Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: Menu_IHM Menu_IHM Teste_2Motores_Joystick_copy
Fork of TextLCD by
TextLCD.cpp
- Committer:
- wim
- Date:
- 2014-08-22
- Revision:
- 32:59c4b8f648d4
- Parent:
- 31:ef31cd8a00d1
- Child:
- 33:900a94bc7585
File content as of revision 32:59c4b8f648d4:
/* mbed TextLCD Library, for a 4-bit LCD based on HD44780
* Copyright (c) 2007-2010, sford, http://mbed.org
* 2013, v01: WH, Added LCD types, fixed LCD address issues, added Cursor and UDCs
* 2013, v02: WH, Added I2C and SPI bus interfaces
* 2013, v03: WH, Added support for LCD40x4 which uses 2 controllers
* 2013, v04: WH, Added support for Display On/Off, improved 4bit bootprocess
* 2013, v05: WH, Added support for 8x2B, added some UDCs
* 2013, v06: WH, Added support for devices that use internal DC/DC converters
* 2013, v07: WH, Added support for backlight and include portdefinitions for LCD2004 Module from DFROBOT
* 2014, v08: WH, Refactored in Base and Derived Classes to deal with mbed lib change regarding 'NC' defined pins
* 2014, v09: WH/EO, Added Class for Native SPI controllers such as ST7032
* 2014, v10: WH, Added Class for Native I2C controllers such as ST7032i, Added support for MCP23008 I2C portexpander, Added support for Adafruit module
* 2014, v11: WH, Added support for native I2C controllers such as PCF21XX, Improved the _initCtrl() method to deal with differences between all supported controllers
* 2014, v12: WH, Added support for native I2C controller PCF2119 and native I2C/SPI controllers SSD1803, ST7036, added setContrast method (by JH1PJL) for supported devices (eg ST7032i)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "TextLCD.h"
#include "mbed.h"
//For Testing only
//DigitalOut led1(LED1);
//DigitalOut led2(LED2);
// led2=!led2;
/** Some sample User Defined Chars 5x7 dots */
//const char udc_ae[] = {0x00, 0x00, 0x1B, 0x05, 0x1F, 0x14, 0x1F, 0x00}; //æ
//const char udc_0e[] = {0x00, 0x00, 0x0E, 0x13, 0x15, 0x19, 0x0E, 0x00}; //ø
//const char udc_ao[] = {0x0E, 0x0A, 0x0E, 0x01, 0x0F, 0x11, 0x0F, 0x00}; //å
//const char udc_AE[] = {0x0F, 0x14, 0x14, 0x1F, 0x14, 0x14, 0x17, 0x00}; //Æ
//const char udc_0E[] = {0x0E, 0x13, 0x15, 0x15, 0x15, 0x19, 0x0E, 0x00}; //Ø
//const char udc_Ao[] = {0x0E, 0x0A, 0x0E, 0x11, 0x1F, 0x11, 0x11, 0x00}; //Å
//const char udc_PO[] = {0x04, 0x0A, 0x0A, 0x1F, 0x1B, 0x1B, 0x1F, 0x00}; //Padlock Open
//const char udc_PC[] = {0x1C, 0x10, 0x08, 0x1F, 0x1B, 0x1B, 0x1F, 0x00}; //Padlock Closed
//const char udc_alpha[] = {0x00, 0x00, 0x0D, 0x12, 0x12, 0x12, 0x0D, 0x00}; //alpha
//const char udc_ohm[] = {0x0E, 0x11, 0x11, 0x11, 0x0A, 0x0A, 0x1B, 0x00}; //ohm
//const char udc_sigma[] = {0x1F, 0x08, 0x04, 0x02, 0x04, 0x08, 0x1F, 0x00}; //sigma
//const char udc_pi[] = {0x1F, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x00}; //pi
//const char udc_root[] = {0x07, 0x04, 0x04, 0x04, 0x14, 0x0C, 0x04, 0x00}; //root
const char udc_0[] = {0x18, 0x14, 0x12, 0x11, 0x12, 0x14, 0x18, 0x00}; // |>
const char udc_1[] = {0x03, 0x05, 0x09, 0x11, 0x09, 0x05, 0x03, 0x00}; // <|
const char udc_2[] = {0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x00}; // |
const char udc_3[] = {0x14, 0x14, 0x14, 0x14, 0x14, 0x14, 0x14, 0x00}; // ||
const char udc_4[] = {0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x00}; // |||
const char udc_5[] = {0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00, 0x00}; // =
const char udc_6[] = {0x15, 0x0a, 0x15, 0x0a, 0x15, 0x0a, 0x15, 0x00}; // checkerboard
const char udc_7[] = {0x10, 0x08, 0x04, 0x02, 0x01, 0x00, 0x10, 0x00}; // \
const char udc_degr[] = {0x06, 0x09, 0x09, 0x06, 0x00, 0x00, 0x00, 0x00}; // Degree symbol
const char udc_TM_T[] = {0x1F, 0x04, 0x04, 0x04, 0x00, 0x00, 0x00, 0x00}; // Trademark T
