb98fe 1915 * The accelerometer measurement registers, along with the temperature
Heidl 0:d1960beb98fe 1916 * measurement registers, gyroscope measurement registers, and external sensor
Heidl 0:d1960beb98fe 1917 * data registers, are composed of two sets of registers: an internal register
Heidl 0:d1960beb98fe 1918 * set and a user-facing read register set.
Heidl 0:d1960beb98fe 1919 *
Heidl 0:d1960beb98fe 1920 * The data within the accelerometer sensors' internal register set is always
Heidl 0:d1960beb98fe 1921 * updated at the Sample Rate. Meanwhile, the user-facing read register set
Heidl 0:d1960beb98fe 1922 * duplicates the internal register set's data values whenever the serial
Heidl 0:d1960beb98fe 1923 * interface is idle. This guarantees that a burst read of sensor registers will
Heidl 0:d1960beb98fe 1924 * read measurements from the same sampling instant. Note that if burst reads
Heidl 0:d1960beb98fe 1925 * are not used, the user is responsible for ensuring a set of single byte reads
Heidl 0:d1960beb98fe 1926 * correspond to a single sampling instant by checking the Data Ready interrupt.
Heidl 0:d1960beb98fe 1927 *
Heidl 0:d1960beb98fe 1928 * Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS
Heidl 0:d1960beb98fe 1929 * (Register 28). For each full scale setting, the accelerometers' sensitivity
Heidl 0:d1960beb98fe 1930 * per LSB in ACCEL_xOUT is shown in the table below:
Heidl 0:d1960beb98fe 1931 *
Heidl 0:d1960beb98fe 1932 * <pre>
Heidl 0:d1960beb98fe 1933 * AFS_SEL | Full Scale Range | LSB Sensitivity
Heidl 0:d1960beb98fe 1934 * --------+------------------+----------------
Heidl 0:d1960beb98fe 1935 * 0 | +/- 2g | 8192 LSB/mg
Heidl 0:d1960beb98fe 1936 * 1 | +/- 4g | 4096 LSB/mg
Heidl 0:d1960beb98fe 1937 * 2 | +/- 8g | 2048 LSB/mg
Heidl 0:d1960beb98fe 1938 * 3 | +/- 16g | 1024 LSB/mg
Heidl 0:d1960beb98fe 1939 * </pre>
Heidl 0:d1960beb98fe 1940 *
Heidl 0:d1960beb98fe 1941 * @param x 16-bit signed integer container for X-axis acceleration
Heidl 0:d1960beb98fe 1942 * @param y 16-bit signed integer container for Y-axis acceleration
Heidl 0:d1960beb98fe 1943 * @param z 16-bit signed integer container for Z-axis acceleration
Heidl 0:d1960beb98fe 1944 * @see MPU6050_RA_GYRO_XOUT_H
Heidl 0:d1960beb98fe 1945 */
Heidl 0:d1960beb98fe 1946 void MPU6050::getAcceleration(int16_t* x, int16_t* y, int16_t* z)
Heidl 0:d1960beb98fe 1947 {
Heidl 0:d1960beb98fe 1948 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer);
Heidl 0:d1960beb98fe 1949 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 1950 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
Heidl 0:d1960beb98fe 1951 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
Heidl 0:d1960beb98fe 1952 }
Heidl 0:d1960beb98fe 1953 /** Get X-axis accelerometer reading.
Heidl 0:d1960beb98fe 1954 * @return X-axis acceleration measurement in 16-bit 2's complement format
Heidl 0:d1960beb98fe 1955 * @see getMotion6()
Heidl 0:d1960beb98fe 1956 * @see MPU6050_RA_ACCEL_XOUT_H
Heidl 0:d1960beb98fe 1957 */
Heidl 0:d1960beb98fe 1958 int16_t MPU6050::getAccelerationX()
Heidl 0:d1960beb98fe 1959 {
Heidl 0:d1960beb98fe 1960 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer);
Heidl 0:d1960beb98fe 1961 return (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 1962 }
Heidl 0:d1960beb98fe 1963 /** Get Y-axis accelerometer reading.
Heidl 0:d1960beb98fe 1964 * @return Y-axis acceleration measurement in 16-bit 2's complement format
Heidl 0:d1960beb98fe 1965 * @see getMotion6()
Heidl 0:d1960beb98fe 1966 * @see MPU6050_RA_ACCEL_YOUT_H
Heidl 0:d1960beb98fe 1967 */
Heidl 0:d1960beb98fe 1968 int16_t MPU6050::getAccelerationY()
Heidl 0:d1960beb98fe 1969 {
Heidl 0:d1960beb98fe 1970 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer);
Heidl 0:d1960beb98fe 1971 return (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 1972 }
Heidl 0:d1960beb98fe 1973 /** Get Z-axis accelerometer reading.
Heidl 0:d1960beb98fe 1974 * @return Z-axis acceleration measurement in 16-bit 2's complement format
Heidl 0:d1960beb98fe 1975 * @see getMotion6()
Heidl 0:d1960beb98fe 1976 * @see MPU6050_RA_ACCEL_ZOUT_H
Heidl 0:d1960beb98fe 1977 */
Heidl 0:d1960beb98fe 1978 int16_t MPU6050::getAccelerationZ()
Heidl 0:d1960beb98fe 1979 {
Heidl 0:d1960beb98fe 1980 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer);
Heidl 0:d1960beb98fe 1981 return (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 1982 }
Heidl 0:d1960beb98fe 1983
Heidl 0:d1960beb98fe 1984 // TEMP_OUT_* registers
Heidl 0:d1960beb98fe 1985
Heidl 0:d1960beb98fe 1986 /** Get current internal temperature.
Heidl 0:d1960beb98fe 1987 * @return Temperature reading in 16-bit 2's complement format
Heidl 0:d1960beb98fe 1988 * @see MPU6050_RA_TEMP_OUT_H
Heidl 0:d1960beb98fe 1989 */
Heidl 0:d1960beb98fe 1990 int16_t MPU6050::getTemperature()
Heidl 0:d1960beb98fe 1991 {
Heidl 0:d1960beb98fe 1992 i2Cdev.readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer);
Heidl 0:d1960beb98fe 1993 return (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 1994 }
Heidl 0:d1960beb98fe 1995
Heidl 0:d1960beb98fe 1996 // GYRO_*OUT_* registers
Heidl 0:d1960beb98fe 1997
Heidl 0:d1960beb98fe 1998 /** Get 3-axis gyroscope readings.
Heidl 0:d1960beb98fe 1999 * These gyroscope measurement registers, along with the accelerometer
Heidl 0:d1960beb98fe 2000 * measurement registers, temperature measurement registers, and external sensor
Heidl 0:d1960beb98fe 2001 * data registers, are composed of two sets of registers: an internal register
Heidl 0:d1960beb98fe 2002 * set and a user-facing read register set.
Heidl 0:d1960beb98fe 2003 * The data within the gyroscope sensors' internal register set is always
Heidl 0:d1960beb98fe 2004 * updated at the Sample Rate. Meanwhile, the user-facing read register set
Heidl 0:d1960beb98fe 2005 * duplicates the internal register set's data values whenever the serial
Heidl 0:d1960beb98fe 2006 * interface is idle. This guarantees that a burst read of sensor registers will
Heidl 0:d1960beb98fe 2007 * read measurements from the same sampling instant. Note that if burst reads
Heidl 0:d1960beb98fe 2008 * are not used, the user is responsible for ensuring a set of single byte reads
Heidl 0:d1960beb98fe 2009 * correspond to a single sampling instant by checking the Data Ready interrupt.
Heidl 0:d1960beb98fe 2010 *
Heidl 0:d1960beb98fe 2011 * Each 16-bit gyroscope measurement has a full scale defined in FS_SEL
Heidl 0:d1960beb98fe 2012 * (Register 27). For each full scale setting, the gyroscopes' sensitivity per
Heidl 0:d1960beb98fe 2013 * LSB in GYRO_xOUT is shown in the table below:
Heidl 0:d1960beb98fe 2014 *
Heidl 0:d1960beb98fe 2015 * <pre>
Heidl 0:d1960beb98fe 2016 * FS_SEL | Full Scale Range | LSB Sensitivity
Heidl 0:d1960beb98fe 2017 * -------+--------------------+----------------
Heidl 0:d1960beb98fe 2018 * 0 | +/- 250 degrees/s | 131 LSB/deg/s
Heidl 0:d1960beb98fe 2019 * 1 | +/- 500 degrees/s | 65.5 LSB/deg/s
Heidl 0:d1960beb98fe 2020 * 2 | +/- 1000 degrees/s | 32.8 LSB/deg/s
Heidl 0:d1960beb98fe 2021 * 3 | +/- 2000 degrees/s | 16.4 LSB/deg/s
Heidl 0:d1960beb98fe 2022 * </pre>
Heidl 0:d1960beb98fe 2023 *
Heidl 0:d1960beb98fe 2024 * @param x 16-bit signed integer container for X-axis rotation
Heidl 0:d1960beb98fe 2025 * @param y 16-bit signed integer container for Y-axis rotation
Heidl 0:d1960beb98fe 2026 * @param z 16-bit signed integer container for Z-axis rotation
Heidl 0:d1960beb98fe 2027 * @see getMotion6()
Heidl 0:d1960beb98fe 2028 * @see MPU6050_RA_GYRO_XOUT_H
Heidl 0:d1960beb98fe 2029 */
Heidl 0:d1960beb98fe 2030 void MPU6050::getRotation(int16_t* x, int16_t* y, int16_t* z)
Heidl 0:d1960beb98fe 2031 {
Heidl 0:d1960beb98fe 2032 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer);
Heidl 0:d1960beb98fe 2033 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 2034 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
Heidl 0:d1960beb98fe 2035 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
Heidl 0:d1960beb98fe 2036 }
Heidl 0:d1960beb98fe 2037 /** Get X-axis gyroscope reading.
Heidl 0:d1960beb98fe 2038 * @return X-axis rotation measurement in 16-bit 2's complement format
Heidl 0:d1960beb98fe 2039 * @see getMotion6()
Heidl 0:d1960beb98fe 2040 * @see MPU6050_RA_GYRO_XOUT_H
Heidl 0:d1960beb98fe 2041 */
Heidl 0:d1960beb98fe 2042 int16_t MPU6050::getRotationX()
Heidl 0:d1960beb98fe 2043 {
Heidl 0:d1960beb98fe 2044 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer);
Heidl 0:d1960beb98fe 2045 return (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 2046 }
Heidl 0:d1960beb98fe 2047 /** Get Y-axis gyroscope reading.
Heidl 0:d1960beb98fe 2048 * @return Y-axis rotation measurement in 16-bit 2's complement format
Heidl 0:d1960beb98fe 2049 * @see getMotion6()
Heidl 0:d1960beb98fe 2050 * @see MPU6050_RA_GYRO_YOUT_H
Heidl 0:d1960beb98fe 2051 */
Heidl 0:d1960beb98fe 2052 int16_t MPU6050::getRotationY()
Heidl 0:d1960beb98fe 2053 {
Heidl 0:d1960beb98fe 2054 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer);
Heidl 0:d1960beb98fe 2055 return (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 2056 }
Heidl 0:d1960beb98fe 2057 /** Get Z-axis gyroscope reading.
Heidl 0:d1960beb98fe 2058 * @return Z-axis rotation measurement in 16-bit 2's complement format
Heidl 0:d1960beb98fe 2059 * @see getMotion6()
Heidl 0:d1960beb98fe 2060 * @see MPU6050_RA_GYRO_ZOUT_H
Heidl 0:d1960beb98fe 2061 */
Heidl 0:d1960beb98fe 2062 int16_t MPU6050::getRotationZ()
Heidl 0:d1960beb98fe 2063 {
Heidl 0:d1960beb98fe 2064 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer);
Heidl 0:d1960beb98fe 2065 return (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 2066 }
Heidl 0:d1960beb98fe 2067
Heidl 0:d1960beb98fe 2068 // EXT_SENS_DATA_* registers
Heidl 0:d1960beb98fe 2069
Heidl 0:d1960beb98fe 2070 /** Read single byte from external sensor data register.
Heidl 0:d1960beb98fe 2071 * These registers store data read from external sensors by the Slave 0, 1, 2,
Heidl 0:d1960beb98fe 2072 * and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in
Heidl 0:d1960beb98fe 2073 * I2C_SLV4_DI (Register 53).
Heidl 0:d1960beb98fe 2074 *
Heidl 0:d1960beb98fe 2075 * External sensor data is written to these registers at the Sample Rate as
Heidl 0:d1960beb98fe 2076 * defined in Register 25. This access rate can be reduced by using the Slave
Heidl 0:d1960beb98fe 2077 * Delay Enable registers (Register 103).
Heidl 0:d1960beb98fe 2078 *
Heidl 0:d1960beb98fe 2079 * External sensor data registers, along with the gyroscope measurement
Heidl 0:d1960beb98fe 2080 * registers, accelerometer measurement registers, and temperature measurement
Heidl 0:d1960beb98fe 2081 * registers, are composed of two sets of registers: an internal register set
Heidl 0:d1960beb98fe 2082 * and a user-facing read register set.
Heidl 0:d1960beb98fe 2083 *
Heidl 0:d1960beb98fe 2084 * The data within the external sensors' internal register set is always updated
Heidl 0:d1960beb98fe 2085 * at the Sample Rate (or the reduced access rate) whenever the serial interface
Heidl 0:d1960beb98fe 2086 * is idle. This guarantees that a burst read of sensor registers will read
Heidl 0:d1960beb98fe 2087 * measurements from the same sampling instant. Note that if burst reads are not
Heidl 0:d1960beb98fe 2088 * used, the user is responsible for ensuring a set of single byte reads
Heidl 0:d1960beb98fe 2089 * correspond to a single sampling instant by checking the Data Ready interrupt.
Heidl 0:d1960beb98fe 2090 *
Heidl 0:d1960beb98fe 2091 * Data is placed in these external sensor data registers according to
Heidl 0:d1960beb98fe 2092 * I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39,
Heidl 0:d1960beb98fe 2093 * 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from
Heidl 0:d1960beb98fe 2094 * an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as
Heidl 0:d1960beb98fe 2095 * defined in Register 25) or delayed rate (if specified in Register 52 and
Heidl 0:d1960beb98fe 2096 * 103). During each Sample cycle, slave reads are performed in order of Slave
Heidl 0:d1960beb98fe 2097 * number. If all slaves are enabled with more than zero bytes to be read, the
Heidl 0:d1960beb98fe 2098 * order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3.