const char udc_TM_M[] = {0x11, 0x1B, 0x15, 0x11, 0x00, 0x00, 0x00, 0x00}; // Trademark M
//const char udc_Bat_Hi[] = {0x0E, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Full
//const char udc_Bat_Ha[] = {0x0E, 0x11, 0x13, 0x17, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Half
//const char udc_Bat_Lo[] = {0x0E, 0x11, 0x11, 0x11, 0x11, 0x11, 0x1F, 0x00}; // Battery Low
const char udc_Bat_Hi[] = {0x0E, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Full
const char udc_Bat_Ha[] = {0x0E, 0x11, 0x11, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Half
const char udc_Bat_Lo[] = {0x0E, 0x11, 0x11, 0x11, 0x11, 0x1F, 0x1F, 0x00}; // Battery Low
const char udc_AC[] = {0x0A, 0x0A, 0x1F, 0x11, 0x0E, 0x04, 0x04, 0x00}; // AC Power
//const char udc_smiley[] = {0x00, 0x0A, 0x00, 0x04, 0x11, 0x0E, 0x00, 0x00}; // Smiley
//const char udc_droopy[] = {0x00, 0x0A, 0x00, 0x04, 0x00, 0x0E, 0x11, 0x00}; // Droopey
//const char udc_note[] = {0x01, 0x03, 0x05, 0x09, 0x0B, 0x1B, 0x18, 0x00}; // Note
//const char udc_bar_1[] = {0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x00}; // Bar 1
//const char udc_bar_2[] = {0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x00}; // Bar 11
//const char udc_bar_3[] = {0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x00}; // Bar 111
//const char udc_bar_4[] = {0x17, 0x17, 0x17, 0x17, 0x17, 0x17, 0x17, 0x00}; // Bar 1111
//const char udc_bar_5[] = {0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Bar 11111
//const char udc_ch_1[] = {0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00}; // Hor bars 4
//const char udc_ch_2[] = {0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f}; // Hor bars 4 (inverted)
//const char udc_ch_3[] = {0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15}; // Ver bars 3
//const char udc_ch_4[] = {0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a}; // Ver bars 3 (inverted)
//const char udc_ch_yr[] = {0x08, 0x0f, 0x12, 0x0f, 0x0a, 0x1f, 0x02, 0x02}; // Year (kana)
//const char udc_ch_mo[] = {0x0f, 0x09, 0x0f, 0x09, 0x0f, 0x09, 0x09, 0x13}; // Month (kana)
//const char udc_ch_dy[] = {0x1f, 0x11, 0x11, 0x1f, 0x11, 0x11, 0x11, 0x1F}; // Day (kana)
//const char udc_ch_mi[] = {0x0C, 0x0a, 0x11, 0x1f, 0x09, 0x09, 0x09, 0x13}; // minute (kana)
const char udc_None[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
const char udc_All[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
/** Create a TextLCD_Base interface
*
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param ctrl LCD controller (default = HD44780)
*/
TextLCD_Base::TextLCD_Base(LCDType type, LCDCtrl ctrl) : _type(type), _ctrl(ctrl) {
// Extract LCDType data
// Columns encoded in b7..b0
_nr_cols = (_type & 0xFF);
// Rows encoded in b15..b8
_nr_rows = ((_type >> 8) & 0xFF);
// Addressing mode encoded in b19..b16
_addr_mode = _type & LCD_T_ADR_MSK;
}
/** Init the LCD Controller(s)
* Clear display
*/
void TextLCD_Base::_init() {
// Select and configure second LCD controller when needed
if(_type==LCD40x4) {
_ctrl_idx=_LCDCtrl_1; // Select 2nd controller
_initCtrl(); // Init 2nd controller
}
// Select and configure primary LCD controller
_ctrl_idx=_LCDCtrl_0; // Select primary controller
_initCtrl(); // Init primary controller
// Clear whole display and Reset Cursor location
// Note: This will make sure that some 3-line displays that skip topline of a 4-line configuration
// are cleared and init cursor correctly.
cls();
}
/** Init the LCD controller
* 4-bit mode, number of lines, fonttype, no cursor etc
*
* Note: some configurations are commented out because they have not yet been tested due to lack of hardware
*/
void TextLCD_Base::_initCtrl() {
int _bias_lines=0; // Set Bias and lines (Instr Set 1), temporary variable.
int _lines=0; // Set lines (Ext Instr Set), temporary variable.
// int _function_x=0; // Set ext. function (Ext Instr Set), temporary variable.
this->_setRS(false); // command mode
wait_ms(20); // Wait 20ms to ensure powered up
// send "Display Settings" 3 times (Only top nibble of 0x30 as we've got 4-bit bus)
for (int i=0; i<3; i++) {
_writeNibble(0x3);
wait_ms(15); // This command takes 1.64ms, so wait for it
}
_writeNibble(0x2); // 4-bit mode
wait_us(40); // most instructions take 40us
// Display is now in 4-bit mode
// Note: 4 bit mode is ignored for native SPI and I2C devices
// Device specific initialisations: DC/DC converter to generate VLCD or VLED, number of lines etc
switch (_ctrl) {
case KS0078:
// Initialise Display configuration
switch (_type) {
case LCD8x1: //8x1 is a regular 1 line display
case LCD8x2B: //8x2B is a special case of 16x1
// case LCD12x1:
case LCD16x1:
// case LCD20x1:
case LCD24x1:
_function = 0x02; // Function set 001 DL N RE(0) DH REV (Std Regs)
// DL=0 (4 bits bus)
// N=0 (1 line mode), N=1 (2 line mode)
// RE=0 (Dis. Extended Regs, special mode for KS0078)
// DH=1 (Disp shift enable, special mode for KS0078)
// REV=0 (Reverse normal, special mode for KS0078)
_function_1 = 0x04; // Function set 001 DL N RE(1) BE 0 (Ext Regs)
// DL=0 (4 bits bus)
// N=0 (1 line mode), N=1 (2 line mode)
// RE=1 (Ena Extended Regs, special mode for KS0078)
// BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078)
// 0
_function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
// NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078)
break;
// case LCD12x3D: // Special mode for KS0078 and PCF21XX
// case LCD12x3D1: // Special mode for KS0078 and PCF21XX
// case LCD12x4D: // Special mode for KS0078 and PCF21XX
// case LCD16x3D: // Special mode for KS0078
// case LCD16x4D: // Special mode for KS0078
// case LCD24x3D: // Special mode for KS0078
// case LCD24x3D1: // Special mode for KS0078
case LCD24x4D: // Special mode for KS0078
_function = 0x02; // Function set 001 DL N RE(0) DH REV (Std Regs)
// DL=0 (4 bits bus)
// N=0 (dont care for 4 line mode)
// RE=0 (Dis. Extended Regs, special mode for KS0078)
// DH=1 (Disp shift enable, special mode for KS0078)
// REV=0 (Reverse normal, special mode for KS0078)
_function_1 = 0x04; // Function set 001 DL N RE(1) BE 0 (Ext Regs)
// DL=0 (4 bits bus)
// N=0 (1 line mode), N=1 (2 line mode)
// RE=1 (Ena Extended Regs, special mode for KS0078)
// BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078)
// 0
_function_x = 0x01; // Ext Function set 0000 1 FW BW NW (Ext Regs)
// NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078)
break;
default:
// All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
_function = 0x0A; // Function set 001 DL N RE(0) DH REV (Std Regs)
// DL=0 (4 bits bus)
// N=1 (1 line mode), N=1 (2 line mode)
// RE=0 (Dis. Extended Regs, special mode for KS0078)
// DH=1 (Disp shift enable, special mode for KS0078)
// REV=0 (Reverse normal, special mode for KS0078)
_function_1 = 0x0C; // Function set 001 DL N RE(1) BE 0 (Ext Regs)
// DL=0 (4 bits bus)
// N=1 (1 line mode), N=1 (2 line mode)
// RE=1 (Ena Extended Regs, special mode for KS0078)
// BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078)
// 0
_function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
// NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078)
break;
} // switch type
// init special features
_writeCommand(0x20 | _function_1);// Function set 001 DL N RE(1) BE 0 (Ext Regs)
// DL=0 (4 bits bus), DL=1 (8 bits mode)
// N=0 (1 line mode), N=1 (2 line mode)
// RE=1 (Ena Extended Regs, special mode for KS0078)
// BE=0 (Blink Enable/Disable, CG/SEG RAM, special mode for KS0078)
// 0
_writeCommand(0x08 | _function_x); // Ext Function set 0000 1 FW BW NW (Ext Regs)
// FW=0 (5-dot font, special mode for KS0078)
// BW=0 (Cur BW invert disable, special mode for KS0078)