Heidl 0:d1960beb98fe 2099 *
Heidl 0:d1960beb98fe 2100 * Each enabled slave will have EXT_SENS_DATA registers associated with it by
Heidl 0:d1960beb98fe 2101 * number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from
Heidl 0:d1960beb98fe 2102 * EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may
Heidl 0:d1960beb98fe 2103 * change the higher numbered slaves' associated registers. Furthermore, if
Heidl 0:d1960beb98fe 2104 * fewer total bytes are being read from the external sensors as a result of
Heidl 0:d1960beb98fe 2105 * such a change, then the data remaining in the registers which no longer have
Heidl 0:d1960beb98fe 2106 * an associated slave device (i.e. high numbered registers) will remain in
Heidl 0:d1960beb98fe 2107 * these previously allocated registers unless reset.
Heidl 0:d1960beb98fe 2108 *
Heidl 0:d1960beb98fe 2109 * If the sum of the read lengths of all SLVx transactions exceed the number of
Heidl 0:d1960beb98fe 2110 * available EXT_SENS_DATA registers, the excess bytes will be dropped. There
Heidl 0:d1960beb98fe 2111 * are 24 EXT_SENS_DATA registers and hence the total read lengths between all
Heidl 0:d1960beb98fe 2112 * the slaves cannot be greater than 24 or some bytes will be lost.
Heidl 0:d1960beb98fe 2113 *
Heidl 0:d1960beb98fe 2114 * Note: Slave 4's behavior is distinct from that of Slaves 0-3. For further
Heidl 0:d1960beb98fe 2115 * information regarding the characteristics of Slave 4, please refer to
Heidl 0:d1960beb98fe 2116 * Registers 49 to 53.
Heidl 0:d1960beb98fe 2117 *
Heidl 0:d1960beb98fe 2118 * EXAMPLE:
Heidl 0:d1960beb98fe 2119 * Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and
Heidl 0:d1960beb98fe 2120 * I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that
Heidl 0:d1960beb98fe 2121 * I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00
Heidl 0:d1960beb98fe 2122 * through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05
Heidl 0:d1960beb98fe 2123 * will be associated with Slave 1. If Slave 2 is enabled as well, registers
Heidl 0:d1960beb98fe 2124 * starting from EXT_SENS_DATA_06 will be allocated to Slave 2.
Heidl 0:d1960beb98fe 2125 *
Heidl 0:d1960beb98fe 2126 * If Slave 2 is disabled while Slave 3 is enabled in this same situation, then
Heidl 0:d1960beb98fe 2127 * registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3
Heidl 0:d1960beb98fe 2128 * instead.
Heidl 0:d1960beb98fe 2129 *
Heidl 0:d1960beb98fe 2130 * REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE:
Heidl 0:d1960beb98fe 2131 * If a slave is disabled at any time, the space initially allocated to the
Heidl 0:d1960beb98fe 2132 * slave in the EXT_SENS_DATA register, will remain associated with that slave.
Heidl 0:d1960beb98fe 2133 * This is to avoid dynamic adjustment of the register allocation.
Heidl 0:d1960beb98fe 2134 *
Heidl 0:d1960beb98fe 2135 * The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all
Heidl 0:d1960beb98fe 2136 * slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106).
Heidl 0:d1960beb98fe 2137 *
Heidl 0:d1960beb98fe 2138 * This above is also true if one of the slaves gets NACKed and stops
Heidl 0:d1960beb98fe 2139 * functioning.
Heidl 0:d1960beb98fe 2140 *
Heidl 0:d1960beb98fe 2141 * @param position Starting position (0-23)
Heidl 0:d1960beb98fe 2142 * @return Byte read from register
Heidl 0:d1960beb98fe 2143 */
Heidl 0:d1960beb98fe 2144 uint8_t MPU6050::getExternalSensorByte(int position)
Heidl 0:d1960beb98fe 2145 {
Heidl 0:d1960beb98fe 2146 i2Cdev.readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer);
Heidl 0:d1960beb98fe 2147 return buffer[0];
Heidl 0:d1960beb98fe 2148 }
Heidl 0:d1960beb98fe 2149 /** Read word (2 bytes) from external sensor data registers.
Heidl 0:d1960beb98fe 2150 * @param position Starting position (0-21)
Heidl 0:d1960beb98fe 2151 * @return Word read from register
Heidl 0:d1960beb98fe 2152 * @see getExternalSensorByte()
Heidl 0:d1960beb98fe 2153 */
Heidl 0:d1960beb98fe 2154 uint16_t MPU6050::getExternalSensorWord(int position)
Heidl 0:d1960beb98fe 2155 {
Heidl 0:d1960beb98fe 2156 i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer);
Heidl 0:d1960beb98fe 2157 return (((uint16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 2158 }
Heidl 0:d1960beb98fe 2159 /** Read double word (4 bytes) from external sensor data registers.
Heidl 0:d1960beb98fe 2160 * @param position Starting position (0-20)
Heidl 0:d1960beb98fe 2161 * @return Double word read from registers
Heidl 0:d1960beb98fe 2162 * @see getExternalSensorByte()
Heidl 0:d1960beb98fe 2163 */
Heidl 0:d1960beb98fe 2164 uint32_t MPU6050::getExternalSensorDWord(int position)
Heidl 0:d1960beb98fe 2165 {
Heidl 0:d1960beb98fe 2166 i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer);
Heidl 0:d1960beb98fe 2167 return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3];
Heidl 0:d1960beb98fe 2168 }
Heidl 0:d1960beb98fe 2169
Heidl 0:d1960beb98fe 2170 // MOT_DETECT_STATUS register
Heidl 0:d1960beb98fe 2171
Heidl 0:d1960beb98fe 2172 /** Get X-axis negative motion detection interrupt status.
Heidl 0:d1960beb98fe 2173 * @return Motion detection status
Heidl 0:d1960beb98fe 2174 * @see MPU6050_RA_MOT_DETECT_STATUS
Heidl 0:d1960beb98fe 2175 * @see MPU6050_MOTION_MOT_XNEG_BIT
Heidl 0:d1960beb98fe 2176 */
Heidl 0:d1960beb98fe 2177 bool MPU6050::getXNegMotionDetected()
Heidl 0:d1960beb98fe 2178 {
Heidl 0:d1960beb98fe 2179 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer);
Heidl 0:d1960beb98fe 2180 return buffer[0];
Heidl 0:d1960beb98fe 2181 }
Heidl 0:d1960beb98fe 2182 /** Get X-axis positive motion detection interrupt status.
Heidl 0:d1960beb98fe 2183 * @return Motion detection status
Heidl 0:d1960beb98fe 2184 * @see MPU6050_RA_MOT_DETECT_STATUS
Heidl 0:d1960beb98fe 2185 * @see MPU6050_MOTION_MOT_XPOS_BIT
Heidl 0:d1960beb98fe 2186 */
Heidl 0:d1960beb98fe 2187 bool MPU6050::getXPosMotionDetected()
Heidl 0:d1960beb98fe 2188 {
Heidl 0:d1960beb98fe 2189 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer);
Heidl 0:d1960beb98fe 2190 return buffer[0];
Heidl 0:d1960beb98fe 2191 }
Heidl 0:d1960beb98fe 2192 /** Get Y-axis negative motion detection interrupt status.
Heidl 0:d1960beb98fe 2193 * @return Motion detection status
Heidl 0:d1960beb98fe 2194 * @see MPU6050_RA_MOT_DETECT_STATUS
Heidl 0:d1960beb98fe 2195 * @see MPU6050_MOTION_MOT_YNEG_BIT
Heidl 0:d1960beb98fe 2196 */
Heidl 0:d1960beb98fe 2197 bool MPU6050::getYNegMotionDetected()
Heidl 0:d1960beb98fe 2198 {
Heidl 0:d1960beb98fe 2199 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer);
Heidl 0:d1960beb98fe 2200 return buffer[0];
Heidl 0:d1960beb98fe 2201 }
Heidl 0:d1960beb98fe 2202 /** Get Y-axis positive motion detection interrupt status.
Heidl 0:d1960beb98fe 2203 * @return Motion detection status
Heidl 0:d1960beb98fe 2204 * @see MPU6050_RA_MOT_DETECT_STATUS
Heidl 0:d1960beb98fe 2205 * @see MPU6050_MOTION_MOT_YPOS_BIT
Heidl 0:d1960beb98fe 2206 */
Heidl 0:d1960beb98fe 2207 bool MPU6050::getYPosMotionDetected()
Heidl 0:d1960beb98fe 2208 {
Heidl 0:d1960beb98fe 2209 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer);
Heidl 0:d1960beb98fe 2210 return buffer[0];
Heidl 0:d1960beb98fe 2211 }
Heidl 0:d1960beb98fe 2212 /** Get Z-axis negative motion detection interrupt status.
Heidl 0:d1960beb98fe 2213 * @return Motion detection status
Heidl 0:d1960beb98fe 2214 * @see MPU6050_RA_MOT_DETECT_STATUS
Heidl 0:d1960beb98fe 2215 * @see MPU6050_MOTION_MOT_ZNEG_BIT
Heidl 0:d1960beb98fe 2216 */
Heidl 0:d1960beb98fe 2217 bool MPU6050::getZNegMotionDetected()
Heidl 0:d1960beb98fe 2218 {
Heidl 0:d1960beb98fe 2219 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer);
Heidl 0:d1960beb98fe 2220 return buffer[0];
Heidl 0:d1960beb98fe 2221 }
Heidl 0:d1960beb98fe 2222 /** Get Z-axis positive motion detection interrupt status.
Heidl 0:d1960beb98fe 2223 * @return Motion detection status
Heidl 0:d1960beb98fe 2224 * @see MPU6050_RA_MOT_DETECT_STATUS
Heidl 0:d1960beb98fe 2225 * @see MPU6050_MOTION_MOT_ZPOS_BIT
Heidl 0:d1960beb98fe 2226 */
Heidl 0:d1960beb98fe 2227 bool MPU6050::getZPosMotionDetected()
Heidl 0:d1960beb98fe 2228 {
Heidl 0:d1960beb98fe 2229 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer);
Heidl 0:d1960beb98fe 2230 return buffer[0];
Heidl 0:d1960beb98fe 2231 }
Heidl 0:d1960beb98fe 2232 /** Get zero motion detection interrupt status.
Heidl 0:d1960beb98fe 2233 * @return Motion detection status
Heidl 0:d1960beb98fe 2234 * @see MPU6050_RA_MOT_DETECT_STATUS
Heidl 0:d1960beb98fe 2235 * @see MPU6050_MOTION_MOT_ZRMOT_BIT
Heidl 0:d1960beb98fe 2236 */
Heidl 0:d1960beb98fe 2237 bool MPU6050::getZeroMotionDetected()
Heidl 0:d1960beb98fe 2238 {
Heidl 0:d1960beb98fe 2239 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer);
Heidl 0:d1960beb98fe 2240 return buffer[0];
Heidl 0:d1960beb98fe 2241 }
Heidl 0:d1960beb98fe 2242
Heidl 0:d1960beb98fe 2243 // I2C_SLV*_DO register
Heidl 0:d1960beb98fe 2244
Heidl 0:d1960beb98fe 2245 /** Write byte to Data Output container for specified slave.
Heidl 0:d1960beb98fe 2246 * This register holds the output data written into Slave when Slave is set to
Heidl 0:d1960beb98fe 2247 * write mode. For further information regarding Slave control, please
Heidl 0:d1960beb98fe 2248 * refer to Registers 37 to 39 and immediately following.
Heidl 0:d1960beb98fe 2249 * @param num Slave number (0-3)
Heidl 0:d1960beb98fe 2250 * @param data Byte to write
Heidl 0:d1960beb98fe 2251 * @see MPU6050_RA_I2C_SLV0_DO
Heidl 0:d1960beb98fe 2252 */
Heidl 0:d1960beb98fe 2253 void MPU6050::setSlaveOutputByte(uint8_t num, uint8_t data)
Heidl 0:d1960beb98fe 2254 {
Heidl 0:d1960beb98fe 2255 if (num > 3) return;
Heidl 0:d1960beb98fe 2256 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data);
Heidl 0:d1960beb98fe 2257 }
Heidl 0:d1960beb98fe 2258
Heidl 0:d1960beb98fe 2259 // I2C_MST_DELAY_CTRL register
Heidl 0:d1960beb98fe 2260
Heidl 0:d1960beb98fe 2261 /** Get external data shadow delay enabled status.
Heidl 0:d1960beb98fe 2262 * This register is used to specify the timing of external sensor data
Heidl 0:d1960beb98fe 2263 * shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external
Heidl 0:d1960beb98fe 2264 * sensor data is delayed until all data has been received.
Heidl 0:d1960beb98fe 2265 * @return Current external data shadow delay enabled status.
Heidl 0:d1960beb98fe 2266 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
Heidl 0:d1960beb98fe 2267 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
Heidl 0:d1960beb98fe 2268 */
Heidl 0:d1960beb98fe 2269 bool MPU6050::getExternalShadowDelayEnabled()
Heidl 0:d1960beb98fe 2270 {
Heidl 0:d1960beb98fe 2271 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer);
Heidl 0:d1960beb98fe 2272 return buffer[0];
Heidl 0:d1960beb98fe 2273 }
Heidl 0:d1960beb98fe 2274 /** Set external data shadow delay enabled status.
Heidl 0:d1960beb98fe 2275 * @param enabled New external data shadow delay enabled status.
Heidl 0:d1960beb98fe 2276 * @see getExternalShadowDelayEnabled()
Heidl 0:d1960beb98fe 2277 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
Heidl 0:d1960beb98fe 2278 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
Heidl 0:d1960beb98fe 2279 */
Heidl 0:d1960beb98fe 2280 void MPU6050::setExternalShadowDelayEnabled(bool enabled)
Heidl 0:d1960beb98fe 2281 {
Heidl 0:d1960beb98fe 2282 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled);
Heidl 0:d1960beb98fe 2283 }
Heidl 0:d1960beb98fe 2284 /** Get slave delay enabled status.
Heidl 0:d1960beb98fe 2285 * When a particular slave delay is enabled, the rate of access for the that
Heidl 0:d1960beb98fe 2286 * slave device is reduced. When a slave's access rate is decreased relative to
Heidl 0:d1960beb98fe 2287 * the Sample Rate, the slave is accessed every:
Heidl 0:d1960beb98fe 2288 *
Heidl 0:d1960beb98fe 2289 * 1 / (1 + I2C_MST_DLY) Samples
Heidl 0:d1960beb98fe 2290 *
Heidl 0:d1960beb98fe 2291 * This base Sample Rate in turn is determined by SMPLRT_DIV (register * 25)
Heidl 0:d1960beb98fe 2292 * and DLPF_CFG (register 26).
Heidl 0:d1960beb98fe 2293 *
Heidl 0:d1960beb98fe 2294 * For further information regarding I2C_MST_DLY, please refer to register 52.
Heidl 0:d1960beb98fe 2295 * For further information regarding the Sample Rate, please refer to register 25.
Heidl 0:d1960beb98fe 2296 *
Heidl 0:d1960beb98fe 2297 * @param num Slave number (0-4)
Heidl 0:d1960beb98fe 2298 * @return Current slave delay enabled status.
Heidl 0:d1960beb98fe 2299 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
Heidl 0:d1960beb98fe 2300 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
Heidl 0:d1960beb98fe 2301 */
Heidl 0:d1960beb98fe 2302 bool MPU6050::getSlaveDelayEnabled(uint8_t num)
Heidl 0:d1960beb98fe 2303 {
Heidl 0:d1960beb98fe 2304 // MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc.
Heidl 0:d1960beb98fe 2305 if (num > 4) return 0;
Heidl 0:d1960beb98fe 2306 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer);
Heidl 0:d1960beb98fe 2307 return buffer[0];
Heidl 0:d1960beb98fe 2308 }
Heidl 0:d1960beb98fe 2309 /** Set slave delay enabled status.
Heidl 0:d1960beb98fe 2310 * @param num Slave number (0-4)
Heidl 0:d1960beb98fe 2311 * @param enabled New slave delay enabled status.
Heidl 0:d1960beb98fe 2312 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
Heidl 0:d1960beb98fe 2313 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
Heidl 0:d1960beb98fe 2314 */
Heidl 0:d1960beb98fe 2315 void MPU6050::setSlaveDelayEnabled(uint8_t num, bool enabled)
Heidl 0:d1960beb98fe 2316 {
Heidl 0:d1960beb98fe 2317 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled);
Heidl 0:d1960beb98fe 2318 }
Heidl 0:d1960beb98fe 2319
Heidl 0:d1960beb98fe 2320 // SIGNAL_PATH_RESET register
Heidl 0:d1960beb98fe 2321
Heidl 0:d1960beb98fe 2322 /** Reset gyroscope signal path.
Heidl 0:d1960beb98fe 2323 * The reset will revert the signal path analog to digital converters and
Heidl 0:d1960beb98fe 2324 * filters to their power up configurations.
Heidl 0:d1960beb98fe 2325 * @see MPU6050_RA_SIGNAL_PATH_RESET
Heidl 0:d1960beb98fe 2326 * @see MPU6050_PATHRESET_GYRO_RESET_BIT
Heidl 0:d1960beb98fe 2327 */
Heidl 0:d1960beb98fe 2328 void MPU6050::resetGyroscopePath()
Heidl 0:d1960beb98fe 2329 {
Heidl 0:d1960beb98fe 2330 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true);
Heidl 0:d1960beb98fe 2331 }
Heidl 0:d1960beb98fe 2332 /** Reset accelerometer signal path.
Heidl 0:d1960beb98fe 2333 * The reset will revert the signal path analog to digital converters and
Heidl 0:d1960beb98fe 2334 * filters to their power up configurations.
Heidl 0:d1960beb98fe 2335 * @see MPU6050_RA_SIGNAL_PATH_RESET
Heidl 0:d1960beb98fe 2336 * @see MPU6050_PATHRESET_ACCEL_RESET_BIT
Heidl 0:d1960beb98fe 2337 */
Heidl 0:d1960beb98fe 2338 void MPU6050::resetAccelerometerPath()
Heidl 0:d1960beb98fe 2339 {
Heidl 0:d1960beb98fe 2340 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true);
Heidl 0:d1960beb98fe 2341 }
Heidl 0:d1960beb98fe 2342 /** Reset temperature sensor signal path.
Heidl 0:d1960beb98fe 2343 * The reset will revert the signal path analog to digital converters and
Heidl 0:d1960beb98fe 2344 * filters to their power up configurations.
Heidl 0:d1960beb98fe 2345 * @see MPU6050_RA_SIGNAL_PATH_RESET
Heidl 0:d1960beb98fe 2346 * @see MPU6050_PATHRESET_TEMP_RESET_BIT
Heidl 0:d1960beb98fe 2347 */
Heidl 0:d1960beb98fe 2348 void MPU6050::resetTemperaturePath()
Heidl 0:d1960beb98fe 2349 {
Heidl 0:d1960beb98fe 2350 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true);
Heidl 0:d1960beb98fe 2351 }
Heidl 0:d1960beb98fe 2352
Heidl 0:d1960beb98fe 2353 // MOT_DETECT_CTRL register
Heidl 0:d1960beb98fe 2354
Heidl 0:d1960beb98fe 2355 /** Get accelerometer power-on delay.
Heidl 0:d1960beb98fe 2356 * The accelerometer data path provides samples to the sensor registers, Motion
Heidl 0:d1960beb98fe 2357 * detection, Zero Motion detection, and Free Fall detection modules. The
Heidl 0:d1960beb98fe 2358 * signal path contains filters which must be flushed on wake-up with new
Heidl 0:d1960beb98fe 2359 * samples before the detection modules begin operations. The default wake-up
Heidl 0:d1960beb98fe 2360 * delay, of 4ms can be lengthened by up to 3ms. This additional delay is
Heidl 0:d1960beb98fe 2361 * specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select
Heidl 0:d1960beb98fe 2362 * any value above zero unless instructed otherwise by InvenSense. Please refer
Heidl 0:d1960beb98fe 2363 * to Section 8 of the MPU-6000/MPU-6050 Product Specification document for
Heidl 0:d1960beb98fe 2364 * further information regarding the detection modules.
Heidl 0:d1960beb98fe 2365 * @return Current accelerometer power-on delay
Heidl 0:d1960beb98fe 2366 * @see MPU6050_RA_MOT_DETECT_CTRL
Heidl 0:d1960beb98fe 2367 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
Heidl 0:d1960beb98fe 2368 */
Heidl 0:d1960beb98fe 2369 uint8_t MPU6050::getAccelerometerPowerOnDelay()
Heidl 0:d1960beb98fe 2370 {
Heidl 0:d1960beb98fe 2371 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer);
Heidl 0:d1960beb98fe 2372 return buffer[0];
Heidl 0:d1960beb98fe 2373 }
Heidl 0:d1960beb98fe 2374 /** Set accelerometer power-on delay.
Heidl 0:d1960beb98fe 2375 * @param delay New accelerometer power-on delay (0-3)
Heidl 0:d1960beb98fe 2376 * @see getAccelerometerPowerOnDelay()
Heidl 0:d1960beb98fe 2377 * @see MPU6050_RA_MOT_DETECT_CTRL
Heidl 0:d1960beb98fe 2378 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
Heidl 0:d1960beb98fe 2379 */
Heidl 0:d1960beb98fe 2380 void MPU6050::setAccelerometerPowerOnDelay(uint8_t delay)
Heidl 0:d1960beb98fe 2381 {
Heidl 0:d1960beb98fe 2382 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay);
Heidl 0:d1960beb98fe 2383 }
Heidl 0:d1960beb98fe 2384 /** Get Free Fall detection counter decrement configuration.
Heidl 0:d1960beb98fe 2385 * Detection is registered by the Free Fall detection module after accelerometer
Heidl 0:d1960beb98fe 2386 * measurements meet their respective threshold conditions over a specified
Heidl 0:d1960beb98fe 2387 * number of samples. When the threshold conditions are met, the corresponding
Heidl 0:d1960beb98fe 2388 * detection counter increments by 1. The user may control the rate at which the
Heidl 0:d1960beb98fe 2389 * detection counter decrements when the threshold condition is not met by
Heidl 0:d1960beb98fe 2390 * configuring FF_COUNT. The decrement rate can be set according to the
Heidl 0:d1960beb98fe 2391 * following table:
Heidl 0:d1960beb98fe 2392 *
Heidl 0:d1960beb98fe 2393 * <pre>
Heidl 0:d1960beb98fe 2394 * FF_COUNT | Counter Decrement
Heidl 0:d1960beb98fe 2395 * ---------+------------------
Heidl 0:d1960beb98fe 2396 * 0 | Reset
Heidl 0:d1960beb98fe 2397 * 1 | 1
Heidl 0:d1960beb98fe 2398 * 2 | 2
Heidl 0:d1960beb98fe 2399 * 3 | 4
Heidl 0:d1960beb98fe 2400 * </pre>
Heidl 0:d1960beb98fe 2401 *
Heidl 0:d1960beb98fe 2402 * When FF_COUNT is configured to 0 (reset), any non-qualifying sample will
Heidl 0:d1960beb98fe 2403 * reset the counter to 0. For further information on Free Fall detection,
Heidl 0:d1960beb98fe 2404 * please refer to Registers 29 to 32.
Heidl 0:d1960beb98fe 2405 *
Heidl 0:d1960beb98fe 2406 * @return Current decrement configuration
Heidl 0:d1960beb98fe 2407 * @see MPU6050_RA_MOT_DETECT_CTRL
Heidl 0:d1960beb98fe 2408 * @see MPU6050_DETECT_FF_COUNT_BIT
Heidl 0:d1960beb98fe 2409 */
Heidl 0:d1960beb98fe 2410 uint8_t MPU6050::getFreefallDetectionCounterDecrement()
Heidl 0:d1960beb98fe 2411 {
Heidl 0:d1960beb98fe 2412 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, buffer);
Heidl 0:d1960beb98fe 2413 return buffer[0];
Heidl 0:d1960beb98fe 2414 }
Heidl 0:d1960beb98fe 2415 /** Set Free Fall detection counter decrement configuration.
Heidl 0:d1960beb98fe 2416 * @param decrement New decrement configuration value
Heidl 0:d1960beb98fe 2417 * @see getFreefallDetectionCounterDecrement()
Heidl 0:d1960beb98fe 2418 * @see MPU6050_RA_MOT_DETECT_CTRL
Heidl 0:d1960beb98fe 2419 * @see MPU6050_DETECT_FF_COUNT_BIT
Heidl 0:d1960beb98fe 2420 */
Heidl 0:d1960beb98fe 2421 void MPU6050::setFreefallDetectionCounterDecrement(uint8_t decrement)
Heidl 0:d1960beb98fe 2422 {
Heidl 0:d1960beb98fe 2423 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, decrement);
Heidl 0:d1960beb98fe 2424 }
Heidl 0:d1960beb98fe 2425 /** Get Motion detection counter decrement configuration.
Heidl 0:d1960beb98fe 2426 * Detection is registered by the Motion detection module after accelerometer
Heidl 0:d1960beb98fe 2427 * measurements meet their respective threshold conditions over a specified
Heidl 0:d1960beb98fe 2428 * number of samples. When the threshold conditions are met, the corresponding
Heidl 0:d1960beb98fe 2429 * detection counter increments by 1. The user may control the rate at which the
Heidl 0:d1960beb98fe 2430 * detection counter decrements when the threshold condition is not met by
Heidl 0:d1960beb98fe 2431 * configuring MOT_COUNT. The decrement rate can be set according to the
Heidl 0:d1960beb98fe 2432 * following table:
Heidl 0:d1960beb98fe 2433 *
Heidl 0:d1960beb98fe 2434 * <pre>
Heidl 0:d1960beb98fe 2435 * MOT_COUNT | Counter Decrement
Heidl 0:d1960beb98fe 2436 * ----------+------------------
Heidl 0:d1960beb98fe 2437 * 0 | Reset
Heidl 0:d1960beb98fe 2438 * 1 | 1
Heidl 0:d1960beb98fe 2439 * 2 | 2
Heidl 0:d1960beb98fe 2440 * 3 | 4
Heidl 0:d1960beb98fe 2441 * </pre>
Heidl 0:d1960beb98fe 2442 *
Heidl 0:d1960beb98fe 2443 * When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will
Heidl 0:d1960beb98fe 2444 * reset the counter to 0. For further information on Motion detection,
Heidl 0:d1960beb98fe 2445 * please refer to Registers 29 to 32.
Heidl 0:d1960beb98fe 2446 *
Heidl 0:d1960beb98fe 2447 */
Heidl 0:d1960beb98fe 2448 uint8_t MPU6050::getMotionDetectionCounterDecrement()
Heidl 0:d1960beb98fe 2449 {
Heidl 0:d1960beb98fe 2450 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, buffer);
Heidl 0:d1960beb98fe 2451 return buffer[0];
Heidl 0:d1960beb98fe 2452 }
Heidl 0:d1960beb98fe 2453 /** Set Motion detection counter decrement configuration.
Heidl 0:d1960beb98fe 2454 * @param decrement New decrement configuration value
Heidl 0:d1960beb98fe 2455 * @see getMotionDetectionCounterDecrement()
Heidl 0:d1960beb98fe 2456 * @see MPU6050_RA_MOT_DETECT_CTRL
Heidl 0:d1960beb98fe 2457 * @see MPU6050_DETECT_MOT_COUNT_BIT
Heidl 0:d1960beb98fe 2458 */
Heidl 0:d1960beb98fe 2459 void MPU6050::setMotionDetectionCounterDecrement(uint8_t decrement)
Heidl 0:d1960beb98fe 2460 {
Heidl 0:d1960beb98fe 2461 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, decrement);
Heidl 0:d1960beb98fe 2462 }
Heidl 0:d1960beb98fe 2463
Heidl 0:d1960beb98fe 2464 // USER_CTRL register
Heidl 0:d1960beb98fe 2465
Heidl 0:d1960beb98fe 2466 /** Get FIFO enabled status.
Heidl 0:d1960beb98fe 2467 * When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer
Heidl 0:d1960beb98fe 2468 * cannot be written to or read from while disabled. The FIFO buffer's state
Heidl 0:d1960beb98fe 2469 * does not change unless the MPU-60X0 is power cycled.
Heidl 0:d1960beb98fe 2470 * @return Current FIFO enabled status
Heidl 0:d1960beb98fe 2471 * @see MPU6050_RA_USER_CTRL
Heidl 0:d1960beb98fe 2472 * @see MPU6050_USERCTRL_FIFO_EN_BIT
Heidl 0:d1960beb98fe 2473 */
Heidl 0:d1960beb98fe 2474 bool MPU6050::getFIFOEnabled()
Heidl 0:d1960beb98fe 2475 {
Heidl 0:d1960beb98fe 2476 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer);
Heidl 0:d1960beb98fe 2477 return buffer[0];
Heidl 0:d1960beb98fe 2478 }
Heidl 0:d1960beb98fe 2479 /** Set FIFO enabled status.
Heidl 0:d1960beb98fe 2480 * @param enabled New FIFO enabled status
Heidl 0:d1960beb98fe 2481 * @see getFIFOEnabled()
Heidl 0:d1960beb98fe 2482 * @see MPU6050_RA_USER_CTRL
Heidl 0:d1960beb98fe 2483 * @see MPU6050_USERCTRL_FIFO_EN_BIT
Heidl 0:d1960beb98fe 2484 */
Heidl 0:d1960beb98fe 2485 void MPU6050::setFIFOEnabled(bool enabled)
Heidl 0:d1960beb98fe 2486 {
Heidl 0:d1960beb98fe 2487 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled);
Heidl 0:d1960beb98fe 2488 }
Heidl 0:d1960beb98fe 2489 /** Get I2C Master Mode enabled status.
Heidl 0:d1960beb98fe 2490 * When this mode is enabled, the MPU-60X0 acts as the I2C Master to the
Heidl 0:d1960beb98fe 2491 * external sensor slave devices on the auxiliary I2C bus. When this bit is
Heidl 0:d1960beb98fe 2492 * cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically
Heidl 0:d1960beb98fe 2493 * driven by the primary I2C bus (SDA and SCL). This is a precondition to
Heidl 0:d1960beb98fe 2494 * enabling Bypass Mode. For further information regarding Bypass Mode, please
Heidl 0:d1960beb98fe 2495 * refer to Register 55.
Heidl 0:d1960beb98fe 2496 * @return Current I2C Master Mode enabled status
Heidl 0:d1960beb98fe 2497 * @see MPU6050_RA_USER_CTRL
Heidl 0:d1960beb98fe 2498 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
Heidl 0:d1960beb98fe 2499 */
Heidl 0:d1960beb98fe 2500 bool MPU6050::getI2CMasterModeEnabled()
Heidl 0:d1960beb98fe 2501 {
Heidl 0:d1960beb98fe 2502 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer);
Heidl 0:d1960beb98fe 2503 return buffer[0];
Heidl 0:d1960beb98fe 2504 }
Heidl 0:d1960beb98fe 2505 /** Set I2C Master Mode enabled status.
Heidl 0:d1960beb98fe 2506 * @param enabled New I2C Master Mode enabled status
Heidl 0:d1960beb98fe 2507 * @see getI2CMasterModeEnabled()
Heidl 0:d1960beb98fe 2508 * @see MPU6050_RA_USER_CTRL
Heidl 0:d1960beb98fe 2509 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
Heidl 0:d1960beb98fe 2510 */
Heidl 0:d1960beb98fe 2511 void MPU6050::setI2CMasterModeEnabled(bool enabled)
Heidl 0:d1960beb98fe 2512 {
Heidl 0:d1960beb98fe 2513 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled);
Heidl 0:d1960beb98fe 2514 }
Heidl 0:d1960beb98fe 2515 /** Switch from I2C to SPI mode (MPU-6000 only)
Heidl 0:d1960beb98fe 2516 * If this is set, the primary SPI interface will be enabled in place of the
Heidl 0:d1960beb98fe 2517 * disabled primary I2C interface.
Heidl 0:d1960beb98fe 2518 */
Heidl 0:d1960beb98fe 2519 void MPU6050::switchSPIEnabled(bool enabled)
Heidl 0:d1960beb98fe 2520 {
Heidl 0:d1960beb98fe 2521 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled);
Heidl 0:d1960beb98fe 2522 }
Heidl 0:d1960beb98fe 2523 /** Reset the FIFO.
Heidl 0:d1960beb98fe 2524 * This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This
Heidl 0:d1960beb98fe 2525 * bit automatically clears to 0 after the reset has been triggered.
Heidl 0:d1960beb98fe 2526 * @see MPU6050_RA_USER_CTRL
Heidl 0:d1960beb98fe 2527 * @see MPU6050_USERCTRL_FIFO_RESET_BIT
Heidl 0:d1960beb98fe 2528 */
Heidl 0:d1960beb98fe 2529 void MPU6050::resetFIFO()
Heidl 0:d1960beb98fe 2530 {
Heidl 0:d1960beb98fe 2531 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true);
Heidl 0:d1960beb98fe 2532 }
Heidl 0:d1960beb98fe 2533 /** Reset the I2C Master.
Heidl 0:d1960beb98fe 2534 * This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0.
Heidl 0:d1960beb98fe 2535 * This bit automatically clears to 0 after the reset has been triggered.
Heidl 0:d1960beb98fe 2536 * @see MPU6050_RA_USER_CTRL
Heidl 0:d1960beb98fe 2537 * @see MPU6050_USERCTRL_I2C_MST_RESET_BIT
Heidl 0:d1960beb98fe 2538 */
Heidl 0:d1960beb98fe 2539 void MPU6050::resetI2CMaster()
Heidl 0:d1960beb98fe 2540 {
Heidl 0:d1960beb98fe 2541 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true);
Heidl 0:d1960beb98fe 2542 }
Heidl 0:d1960beb98fe 2543 /** Reset all sensor registers and signal paths.
Heidl 0:d1960beb98fe 2544 * When set to 1, this bit resets the signal paths for all sensors (gyroscopes,
Heidl 0:d1960beb98fe 2545 * accelerometers, and temperature sensor). This operation will also clear the
Heidl 0:d1960beb98fe 2546 * sensor registers. This bit automatically clears to 0 after the reset has been
Heidl 0:d1960beb98fe 2547 * triggered.
Heidl 0:d1960beb98fe 2548 *
Heidl 0:d1960beb98fe 2549 * When resetting only the signal path (and not the sensor registers), please
Heidl 0:d1960beb98fe 2550 * use Register 104, SIGNAL_PATH_RESET.
Heidl 0:d1960beb98fe 2551 *
Heidl 0:d1960beb98fe 2552 * @see MPU6050_RA_USER_CTRL
Heidl 0:d1960beb98fe 2553 * @see MPU6050_USERCTRL_SIG_COND_RESET_BIT
Heidl 0:d1960beb98fe 2554 */
Heidl 0:d1960beb98fe 2555 void MPU6050::resetSensors()
Heidl 0:d1960beb98fe 2556 {
Heidl 0:d1960beb98fe 2557 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true);
Heidl 0:d1960beb98fe 2558 }
Heidl 0:d1960beb98fe 2559
Heidl 0:d1960beb98fe 2560 // PWR_MGMT_1 register
Heidl 0:d1960beb98fe 2561
Heidl 0:d1960beb98fe 2562 /** Trigger a full device reset.
Heidl 0:d1960beb98fe 2563 * A small delay of ~50ms may be desirable after triggering a reset.
Heidl 0:d1960beb98fe 2564 * @see MPU6050_RA_PWR_MGMT_1
Heidl 0:d1960beb98fe 2565 * @see MPU6050_PWR1_DEVICE_RESET_BIT
Heidl 0:d1960beb98fe 2566 */
Heidl 0:d1960beb98fe 2567 void MPU6050::reset()
Heidl 0:d1960beb98fe 2568 {
Heidl 0:d1960beb98fe 2569 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true);
Heidl 0:d1960beb98fe 2570 }
Heidl 0:d1960beb98fe 2571 /** Get sleep mode status.
Heidl 0:d1960beb98fe 2572 * Setting the SLEEP bit in the register puts the device into very low power
Heidl 0:d1960beb98fe 2573 * sleep mode. In this mode, only the serial interface and internal registers
Heidl 0:d1960beb98fe 2574 * remain active, allowing for a very low standby current. Clearing this bit
Heidl 0:d1960beb98fe 2575 * puts the device back into normal mode. To save power, the individual standby
Heidl 0:d1960beb98fe 2576 * selections for each of the gyros should be used if any gyro axis is not used
Heidl 0:d1960beb98fe 2577 * by the application.
Heidl 0:d1960beb98fe 2578 * @return Current sleep mode enabled status
Heidl 0:d1960beb98fe 2579 * @see MPU6050_RA_PWR_MGMT_1
Heidl 0:d1960beb98fe 2580 * @see MPU6050_PWR1_SLEEP_BIT
Heidl 0:d1960beb98fe 2581 */
Heidl 0:d1960beb98fe 2582 bool MPU6050::getSleepEnabled()
Heidl 0:d1960beb98fe 2583 {
Heidl 0:d1960beb98fe 2584 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer);
Heidl 0:d1960beb98fe 2585 return buffer[0];
Heidl 0:d1960beb98fe 2586 }
Heidl 0:d1960beb98fe 2587 /** Set sleep mode status.
Heidl 0:d1960beb98fe 2588 * @param enabled New sleep mode enabled status
Heidl 0:d1960beb98fe 2589 * @see getSleepEnabled()
Heidl 0:d1960beb98fe 2590 * @see MPU6050_RA_PWR_MGMT_1
Heidl 0:d1960beb98fe 2591 * @see MPU6050_PWR1_SLEEP_BIT
Heidl 0:d1960beb98fe 2592 */
Heidl 0:d1960beb98fe 2593 void MPU6050::setSleepEnabled(bool enabled)
Heidl 0:d1960beb98fe 2594 {
Heidl 0:d1960beb98fe 2595 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled);
Heidl 0:d1960beb98fe 2596 }
Heidl 0:d1960beb98fe 2597 /** Get wake cycle enabled status.
Heidl 0:d1960beb98fe 2598 * When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle
Heidl 0:d1960beb98fe 2599 * between sleep mode and waking up to take a single sample of data from active
Heidl 0:d1960beb98fe 2600 * sensors at a rate determined by LP_WAKE_CTRL (register 108).
Heidl 0:d1960beb98fe 2601 * @return Current sleep mode enabled status
Heidl 0:d1960beb98fe 2602 * @see MPU6050_RA_PWR_MGMT_1
Heidl 0:d1960beb98fe 2603 * @see MPU6050_PWR1_CYCLE_BIT
Heidl 0:d1960beb98fe 2604 */
Heidl 0:d1960beb98fe 2605 bool MPU6050::getWakeCycleEnabled()
Heidl 0:d1960beb98fe 2606 {
Heidl 0:d1960beb98fe 2607 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer);
Heidl 0:d1960beb98fe 2608 return buffer[0];
Heidl 0:d1960beb98fe 2609 }
Heidl 0:d1960beb98fe 2610 /** Set wake cycle enabled status.
Heidl 0:d1960beb98fe 2611 * @param enabled New sleep mode enabled status
Heidl 0:d1960beb98fe 2612 * @see getWakeCycleEnabled()
Heidl 0:d1960beb98fe 2613 * @see MPU6050_RA_PWR_MGMT_1
Heidl 0:d1960beb98fe 2614 * @see MPU6050_PWR1_CYCLE_BIT
Heidl 0:d1960beb98fe 2615 */
Heidl 0:d1960beb98fe 2616 void MPU6050::setWakeCycleEnabled(bool enabled)
Heidl 0:d1960beb98fe 2617 {
Heidl 0:d1960beb98fe 2618 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled);
Heidl 0:d1960beb98fe 2619 }
Heidl 0:d1960beb98fe 2620 /** Get temperature sensor enabled status.
Heidl 0:d1960beb98fe 2621 * Control the usage of the internal temperature sensor.
Heidl 0:d1960beb98fe 2622 *
Heidl 0:d1960beb98fe 2623 * Note: this register stores the *disabled* value, but for consistency with the
Heidl 0:d1960beb98fe 2624 * rest of the code, the function is named and used with standard true/false
Heidl 0:d1960beb98fe 2625 * values to indicate whether the sensor is enabled or disabled, respectively.
Heidl 0:d1960beb98fe 2626 *
Heidl 0:d1960beb98fe 2627 * @return Current temperature sensor enabled status
Heidl 0:d1960beb98fe 2628 * @see MPU6050_RA_PWR_MGMT_1
Heidl 0:d1960beb98fe 2629 * @see MPU6050_PWR1_TEMP_DIS_BIT
Heidl 0:d1960beb98fe 2630 */
Heidl 0:d1960beb98fe 2631 bool MPU6050::getTempSensorEnabled()
Heidl 0:d1960beb98fe 2632 {
Heidl 0:d1960beb98fe 2633 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer);
Heidl 0:d1960beb98fe 2634 return buffer[0] == 0; // 1 is actually disabled here
Heidl 0:d1960beb98fe 2635 }
Heidl 0:d1960beb98fe 2636 /** Set temperature sensor enabled status.
Heidl 0:d1960beb98fe 2637 * Note: this register stores the *disabled* value, but for consistency with the
Heidl 0:d1960beb98fe 2638 * rest of the code, the function is named and used with standard true/false
Heidl 0:d1960beb98fe 2639 * values to indicate whether the sensor is enabled or disabled, respectively.
Heidl 0:d1960beb98fe 2640 *
Heidl 0:d1960beb98fe 2641 * @param enabled New temperature sensor enabled status
Heidl 0:d1960beb98fe 2642 * @see getTempSensorEnabled()
Heidl 0:d1960beb98fe 2643 * @see MPU6050_RA_PWR_MGMT_1
Heidl 0:d1960beb98fe 2644 * @see MPU6050_PWR1_TEMP_DIS_BIT
Heidl 0:d1960beb98fe 2645 */
Heidl 0:d1960beb98fe 2646 void MPU6050::setTempSensorEnabled(bool enabled)
Heidl 0:d1960beb98fe 2647 {
Heidl 0:d1960beb98fe 2648 // 1 is actually disabled here
Heidl 0:d1960beb98fe 2649 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled);
Heidl 0:d1960beb98fe 2650 }
Heidl 0:d1960beb98fe 2651 /** Get clock source setting.
Heidl 0:d1960beb98fe 2652 * @return Current clock source setting
Heidl 0:d1960beb98fe 2653 * @see MPU6050_RA_PWR_MGMT_1
Heidl 0:d1960beb98fe 2654 * @see MPU6050_PWR1_CLKSEL_BIT
Heidl 0:d1960beb98fe 2655 * @see MPU6050_PWR1_CLKSEL_LENGTH
Heidl 0:d1960beb98fe 2656 */
Heidl 0:d1960beb98fe 2657 uint8_t MPU6050::getClockSource()
Heidl 0:d1960beb98fe 2658 {
Heidl 0:d1960beb98fe 2659 i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer);
Heidl 0:d1960beb98fe 2660 return buffer[0];
Heidl 0:d1960beb98fe 2661 }
Heidl 0:d1960beb98fe 2662 /** Set clock source setting.
Heidl 0:d1960beb98fe 2663 * An internal 8MHz oscillator, gyroscope based clock, or external sources can
Heidl 0:d1960beb98fe 2664 * be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator
Heidl 0:d1960beb98fe 2665 * or an external source is chosen as the clock source, the MPU-60X0 can operate
Heidl 0:d1960beb98fe 2666 * in low power modes with the gyroscopes disabled.
Heidl 0:d1960beb98fe 2667 *
Heidl 0:d1960beb98fe 2668 * Upon power up, the MPU-60X0 clock source defaults to the internal oscillator.
Heidl 0:d1960beb98fe 2669 * However, it is highly recommended that the device be configured to use one of
Heidl 0:d1960beb98fe 2670 * the gyroscopes (or an external clock source) as the clock reference for
Heidl 0:d1960beb98fe 2671 * improved stability. The clock source can be selected according to the following table:
Heidl 0:d1960beb98fe 2672 *
Heidl 0:d1960beb98fe 2673 * <pre>
Heidl 0:d1960beb98fe 2674 * CLK_SEL | Clock Source
Heidl 0:d1960beb98fe 2675 * --------+--------------------------------------
Heidl 0:d1960beb98fe 2676 * 0 | Internal oscillator
Heidl 0:d1960beb98fe 2677 * 1 | PLL with X Gyro reference
Heidl 0:d1960beb98fe 2678 * 2 | PLL with Y Gyro reference
Heidl 0:d1960beb98fe 2679 * 3 | PLL with Z Gyro reference
Heidl 0:d1960beb98fe 2680 * 4 | PLL with external 32.768kHz reference
Heidl 0:d1960beb98fe 2681 * 5 | PLL with external 19.2MHz reference
Heidl 0:d1960beb98fe 2682 * 6 | Reserved
Heidl 0:d1960beb98fe 2683 * 7 | Stops the clock and keeps the timing generator in reset
Heidl 0:d1960beb98fe 2684 * </pre>
Heidl 0:d1960beb98fe 2685 *
Heidl 0:d1960beb98fe 2686 * @param source New clock source setting
Heidl 0:d1960beb98fe 2687 * @see getClockSource()
Heidl 0:d1960beb98fe 2688 * @see MPU6050_RA_PWR_MGMT_1
Heidl 0:d1960beb98fe 2689 * @see MPU6050_PWR1_CLKSEL_BIT
Heidl 0:d1960beb98fe 2690 * @see MPU6050_PWR1_CLKSEL_LENGTH
Heidl 0:d1960beb98fe 2691 */
Heidl 0:d1960beb98fe 2692 void MPU6050::setClockSource(uint8_t source)
Heidl 0:d1960beb98fe 2693 {
Heidl 0:d1960beb98fe 2694 i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source);
Heidl 0:d1960beb98fe 2695 }
Heidl 0:d1960beb98fe 2696
Heidl 0:d1960beb98fe 2697 // PWR_MGMT_2 register
Heidl 0:d1960beb98fe 2698
Heidl 0:d1960beb98fe 2699 /** Get wake frequency in Accel-Only Low Power Mode.
Heidl 0:d1960beb98fe 2700 * The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting
Heidl 0:d1960beb98fe 2701 * PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode,
Heidl 0:d1960beb98fe 2702 * the device will power off all devices except for the primary I2C interface,
Heidl 0:d1960beb98fe 2703 * waking only the accelerometer at fixed intervals to take a single
Heidl 0:d1960beb98fe 2704 * measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL
Heidl 0:d1960beb98fe 2705 * as shown below:
Heidl 0:d1960beb98fe 2706 *
Heidl 0:d1960beb98fe 2707 * <pre>
Heidl 0:d1960beb98fe 2708 * LP_WAKE_CTRL | Wake-up Frequency
Heidl 0:d1960beb98fe 2709 * -------------+------------------
Heidl 0:d1960beb98fe 2710 * 0 | 1.25 Hz
Heidl 0:d1960beb98fe 2711 * 1 | 2.5 Hz
Heidl 0:d1960beb98fe 2712 * 2 | 5 Hz
Heidl 0:d1960beb98fe 2713 * 3 | 10 Hz
Heidl 0:d1960beb98fe 2714 * <pre>
Heidl 0:d1960beb98fe 2715 *
Heidl 0:d1960beb98fe 2716 * For further information regarding the MPU-60X0's power modes, please refer to
Heidl 0:d1960beb98fe 2717 * Register 107.
Heidl 0:d1960beb98fe 2718 *
Heidl 0:d1960beb98fe 2719 * @return Current wake frequency
Heidl 0:d1960beb98fe 2720 * @see MPU6050_RA_PWR_MGMT_2
Heidl 0:d1960beb98fe 2721 */
Heidl 0:d1960beb98fe 2722 uint8_t MPU6050::getWakeFrequency()
Heidl 0:d1960beb98fe 2723 {
Heidl 0:d1960beb98fe 2724 i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, buffer);
Heidl 0:d1960beb98fe 2725 return buffer[0];
Heidl 0:d1960beb98fe 2726 }
Heidl 0:d1960beb98fe 2727 /** Set wake frequency in Accel-Only Low Power Mode.
Heidl 0:d1960beb98fe 2728 * @param frequency New wake frequency
Heidl 0:d1960beb98fe 2729 * @see MPU6050_RA_PWR_MGMT_2
Heidl 0:d1960beb98fe 2730 */
Heidl 0:d1960beb98fe 2731 void MPU6050::setWakeFrequency(uint8_t frequency)
Heidl 0:d1960beb98fe 2732 {
Heidl 0:d1960beb98fe 2733 i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, frequency);
Heidl 0:d1960beb98fe 2734 }
Heidl 0:d1960beb98fe 2735
Heidl 0:d1960beb98fe 2736 /** Get X-axis accelerometer standby enabled status.
Heidl 0:d1960beb98fe 2737 * If enabled, the X-axis will not gather or report data (or use power).
Heidl 0:d1960beb98fe 2738 * @return Current X-axis standby enabled status
Heidl 0:d1960beb98fe 2739 * @see MPU6050_RA_PWR_MGMT_2
Heidl 0:d1960beb98fe 2740 * @see MPU6050_PWR2_STBY_XA_BIT
Heidl 0:d1960beb98fe 2741 */
Heidl 0:d1960beb98fe 2742 bool MPU6050::getStandbyXAccelEnabled()
Heidl 0:d1960beb98fe 2743 {
Heidl 0:d1960beb98fe 2744 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer);
Heidl 0:d1960beb98fe 2745 return buffer[0];
Heidl 0:d1960beb98fe 2746 }
Heidl 0:d1960beb98fe 2747 /** Set X-axis accelerometer standby enabled status.
Heidl 0:d1960beb98fe 2748 * @param New X-axis standby enabled status
Heidl 0:d1960beb98fe 2749 * @see getStandbyXAccelEnabled()
Heidl 0:d1960beb98fe 2750 * @see MPU6050_RA_PWR_MGMT_2
Heidl 0:d1960beb98fe 2751 * @see MPU6050_PWR2_STBY_XA_BIT
Heidl 0:d1960beb98fe 2752 */
Heidl 0:d1960beb98fe 2753 void MPU6050::setStandbyXAccelEnabled(bool enabled)
Heidl 0:d1960beb98fe 2754 {
Heidl 0:d1960beb98fe 2755 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled);
Heidl 0:d1960beb98fe 2756 }
Heidl 0:d1960beb98fe 2757 /** Get Y-axis accelerometer standby enabled status.
Heidl 0:d1960beb98fe 2758 * If enabled, the Y-axis will not gather or report data (or use power).
Heidl 0:d1960beb98fe 2759 * @return Current Y-axis standby enabled status
Heidl 0:d1960beb98fe 2760 * @see MPU6050_RA_PWR_MGMT_2
Heidl 0:d1960beb98fe 2761 * @see MPU6050_PWR2_STBY_YA_BIT
Heidl 0:d1960beb98fe 2762 */
Heidl 0:d1960beb98fe 2763 bool MPU6050::getStandbyYAccelEnabled()
Heidl 0:d1960beb98fe 2764 {
Heidl 0:d1960beb98fe 2765 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer);
Heidl 0:d1960beb98fe 2766 return buffer[0];
Heidl 0:d1960beb98fe 2767 }
Heidl 0:d1960beb98fe 2768 /** Set Y-axis accelerometer standby enabled status.
Heidl 0:d1960beb98fe 2769 * @param New Y-axis standby enabled status
Heidl 0:d1960beb98fe 2770 * @see getStandbyYAccelEnabled()
Heidl 0:d1960beb98fe 2771 * @see MPU6050_RA_PWR_MGMT_2
Heidl 0:d1960beb98fe 2772 * @see MPU6050_PWR2_STBY_YA_BIT
Heidl 0:d1960beb98fe 2773 */
Heidl 0:d1960beb98fe 2774 void MPU6050::setStandbyYAccelEnabled(bool enabled)
Heidl 0:d1960beb98fe 2775 {
Heidl 0:d1960beb98fe 2776 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled);
Heidl 0:d1960beb98fe 2777 }
Heidl 0:d1960beb98fe 2778 /** Get Z-axis accelerometer standby enabled status.
Heidl 0:d1960beb98fe 2779 * If enabled, the Z-axis will not gather or report data (or use power).
Heidl 0:d1960beb98fe 2780 * @return Current Z-axis standby enabled status
Heidl 0:d1960beb98fe 2781 * @see MPU6050_RA_PWR_MGMT_2
Heidl 0:d1960beb98fe 2782 * @see MPU6050_PWR2_STBY_ZA_BIT
Heidl 0:d1960beb98fe 2783 */
Heidl 0:d1960beb98fe 2784 bool MPU6050::getStandbyZAccelEnabled()
Heidl 0:d1960beb98fe 2785 {
Heidl 0:d1960beb98fe 2786 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer);
Heidl 0:d1960beb98fe 2787 return buffer[0];
Heidl 0:d1960beb98fe 2788 }
Heidl 0:d1960beb98fe 2789 /** Set Z-axis accelerometer standby enabled status.
Heidl 0:d1960beb98fe 2790 * @param New Z-axis standby enabled status
Heidl 0:d1960beb98fe 2791 * @see getStandbyZAccelEnabled()
Heidl 0:d1960beb98fe 2792 * @see MPU6050_RA_PWR_MGMT_2
Heidl 0:d1960beb98fe 2793 * @see MPU6050_PWR2_STBY_ZA_BIT
Heidl 0:d1960beb98fe 2794 */
Heidl 0:d1960beb98fe 2795 void MPU6050::setStandbyZAccelEnabled(bool enabled)
Heidl 0:d1960beb98fe 2796 {
Heidl 0:d1960beb98fe 2797 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled);
Heidl 0:d1960beb98fe 2798 }
Heidl 0:d1960beb98fe 2799 /** Get X-axis gyroscope standby enabled status.
Heidl 0:d1960beb98fe 2800 * If enabled, the X-axis will not gather or report data (or use power).
Heidl 0:d1960beb98fe 2801 * @return Current X-axis standby enabled status
Heidl 0:d1960beb98fe 2802 * @see MPU6050_RA_PWR_MGMT_2
Heidl 0:d1960beb98fe 2803 * @see MPU6050_PWR2_STBY_XG_BIT
Heidl 0:d1960beb98fe 2804 */
Heidl 0:d1960beb98fe 2805 bool MPU6050::getStandbyXGyroEnabled()
Heidl 0:d1960beb98fe 2806 {
Heidl 0:d1960beb98fe 2807 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer);
Heidl 0:d1960beb98fe 2808 return buffer[0];
Heidl 0:d1960beb98fe 2809 }
Heidl 0:d1960beb98fe 2810 /** Set X-axis gyroscope standby enabled status.
Heidl 0:d1960beb98fe 2811 * @param New X-axis standby enabled status
Heidl 0:d1960beb98fe 2812 * @see getStandbyXGyroEnabled()
Heidl 0:d1960beb98fe 2813 * @see MPU6050_RA_PWR_MGMT_2
Heidl 0:d1960beb98fe 2814 * @see MPU6050_PWR2_STBY_XG_BIT
Heidl 0:d1960beb98fe 2815 */
Heidl 0:d1960beb98fe 2816 void MPU6050::setStandbyXGyroEnabled(bool enabled)
Heidl 0:d1960beb98fe 2817 {
Heidl 0:d1960beb98fe 2818 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled);
Heidl 0:d1960beb98fe 2819 }
Heidl 0:d1960beb98fe 2820 /** Get Y-axis gyroscope standby enabled status.
Heidl 0:d1960beb98fe 2821 * If enabled, the Y-axis will not gather or report data (or use power).
Heidl 0:d1960beb98fe 2822 * @return Current Y-axis standby enabled status
Heidl 0:d1960beb98fe 2823 * @see MPU6050_RA_PWR_MGMT_2
Heidl 0:d1960beb98fe 2824 * @see MPU6050_PWR2_STBY_YG_BIT
Heidl 0:d1960beb98fe 2825 */
Heidl 0:d1960beb98fe 2826 bool MPU6050::getStandbyYGyroEnabled()
Heidl 0:d1960beb98fe 2827 {
Heidl 0:d1960beb98fe 2828 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer);
Heidl 0:d1960beb98fe 2829 return buffer[0];
Heidl 0:d1960beb98fe 2830 }
Heidl 0:d1960beb98fe 2831 /** Set Y-axis gyroscope standby enabled status.
Heidl 0:d1960beb98fe 2832 * @param New Y-axis standby enabled status
Heidl 0:d1960beb98fe 2833 * @see getStandbyYGyroEnabled()
Heidl 0:d1960beb98fe 2834 * @see MPU6050_RA_PWR_MGMT_2
Heidl 0:d1960beb98fe 2835 * @see MPU6050_PWR2_STBY_YG_BIT
Heidl 0:d1960beb98fe 2836 */
Heidl 0:d1960beb98fe 2837 void MPU6050::setStandbyYGyroEnabled(bool enabled)
Heidl 0:d1960beb98fe 2838 {
Heidl 0:d1960beb98fe 2839 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled);
Heidl 0:d1960beb98fe 2840 }
Heidl 0:d1960beb98fe 2841 /** Get Z-axis gyroscope standby enabled status.
Heidl 0:d1960beb98fe 2842 * If enabled, the Z-axis will not gather or report data (or use power).
Heidl 0:d1960beb98fe 2843 * @return Current Z-axis standby enabled status
Heidl 0:d1960beb98fe 2844 * @see MPU6050_RA_PWR_MGMT_2
Heidl 0:d1960beb98fe 2845 * @see MPU6050_PWR2_STBY_ZG_BIT
Heidl 0:d1960beb98fe 2846 */
Heidl 0:d1960beb98fe 2847 bool MPU6050::getStandbyZGyroEnabled()
Heidl 0:d1960beb98fe 2848 {
Heidl 0:d1960beb98fe 2849 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer);
Heidl 0:d1960beb98fe 2850 return buffer[0];
Heidl 0:d1960beb98fe 2851 }
Heidl 0:d1960beb98fe 2852 /** Set Z-axis gyroscope standby enabled status.
Heidl 0:d1960beb98fe 2853 * @param New Z-axis standby enabled status
Heidl 0:d1960beb98fe 2854 * @see getStandbyZGyroEnabled()
Heidl 0:d1960beb98fe 2855 * @see MPU6050_RA_PWR_MGMT_2
Heidl 0:d1960beb98fe 2856 * @see MPU6050_PWR2_STBY_ZG_BIT
Heidl 0:d1960beb98fe 2857 */
Heidl 0:d1960beb98fe 2858 void MPU6050::setStandbyZGyroEnabled(bool enabled)
Heidl 0:d1960beb98fe 2859 {
Heidl 0:d1960beb98fe 2860 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled);
Heidl 0:d1960beb98fe 2861 }
Heidl 0:d1960beb98fe 2862
Heidl 0:d1960beb98fe 2863 // FIFO_COUNT* registers
Heidl 0:d1960beb98fe 2864
Heidl 0:d1960beb98fe 2865 /** Get current FIFO buffer size.
Heidl 0:d1960beb98fe 2866 * This value indicates the number of bytes stored in the FIFO buffer. This
Heidl 0:d1960beb98fe 2867 * number is in turn the number of bytes that can be read from the FIFO buffer
Heidl 0:d1960beb98fe 2868 * and it is directly proportional to the number of samples available given the
Heidl 0:d1960beb98fe 2869 * set of sensor data bound to be stored in the FIFO (register 35 and 36).
Heidl 0:d1960beb98fe 2870 * @return Current FIFO buffer size
Heidl 0:d1960beb98fe 2871 */
Heidl 0:d1960beb98fe 2872 uint16_t MPU6050::getFIFOCount()
Heidl 0:d1960beb98fe 2873 {
Heidl 0:d1960beb98fe 2874 i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
Heidl 0:d1960beb98fe 2875 return (((uint16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 2876 }
Heidl 0:d1960beb98fe 2877
Heidl 0:d1960beb98fe 2878 // FIFO_R_W register
Heidl 0:d1960beb98fe 2879
Heidl 0:d1960beb98fe 2880 /** Get byte from FIFO buffer.
Heidl 0:d1960beb98fe 2881 * This register is used to read and write data from the FIFO buffer. Data is
Heidl 0:d1960beb98fe 2882 * written to the FIFO in order of register number (from lowest to highest). If
Heidl 0:d1960beb98fe 2883 * all the FIFO enable flags (see below) are enabled and all External Sensor
Heidl 0:d1960beb98fe 2884 * Data registers (Registers 73 to 96) are associated with a Slave device, the
Heidl 0:d1960beb98fe 2885 * contents of registers 59 through 96 will be written in order at the Sample
Heidl 0:d1960beb98fe 2886 * Rate.
Heidl 0:d1960beb98fe 2887 *
Heidl 0:d1960beb98fe 2888 * The contents of the sensor data registers (Registers 59 to 96) are written
Heidl 0:d1960beb98fe 2889 * into the FIFO buffer when their corresponding FIFO enable flags are set to 1
Heidl 0:d1960beb98fe 2890 * in FIFO_EN (Register 35). An additional flag for the sensor data registers
Heidl 0:d1960beb98fe 2891 * associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36).
Heidl 0:d1960beb98fe 2892 *
Heidl 0:d1960beb98fe 2893 * If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is
Heidl 0:d1960beb98fe 2894 * automatically set to 1. This bit is located in INT_STATUS (Register 58).
Heidl 0:d1960beb98fe 2895 * When the FIFO buffer has overflowed, the oldest data will be lost and new
Heidl 0:d1960beb98fe 2896 * data will be written to the FIFO.
Heidl 0:d1960beb98fe 2897 *
Heidl 0:d1960beb98fe 2898 * If the FIFO buffer is empty, reading this register will return the last byte
Heidl 0:d1960beb98fe 2899 * that was previously read from the FIFO until new data is available. The user
Heidl 0:d1960beb98fe 2900 * should check FIFO_COUNT to ensure that the FIFO buffer is not read when
Heidl 0:d1960beb98fe 2901 * empty.
Heidl 0:d1960beb98fe 2902 *
Heidl 0:d1960beb98fe 2903 * @return Byte from FIFO buffer
Heidl 0:d1960beb98fe 2904 */
Heidl 0:d1960beb98fe 2905 uint8_t MPU6050::getFIFOByte()
Heidl 0:d1960beb98fe 2906 {
Heidl 0:d1960beb98fe 2907 i2Cdev.readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer);
Heidl 0:d1960beb98fe 2908 return buffer[0];
Heidl 0:d1960beb98fe 2909 }
Heidl 0:d1960beb98fe 2910 void MPU6050::getFIFOBytes(uint8_t *data, uint8_t length)
Heidl 0:d1960beb98fe 2911 {
Heidl 0:d1960beb98fe 2912 i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data);
Heidl 0:d1960beb98fe 2913 }
Heidl 0:d1960beb98fe 2914 /** Write byte to FIFO buffer.
Heidl 0:d1960beb98fe 2915 * @see getFIFOByte()
Heidl 0:d1960beb98fe 2916 * @see MPU6050_RA_FIFO_R_W
Heidl 0:d1960beb98fe 2917 */
Heidl 0:d1960beb98fe 2918 void MPU6050::setFIFOByte(uint8_t data)
Heidl 0:d1960beb98fe 2919 {
Heidl 0:d1960beb98fe 2920 i2Cdev.writeByte(devAddr, MPU6050_RA_FIFO_R_W, data);
Heidl 0:d1960beb98fe 2921 }
Heidl 0:d1960beb98fe 2922
Heidl 0:d1960beb98fe 2923 // WHO_AM_I register
Heidl 0:d1960beb98fe 2924
Heidl 0:d1960beb98fe 2925 /** Get Device ID.
Heidl 0:d1960beb98fe 2926 * This register is used to verify the identity of the device (0b110100, 0x34).
Heidl 0:d1960beb98fe 2927 * @return Device ID (6 bits only! should be 0x34)
Heidl 0:d1960beb98fe 2928 * @see MPU6050_RA_WHO_AM_I
Heidl 0:d1960beb98fe 2929 * @see MPU6050_WHO_AM_I_BIT
Heidl 0:d1960beb98fe 2930 * @see MPU6050_WHO_AM_I_LENGTH
Heidl 0:d1960beb98fe 2931 */
Heidl 0:d1960beb98fe 2932 uint8_t MPU6050::getDeviceID()
Heidl 0:d1960beb98fe 2933 {
Heidl 0:d1960beb98fe 2934 i2Cdev.readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer);
Heidl 0:d1960beb98fe 2935 return buffer[0];
Heidl 0:d1960beb98fe 2936 }
Heidl 0:d1960beb98fe 2937 /** Set Device ID.
Heidl 0:d1960beb98fe 2938 * Write a new ID into the WHO_AM_I register (no idea why this should ever be
Heidl 0:d1960beb98fe 2939 * necessary though).
Heidl 0:d1960beb98fe 2940 * @param id New device ID to set.
Heidl 0:d1960beb98fe 2941 * @see getDeviceID()
Heidl 0:d1960beb98fe 2942 * @see MPU6050_RA_WHO_AM_I
Heidl 0:d1960beb98fe 2943 * @see MPU6050_WHO_AM_I_BIT
Heidl 0:d1960beb98fe 2944 * @see MPU6050_WHO_AM_I_LENGTH
Heidl 0:d1960beb98fe 2945 */
Heidl 0:d1960beb98fe 2946 void MPU6050::setDeviceID(uint8_t id)
Heidl 0:d1960beb98fe 2947 {
Heidl 0:d1960beb98fe 2948 i2Cdev.writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id);
Heidl 0:d1960beb98fe 2949 }
Heidl 0:d1960beb98fe 2950
Heidl 0:d1960beb98fe 2951 // ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
Heidl 0:d1960beb98fe 2952
Heidl 0:d1960beb98fe 2953 // XG_OFFS_TC register
Heidl 0:d1960beb98fe 2954
Heidl 0:d1960beb98fe 2955 uint8_t MPU6050::getOTPBankValid()
Heidl 0:d1960beb98fe 2956 {
Heidl 0:d1960beb98fe 2957 i2Cdev.readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer);
Heidl 0:d1960beb98fe 2958 return buffer[0];
Heidl 0:d1960beb98fe 2959 }
Heidl 0:d1960beb98fe 2960 void MPU6050::setOTPBankValid(bool enabled)
Heidl 0:d1960beb98fe 2961 {
Heidl 0:d1960beb98fe 2962 i2Cdev.writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled);
Heidl 0:d1960beb98fe 2963 }
Heidl 0:d1960beb98fe 2964 int8_t MPU6050::getXGyroOffset()
Heidl 0:d1960beb98fe 2965 {
Heidl 0:d1960beb98fe 2966 i2Cdev.readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
Heidl 0:d1960beb98fe 2967 return buffer[0];
Heidl 0:d1960beb98fe 2968 }
Heidl 0:d1960beb98fe 2969 void MPU6050::setXGyroOffset(int8_t offset)
Heidl 0:d1960beb98fe 2970 {
Heidl 0:d1960beb98fe 2971 i2Cdev.writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
Heidl 0:d1960beb98fe 2972 }
Heidl 0:d1960beb98fe 2973
Heidl 0:d1960beb98fe 2974 // YG_OFFS_TC register
Heidl 0:d1960beb98fe 2975
Heidl 0:d1960beb98fe 2976 int8_t MPU6050::getYGyroOffset()
Heidl 0:d1960beb98fe 2977 {
Heidl 0:d1960beb98fe 2978 i2Cdev.readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
Heidl 0:d1960beb98fe 2979 return buffer[0];
Heidl 0:d1960beb98fe 2980 }
Heidl 0:d1960beb98fe 2981 void MPU6050::setYGyroOffset(int8_t offset)
Heidl 0:d1960beb98fe 2982 {
Heidl 0:d1960beb98fe 2983 i2Cdev.writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
Heidl 0:d1960beb98fe 2984 }
Heidl 0:d1960beb98fe 2985
Heidl 0:d1960beb98fe 2986 // ZG_OFFS_TC register
Heidl 0:d1960beb98fe 2987
Heidl 0:d1960beb98fe 2988 int8_t MPU6050::getZGyroOffset()
Heidl 0:d1960beb98fe 2989 {
Heidl 0:d1960beb98fe 2990 i2Cdev.readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
Heidl 0:d1960beb98fe 2991 return buffer[0];
Heidl 0:d1960beb98fe 2992 }
Heidl 0:d1960beb98fe 2993 void MPU6050::setZGyroOffset(int8_t offset)
Heidl 0:d1960beb98fe 2994 {
Heidl 0:d1960beb98fe 2995 i2Cdev.writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
Heidl 0:d1960beb98fe 2996 }
Heidl 0:d1960beb98fe 2997
Heidl 0:d1960beb98fe 2998 // X_FINE_GAIN register
Heidl 0:d1960beb98fe 2999
Heidl 0:d1960beb98fe 3000 int8_t MPU6050::getXFineGain()
Heidl 0:d1960beb98fe 3001 {
Heidl 0:d1960beb98fe 3002 i2Cdev.readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer);
Heidl 0:d1960beb98fe 3003 return buffer[0];
Heidl 0:d1960beb98fe 3004 }
Heidl 0:d1960beb98fe 3005 void MPU6050::setXFineGain(int8_t gain)
Heidl 0:d1960beb98fe 3006 {
Heidl 0:d1960beb98fe 3007 i2Cdev.writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain);
Heidl 0:d1960beb98fe 3008 }
Heidl 0:d1960beb98fe 3009
Heidl 0:d1960beb98fe 3010 // Y_FINE_GAIN register
Heidl 0:d1960beb98fe 3011
Heidl 0:d1960beb98fe 3012 int8_t MPU6050::getYFineGain()
Heidl 0:d1960beb98fe 3013 {
Heidl 0:d1960beb98fe 3014 i2Cdev.readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer);
Heidl 0:d1960beb98fe 3015 return buffer[0];
Heidl 0:d1960beb98fe 3016 }
Heidl 0:d1960beb98fe 3017 void MPU6050::setYFineGain(int8_t gain)
Heidl 0:d1960beb98fe 3018 {
Heidl 0:d1960beb98fe 3019 i2Cdev.writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain);
Heidl 0:d1960beb98fe 3020 }
Heidl 0:d1960beb98fe 3021
Heidl 0:d1960beb98fe 3022 // Z_FINE_GAIN register
Heidl 0:d1960beb98fe 3023
Heidl 0:d1960beb98fe 3024 int8_t MPU6050::getZFineGain()
Heidl 0:d1960beb98fe 3025 {
Heidl 0:d1960beb98fe 3026 i2Cdev.readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer);
Heidl 0:d1960beb98fe 3027 return buffer[0];
Heidl 0:d1960beb98fe 3028 }
Heidl 0:d1960beb98fe 3029 void MPU6050::setZFineGain(int8_t gain)
Heidl 0:d1960beb98fe 3030 {
Heidl 0:d1960beb98fe 3031 i2Cdev.writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain);
Heidl 0:d1960beb98fe 3032 }
Heidl 0:d1960beb98fe 3033
Heidl 0:d1960beb98fe 3034 // XA_OFFS_* registers
Heidl 0:d1960beb98fe 3035
Heidl 0:d1960beb98fe 3036 int16_t MPU6050::getXAccelOffset()
Heidl 0:d1960beb98fe 3037 {
Heidl 0:d1960beb98fe 3038 i2Cdev.readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer);
Heidl 0:d1960beb98fe 3039 return (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 3040 }
Heidl 0:d1960beb98fe 3041 void MPU6050::setXAccelOffset(int16_t offset)
Heidl 0:d1960beb98fe 3042 {
Heidl 0:d1960beb98fe 3043 i2Cdev.writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset);
Heidl 0:d1960beb98fe 3044 }
Heidl 0:d1960beb98fe 3045
Heidl 0:d1960beb98fe 3046 // YA_OFFS_* register
Heidl 0:d1960beb98fe 3047
Heidl 0:d1960beb98fe 3048 int16_t MPU6050::getYAccelOffset()
Heidl 0:d1960beb98fe 3049 {
Heidl 0:d1960beb98fe 3050 i2Cdev.readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer);
Heidl 0:d1960beb98fe 3051 return (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 3052 }
Heidl 0:d1960beb98fe 3053 void MPU6050::setYAccelOffset(int16_t offset)
Heidl 0:d1960beb98fe 3054 {
Heidl 0:d1960beb98fe 3055 i2Cdev.writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset);
Heidl 0:d1960beb98fe 3056 }
Heidl 0:d1960beb98fe 3057
Heidl 0:d1960beb98fe 3058 // ZA_OFFS_* register
Heidl 0:d1960beb98fe 3059
Heidl 0:d1960beb98fe 3060 int16_t MPU6050::getZAccelOffset()
Heidl 0:d1960beb98fe 3061 {
Heidl 0:d1960beb98fe 3062 i2Cdev.readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer);
Heidl 0:d1960beb98fe 3063 return (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 3064 }
Heidl 0:d1960beb98fe 3065 void MPU6050::setZAccelOffset(int16_t offset)
Heidl 0:d1960beb98fe 3066 {
Heidl 0:d1960beb98fe 3067 i2Cdev.writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset);
Heidl 0:d1960beb98fe 3068 }
Heidl 0:d1960beb98fe 3069
Heidl 0:d1960beb98fe 3070 // XG_OFFS_USR* registers
Heidl 0:d1960beb98fe 3071
Heidl 0:d1960beb98fe 3072 int16_t MPU6050::getXGyroOffsetUser()
Heidl 0:d1960beb98fe 3073 {
Heidl 0:d1960beb98fe 3074 i2Cdev.readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer);
Heidl 0:d1960beb98fe 3075 return (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 3076 }
Heidl 0:d1960beb98fe 3077 void MPU6050::setXGyroOffsetUser(int16_t offset)
Heidl 0:d1960beb98fe 3078 {
Heidl 0:d1960beb98fe 3079 i2Cdev.writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset);
Heidl 0:d1960beb98fe 3080 }
Heidl 0:d1960beb98fe 3081
Heidl 0:d1960beb98fe 3082 // YG_OFFS_USR* register
Heidl 0:d1960beb98fe 3083
Heidl 0:d1960beb98fe 3084 int16_t MPU6050::getYGyroOffsetUser()
Heidl 0:d1960beb98fe 3085 {
Heidl 0:d1960beb98fe 3086 i2Cdev.readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer);
Heidl 0:d1960beb98fe 3087 return (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 3088 }
Heidl 0:d1960beb98fe 3089 void MPU6050::setYGyroOffsetUser(int16_t offset)
Heidl 0:d1960beb98fe 3090 {
Heidl 0:d1960beb98fe 3091 i2Cdev.writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset);
Heidl 0:d1960beb98fe 3092 }
Heidl 0:d1960beb98fe 3093
Heidl 0:d1960beb98fe 3094 // ZG_OFFS_USR* register
Heidl 0:d1960beb98fe 3095
Heidl 0:d1960beb98fe 3096 int16_t MPU6050::getZGyroOffsetUser()
Heidl 0:d1960beb98fe 3097 {
Heidl 0:d1960beb98fe 3098 i2Cdev.readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer);
Heidl 0:d1960beb98fe 3099 return (((int16_t)buffer[0]) << 8) | buffer[1];
Heidl 0:d1960beb98fe 3100 }
Heidl 0:d1960beb98fe 3101 void MPU6050::setZGyroOffsetUser(int16_t offset)
Heidl 0:d1960beb98fe 3102 {
Heidl 0:d1960beb98fe 3103 i2Cdev.writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset);
Heidl 0:d1960beb98fe 3104 }
Heidl 0:d1960beb98fe 3105
Heidl 0:d1960beb98fe 3106 // INT_ENABLE register (DMP functions)
Heidl 0:d1960beb98fe 3107
Heidl 0:d1960beb98fe 3108 bool MPU6050::getIntPLLReadyEnabled()
Heidl 0:d1960beb98fe 3109 {
Heidl 0:d1960beb98fe 3110 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
Heidl 0:d1960beb98fe 3111 return buffer[0];
Heidl 0:d1960beb98fe 3112 }
Heidl 0:d1960beb98fe 3113 void MPU6050::setIntPLLReadyEnabled(bool enabled)
Heidl 0:d1960beb98fe 3114 {
Heidl 0:d1960beb98fe 3115 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled);
Heidl 0:d1960beb98fe 3116 }
Heidl 0:d1960beb98fe 3117 bool MPU6050::getIntDMPEnabled()
Heidl 0:d1960beb98fe 3118 {
Heidl 0:d1960beb98fe 3119 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
Heidl 0:d1960beb98fe 3120 return buffer[0];
Heidl 0:d1960beb98fe 3121 }
Heidl 0:d1960beb98fe 3122 void MPU6050::setIntDMPEnabled(bool enabled)
Heidl 0:d1960beb98fe 3123 {
Heidl 0:d1960beb98fe 3124 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled);
Heidl 0:d1960beb98fe 3125 }
Heidl 0:d1960beb98fe 3126
Heidl 0:d1960beb98fe 3127 // DMP_INT_STATUS
Heidl 0:d1960beb98fe 3128
Heidl 0:d1960beb98fe 3129 bool MPU6050::getDMPInt5Status()
Heidl 0:d1960beb98fe 3130 {
Heidl 0:d1960beb98fe 3131 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer);
Heidl 0:d1960beb98fe 3132 return buffer[0];
Heidl 0:d1960beb98fe 3133 }
Heidl 0:d1960beb98fe 3134 bool MPU6050::getDMPInt4Status()
Heidl 0:d1960beb98fe 3135 {
Heidl 0:d1960beb98fe 3136 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer);
Heidl 0:d1960beb98fe 3137 return buffer[0];
Heidl 0:d1960beb98fe 3138 }
Heidl 0:d1960beb98fe 3139 bool MPU6050::getDMPInt3Status()
Heidl 0:d1960beb98fe 3140 {
Heidl 0:d1960beb98fe 3141 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer);
Heidl 0:d1960beb98fe 3142 return buffer[0];
Heidl 0:d1960beb98fe 3143 }
Heidl 0:d1960beb98fe 3144 bool MPU6050::getDMPInt2Status()
Heidl 0:d1960beb98fe 3145 {
Heidl 0:d1960beb98fe 3146 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer);
Heidl 0:d1960beb98fe 3147 return buffer[0];
Heidl 0:d1960beb98fe 3148 }
Heidl 0:d1960beb98fe 3149 bool MPU6050::getDMPInt1Status()
Heidl 0:d1960beb98fe 3150 {
Heidl 0:d1960beb98fe 3151 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer);
Heidl 0:d1960beb98fe 3152 return buffer[0];
Heidl 0:d1960beb98fe 3153 }
Heidl 0:d1960beb98fe 3154 bool MPU6050::getDMPInt0Status()
Heidl 0:d1960beb98fe 3155 {
Heidl 0:d1960beb98fe 3156 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer);
Heidl 0:d1960beb98fe 3157 return buffer[0];
Heidl 0:d1960beb98fe 3158 }
Heidl 0:d1960beb98fe 3159
Heidl 0:d1960beb98fe 3160 // INT_STATUS register (DMP functions)
Heidl 0:d1960beb98fe 3161
Heidl 0:d1960beb98fe 3162 bool MPU6050::getIntPLLReadyStatus()
Heidl 0:d1960beb98fe 3163 {
Heidl 0:d1960beb98fe 3164 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
Heidl 0:d1960beb98fe 3165 return buffer[0];
Heidl 0:d1960beb98fe 3166 }
Heidl 0:d1960beb98fe 3167 bool MPU6050::getIntDMPStatus()
Heidl 0:d1960beb98fe 3168 {
Heidl 0:d1960beb98fe 3169 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
Heidl 0:d1960beb98fe 3170 return buffer[0];
Heidl 0:d1960beb98fe 3171 }
Heidl 0:d1960beb98fe 3172
Heidl 0:d1960beb98fe 3173 // USER_CTRL register (DMP functions)
Heidl 0:d1960beb98fe 3174
Heidl 0:d1960beb98fe 3175 bool MPU6050::getDMPEnabled()
Heidl 0:d1960beb98fe 3176 {
Heidl 0:d1960beb98fe 3177 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer);
Heidl 0:d1960beb98fe 3178 return buffer[0];
Heidl 0:d1960beb98fe 3179 }
Heidl 0:d1960beb98fe 3180 void MPU6050::setDMPEnabled(bool enabled)
Heidl 0:d1960beb98fe 3181 {
Heidl 0:d1960beb98fe 3182 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled);
Heidl 0:d1960beb98fe 3183 }
Heidl 0:d1960beb98fe 3184 void MPU6050::resetDMP()
Heidl 0:d1960beb98fe 3185 {
Heidl 0:d1960beb98fe 3186 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true);
Heidl 0:d1960beb98fe 3187 }
Heidl 0:d1960beb98fe 3188
Heidl 0:d1960beb98fe 3189 // BANK_SEL register
Heidl 0:d1960beb98fe 3190
Heidl 0:d1960beb98fe 3191 void MPU6050::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank)
Heidl 0:d1960beb98fe 3192 {
Heidl 0:d1960beb98fe 3193 bank &= 0x1F;
Heidl 0:d1960beb98fe 3194 if (userBank) bank |= 0x20;
Heidl 0:d1960beb98fe 3195 if (prefetchEnabled) bank |= 0x40;
Heidl 0:d1960beb98fe 3196 i2Cdev.writeByte(devAddr, MPU6050_RA_BANK_SEL, bank);
Heidl 0:d1960beb98fe 3197 }
Heidl 0:d1960beb98fe 3198
Heidl 0:d1960beb98fe 3199 // MEM_START_ADDR register
Heidl 0:d1960beb98fe 3200
Heidl 0:d1960beb98fe 3201 void MPU6050::setMemoryStartAddress(uint8_t address)
Heidl 0:d1960beb98fe 3202 {
Heidl 0:d1960beb98fe 3203 i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address);
Heidl 0:d1960beb98fe 3204 }
Heidl 0:d1960beb98fe 3205
Heidl 0:d1960beb98fe 3206 // MEM_R_W register
Heidl 0:d1960beb98fe 3207
Heidl 0:d1960beb98fe 3208 uint8_t MPU6050::readMemoryByte()
Heidl 0:d1960beb98fe 3209 {
Heidl 0:d1960beb98fe 3210 i2Cdev.readByte(devAddr, MPU6050_RA_MEM_R_W, buffer);
Heidl 0:d1960beb98fe 3211 return buffer[0];
Heidl 0:d1960beb98fe 3212 }
Heidl 0:d1960beb98fe 3213 void MPU6050::writeMemoryByte(uint8_t data)
Heidl 0:d1960beb98fe 3214 {
Heidl 0:d1960beb98fe 3215 i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_R_W, data);
Heidl 0:d1960beb98fe 3216 }
Heidl 0:d1960beb98fe 3217 void MPU6050::readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address)
Heidl 0:d1960beb98fe 3218 {
Heidl 0:d1960beb98fe 3219 setMemoryBank(bank);
Heidl 0:d1960beb98fe 3220 setMemoryStartAddress(address);
Heidl 0:d1960beb98fe 3221 uint8_t chunkSize;
Heidl 0:d1960beb98fe 3222 for (uint16_t i = 0; i < dataSize;) {
Heidl 0:d1960beb98fe 3223 // determine correct chunk size according to bank position and data size
Heidl 0:d1960beb98fe 3224 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
Heidl 0:d1960beb98fe 3225
Heidl 0:d1960beb98fe 3226 // make sure we don't go past the data size
Heidl 0:d1960beb98fe 3227 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
Heidl 0:d1960beb98fe 3228
Heidl 0:d1960beb98fe 3229 // make sure this chunk doesn't go past the bank boundary (256 bytes)
Heidl 0:d1960beb98fe 3230 if (chunkSize > 256 - address) chunkSize = 256 - address;
Heidl 0:d1960beb98fe 3231
Heidl 0:d1960beb98fe 3232 // read the chunk of data as specified
Heidl 0:d1960beb98fe 3233 i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i);
Heidl 0:d1960beb98fe 3234
Heidl 0:d1960beb98fe 3235 // increase byte index by [chunkSize]
Heidl 0:d1960beb98fe 3236 i += chunkSize;
Heidl 0:d1960beb98fe 3237
Heidl 0:d1960beb98fe 3238 // uint8_t automatically wraps to 0 at 256
Heidl 0:d1960beb98fe 3239 address += chunkSize;
Heidl 0:d1960beb98fe 3240
Heidl 0:d1960beb98fe 3241 // if we aren't done, update bank (if necessary) and address
Heidl 0:d1960beb98fe 3242 if (i < dataSize) {
Heidl 0:d1960beb98fe 3243 if (address == 0) bank++;
Heidl 0:d1960beb98fe 3244 setMemoryBank(bank);
Heidl 0:d1960beb98fe 3245 setMemoryStartAddress(address);
Heidl 0:d1960beb98fe 3246 }
Heidl 0:d1960beb98fe 3247 }
Heidl 0:d1960beb98fe 3248 }
Heidl 0:d1960beb98fe 3249 bool MPU6050::writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify, bool useProgMem)
Heidl 0:d1960beb98fe 3250 {
Heidl 0:d1960beb98fe 3251 setMemoryBank(bank);
Heidl 0:d1960beb98fe 3252 setMemoryStartAddress(address);
Heidl 0:d1960beb98fe 3253 uint8_t chunkSize;
Heidl 0:d1960beb98fe 3254 uint8_t *verifyBuffer;
Heidl 0:d1960beb98fe 3255 uint8_t *progBuffer;
Heidl 0:d1960beb98fe 3256 uint16_t i;
Heidl 0:d1960beb98fe 3257 uint8_t j;
Heidl 0:d1960beb98fe 3258 if (verify) verifyBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
Heidl 0:d1960beb98fe 3259 if (useProgMem) progBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
Heidl 0:d1960beb98fe 3260 for (i = 0; i < dataSize;) {
Heidl 0:d1960beb98fe 3261 // determine correct chunk size according to bank position and data size
Heidl 0:d1960beb98fe 3262 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
Heidl 0:d1960beb98fe 3263
Heidl 0:d1960beb98fe 3264 // make sure we don't go past the data size
Heidl 0:d1960beb98fe 3265 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
Heidl 0:d1960beb98fe 3266
Heidl 0:d1960beb98fe 3267 // make sure this chunk doesn't go past the bank boundary (256 bytes)
Heidl 0:d1960beb98fe 3268 if (chunkSize > 256 - address) chunkSize = 256 - address;
Heidl 0:d1960beb98fe 3269
Heidl 0:d1960beb98fe 3270 if (useProgMem) {
Heidl 0:d1960beb98fe 3271 // write the chunk of data as specified
Heidl 0:d1960beb98fe 3272 for (j = 0; j < chunkSize; j++) progBuffer[j] = pgm_read_byte(data + i + j);
Heidl 0:d1960beb98fe 3273 } else {
Heidl 0:d1960beb98fe 3274 // write the chunk of data as specified
Heidl 0:d1960beb98fe 3275 progBuffer = (uint8_t *)data + i;
Heidl 0:d1960beb98fe 3276 }
Heidl 0:d1960beb98fe 3277
Heidl 0:d1960beb98fe 3278 i2Cdev.writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer);
Heidl 0:d1960beb98fe 3279
Heidl 0:d1960beb98fe 3280 // verify data if needed
Heidl 0:d1960beb98fe 3281 if (verify && verifyBuffer) {
Heidl 0:d1960beb98fe 3282 setMemoryBank(bank);
Heidl 0:d1960beb98fe 3283 setMemoryStartAddress(address);
Heidl 0:d1960beb98fe 3284 i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer);
Heidl 0:d1960beb98fe 3285 if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0) {
Heidl 0:d1960beb98fe 3286 /*Serial.print("Block write verification error, bank ");
Heidl 0:d1960beb98fe 3287 Serial.print(bank, DEC);
Heidl 0:d1960beb98fe 3288 Serial.print(", address ");
Heidl 0:d1960beb98fe 3289 Serial.print(address, DEC);
Heidl 0:d1960beb98fe 3290 Serial.print("!\nExpected:");
Heidl 0:d1960beb98fe 3291 for (j = 0; j < chunkSize; j++) {
Heidl 0:d1960beb98fe 3292 Serial.print(" 0x");
Heidl 0:d1960beb98fe 3293 if (progBuffer[j] < 16) Serial.print("0");
Heidl 0:d1960beb98fe 3294 Serial.print(progBuffer[j], HEX);
Heidl 0:d1960beb98fe 3295 }
Heidl 0:d1960beb98fe 3296 Serial.print("\nReceived:");
Heidl 0:d1960beb98fe 3297 for (uint8_t j = 0; j < chunkSize; j++) {
Heidl 0:d1960beb98fe 3298 Serial.print(" 0x");
Heidl 0:d1960beb98fe 3299 if (verifyBuffer[i + j] < 16) Serial.print("0");
Heidl 0:d1960beb98fe 3300 Serial.print(verifyBuffer[i + j], HEX);
Heidl 0:d1960beb98fe 3301 }
Heidl 0:d1960beb98fe 3302 Serial.print("\n");*/
Heidl 0:d1960beb98fe 3303 free(verifyBuffer);
Heidl 0:d1960beb98fe 3304 if (useProgMem) free(progBuffer);
Heidl 0:d1960beb98fe 3305 return false; // uh oh.
Heidl 0:d1960beb98fe 3306 }
Heidl 0:d1960beb98fe 3307 }
Heidl 0:d1960beb98fe 3308
Heidl 0:d1960beb98fe 3309 // increase byte index by [chunkSize]
Heidl 0:d1960beb98fe 3310 i += chunkSize;
Heidl 0:d1960beb98fe 3311
Heidl 0:d1960beb98fe 3312 // uint8_t automatically wraps to 0 at 256
Heidl 0:d1960beb98fe 3313 address += chunkSize;
Heidl 0:d1960beb98fe 3314
Heidl 0:d1960beb98fe 3315 // if we aren't done, update bank (if necessary) and address
Heidl 0:d1960beb98fe 3316 if (i < dataSize) {
Heidl 0:d1960beb98fe 3317 if (address == 0) bank++;
Heidl 0:d1960beb98fe 3318 setMemoryBank(bank);
Heidl 0:d1960beb98fe 3319 setMemoryStartAddress(address);
Heidl 0:d1960beb98fe 3320 }
Heidl 0:d1960beb98fe 3321 }
Heidl 0:d1960beb98fe 3322 if (verify) free(verifyBuffer);
Heidl 0:d1960beb98fe 3323 if (useProgMem) free(progBuffer);
Heidl 0:d1960beb98fe 3324 return true;
Heidl 0:d1960beb98fe 3325 }
Heidl 0:d1960beb98fe 3326 bool MPU6050::writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify)
Heidl 0:d1960beb98fe 3327 {
Heidl 0:d1960beb98fe 3328 return writeMemoryBlock(data, dataSize, bank, address, verify, true);
Heidl 0:d1960beb98fe 3329 }
Heidl 0:d1960beb98fe 3330 bool MPU6050::writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem)
Heidl 0:d1960beb98fe 3331 {
Heidl 0:d1960beb98fe 3332 uint8_t *progBuffer, success, special;
Heidl 0:d1960beb98fe 3333 uint16_t i, j;
Heidl 0:d1960beb98fe 3334 if (useProgMem) {
Heidl 0:d1960beb98fe 3335 progBuffer = (uint8_t *)malloc(8); // assume 8-byte blocks, realloc later if necessary
Heidl 0:d1960beb98fe 3336 }
Heidl 0:d1960beb98fe 3337
Heidl 0:d1960beb98fe 3338 // config set data is a long string of blocks with the following structure:
Heidl 0:d1960beb98fe 3339 // [bank] [offset] [length] [byte[0], byte[1], ..., byte[length]]
Heidl 0:d1960beb98fe 3340 uint8_t bank, offset, length;
Heidl 0:d1960beb98fe 3341 for (i = 0; i < dataSize;) {
Heidl 0:d1960beb98fe 3342 if (useProgMem) {
Heidl 0:d1960beb98fe 3343 bank = pgm_read_byte(data + i++);
Heidl 0:d1960beb98fe 3344 offset = pgm_read_byte(data + i++);
Heidl 0:d1960beb98fe 3345 length = pgm_read_byte(data + i++);
Heidl 0:d1960beb98fe 3346 } else {
Heidl 0:d1960beb98fe 3347 bank = data[i++];
Heidl 0:d1960beb98fe 3348 offset = data[i++];
Heidl 0:d1960beb98fe 3349 length = data[i++];
Heidl 0:d1960beb98fe 3350 }
Heidl 0:d1960beb98fe 3351
Heidl 0:d1960beb98fe 3352 // write data or perform special action
Heidl 0:d1960beb98fe 3353 if (length > 0) {
Heidl 0:d1960beb98fe 3354 // regular block of data to write
Heidl 0:d1960beb98fe 3355 /*Serial.print("Writing config block to bank ");
Heidl 0:d1960beb98fe 3356 Serial.print(bank);
Heidl 0:d1960beb98fe 3357 Serial.print(", offset ");
Heidl 0:d1960beb98fe 3358 Serial.print(offset);
Heidl 0:d1960beb98fe 3359 Serial.print(", length=");
Heidl 0:d1960beb98fe 3360 Serial.println(length);*/
Heidl 0:d1960beb98fe 3361 if (useProgMem) {
Heidl 0:d1960beb98fe 3362 if (sizeof(progBuffer) < length) progBuffer = (uint8_t *)realloc(progBuffer, length);
Heidl 0:d1960beb98fe 3363 for (j = 0; j < length; j++) progBuffer[j] = pgm_read_byte(data + i + j);
Heidl 0:d1960beb98fe 3364 } else {
Heidl 0:d1960beb98fe 3365 progBuffer = (uint8_t *)data + i;
Heidl 0:d1960beb98fe 3366 }
Heidl 0:d1960beb98fe 3367 success = writeMemoryBlock(progBuffer, length, bank, offset, true);
Heidl 0:d1960beb98fe 3368 i += length;
Heidl 0:d1960beb98fe 3369 } else {
Heidl 0:d1960beb98fe 3370 // special instruction
Heidl 0:d1960beb98fe 3371 // NOTE: this kind of behavior (what and when to do certain things)
Heidl 0:d1960beb98fe 3372 // is totally undocumented. This code is in here based on observed
Heidl 0:d1960beb98fe 3373 // behavior only, and exactly why (or even whether) it has to be here
Heidl 0:d1960beb98fe 3374 // is anybody's guess for now.
Heidl 0:d1960beb98fe 3375 if (useProgMem) {
Heidl 0:d1960beb98fe 3376 special = pgm_read_byte(data + i++);
Heidl 0:d1960beb98fe 3377 } else {
Heidl 0:d1960beb98fe 3378 special = data[i++];
Heidl 0:d1960beb98fe 3379 }
Heidl 0:d1960beb98fe 3380 /*Serial.print("Special command code ");
Heidl 0:d1960beb98fe 3381 Serial.print(special, HEX);
Heidl 0:d1960beb98fe 3382 Serial.println(" found...");*/
Heidl 0:d1960beb98fe 3383 if (special == 0x01) {
Heidl 0:d1960beb98fe 3384 // enable DMP-related interrupts
Heidl 0:d1960beb98fe 3385
Heidl 0:d1960beb98fe 3386 //setIntZeroMotionEnabled(true);
Heidl 0:d1960beb98fe 3387 //setIntFIFOBufferOverflowEnabled(true);
Heidl 0:d1960beb98fe 3388 //setIntDMPEnabled(true);
Heidl 0:d1960beb98fe 3389 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32); // single operation
Heidl 0:d1960beb98fe 3390
Heidl 0:d1960beb98fe 3391 success = true;
Heidl 0:d1960beb98fe 3392 } else {
Heidl 0:d1960beb98fe 3393 // unknown special command
Heidl 0:d1960beb98fe 3394 success = false;
Heidl 0:d1960beb98fe 3395 }
Heidl 0:d1960beb98fe 3396 }
Heidl 0:d1960beb98fe 3397
Heidl 0:d1960beb98fe 3398 if (!success) {
Heidl 0:d1960beb98fe 3399 if (useProgMem) free(progBuffer);
Heidl 0:d1960beb98fe 3400 return false; // uh oh
Heidl 0:d1960beb98fe 3401 }
Heidl 0:d1960beb98fe 3402 }
Heidl 0:d1960beb98fe 3403 if (useProgMem) free(progBuffer);
Heidl 0:d1960beb98fe 3404 return true;
Heidl 0:d1960beb98fe 3405 }
Heidl 0:d1960beb98fe 3406 bool MPU6050::writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize)
Heidl 0:d1960beb98fe 3407 {
Heidl 0:d1960beb98fe 3408 return writeDMPConfigurationSet(data, dataSize, false);
Heidl 0:d1960beb98fe 3409 }
Heidl 0:d1960beb98fe 3410
Heidl 0:d1960beb98fe 3411 // DMP_CFG_1 register
Heidl 0:d1960beb98fe 3412
Heidl 0:d1960beb98fe 3413 uint8_t MPU6050::getDMPConfig1()
Heidl 0:d1960beb98fe 3414 {
Heidl 0:d1960beb98fe 3415 i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer);
Heidl 0:d1960beb98fe 3416 return buffer[0];
Heidl 0:d1960beb98fe 3417 }
Heidl 0:d1960beb98fe 3418 void MPU6050::setDMPConfig1(uint8_t config)
Heidl 0:d1960beb98fe 3419 {
Heidl 0:d1960beb98fe 3420 i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config);
Heidl 0:d1960beb98fe 3421 }
Heidl 0:d1960beb98fe 3422
Heidl 0:d1960beb98fe 3423 // DMP_CFG_2 register
Heidl 0:d1960beb98fe 3424
Heidl 0:d1960beb98fe 3425 uint8_t MPU6050::getDMPConfig2()
Heidl 0:d1960beb98fe 3426 {
Heidl 0:d1960beb98fe 3427 i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer);
Heidl 0:d1960beb98fe 3428 return buffer[0];
Heidl 0:d1960beb98fe 3429 }
Heidl 0:d1960beb98fe 3430 void MPU6050::setDMPConfig2(uint8_t config)
Heidl 0:d1960beb98fe 3431 {
Heidl 0:d1960beb98fe 3432 i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config);
Heidl 0:d1960beb98fe 3433 }