// NW=0 (1,2 Line), NW=1 (4 line, special mode for KS0078)
_writeCommand(0x10); // Scroll/Shift set 0001 DS/HS4 DS/HS3 DS/HS2 DS/HS1 (Ext Regs)
// Dotscroll/Display shift enable (Special mode for KS0078)
_writeCommand(0x80); // Scroll Quantity set 1 0 SQ5 SQ4 SQ3 SQ2 SQ1 SQ0 (Ext Regs)
// Scroll quantity (Special mode for KS0078)
_writeCommand(0x20 | _function); // Function set 001 DL N RE(0) DH REV (Std Regs)
// DL=0 (4 bits bus), DL=1 (8 bits mode)
// N=0 (1 line mode), N=1 (2 line mode)
// RE=0 (Dis. Extended Regs, special mode for KS0078)
// DH=1 (Disp shift enable/disable, special mode for KS0078)
// REV=0 (Reverse/Normal, special mode for KS0078)
break; // case KS0078 Controller
case ST7032_3V3:
// ST7032 controller: Initialise Voltage booster for VLCD. VDD=3V3
case ST7032_5V:
// ST7032 controller: Disable Voltage booster for VLCD. VDD=5V
// Initialise Display configuration
switch (_type) {
case LCD8x1: //8x1 is a regular 1 line display
case LCD8x2B: //8x2B is a special case of 16x1
// case LCD12x1:
case LCD16x1:
// case LCD20x1:
case LCD24x1:
_function = 0x00; // FUNCTION SET 0 0 1 DL=0 (4 bit), N=0 (1-line display mode), F=0 (5*7dot), 0, IS
// Note: 4 bit mode is ignored for native SPI and I2C devices
// Saved to allow switch between Instruction sets at later time
break;
case LCD12x3D: // Special mode for KS0078 and PCF21XX
case LCD12x3D1: // Special mode for KS0078 and PCF21XX
case LCD12x4D: // Special mode for KS0078 and PCF21XX
case LCD24x4D: // Special mode for KS0078
error("Error: LCD Controller type does not support this Display type\n\r");
break;
default:
// All other LCD types are initialised as 2 Line displays
_function = 0x08; // FUNCTION SET 0 0 1 DL=0 (4 bit), N=1 (2-line display mode), F=0 (5*7dot), 0, IS
// Note: 4 bit mode is ignored for native SPI and I2C devices
// Saved to allow switch between Instruction sets at later time
break;
} // switch type
// init special features
_writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N F 0 IS=1 Select Instruction Set = 1
_writeCommand(0x1C); // Internal OSC frequency adjustment Framefreq=183HZ, Bias will be 1/4 (IS=1)
_contrast = LCD_ST7032_CONTRAST;
_writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast Low bits, 0 1 1 1 C3 C2 C1 C0 (IS=1)
if (_ctrl == ST7032_3V3) {
_icon_power = 0x04; // Icon display off, Booster circuit is turned on (IS=1)
// Saved to allow contrast change at later time
}
else {
_icon_power = 0x00; // Icon display off, Booster circuit is turned off (IS=1)
// Saved to allow contrast change at later time
}
_writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Icon, Booster and Contrast High bits, 0 1 0 1 Ion Bon C5 C4 (IS=1)
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x68 | (LCD_ST7032_RAB & 0x07)); // Voltage follower, 0 1 1 0 FOn=1, Ampl ratio Rab2=1, Rab1=0, Rab0=0 (IS=1)
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x20 | _function); // Select Instruction Set = 0
break; // case ST7032_3V3 Controller
// case ST7032_5V Controller
case ST7036_3V3:
// ST7036 controller: Initialise Voltage booster for VLCD. VDD=3V3
// Note: supports 1,2 (LCD_T_A) or 3 lines (LCD_T_G)
case ST7036_5V:
// ST7036 controller: Disable Voltage booster for VLCD. VDD=5V
// Note: supports 1,2 (LCD_T_A) or 3 lines (LCD_T_G)
// Initialise Display configuration
switch (_type) {
case LCD8x1: //8x1 is a regular 1 line display
case LCD8x2B: //8x2D is a special case of 16x1
// case LCD12x1:
case LCD16x1:
case LCD24x1:
_function = 0x00; // Set function, 0 0 1 DL=0 (4-bit Databus), N=0 (1 Line), DH=0 (5x7font), IS2, IS1 (Select Instruction Set)
// Note: 4 bit mode is ignored for native SPI and I2C devices
// Saved to allow switch between Instruction sets at later time
_bias_lines = 0x04; // Bias: 1/5, 1 or 2-Lines LCD
break;
// case LCD12x3G: // Special mode for ST7036
case LCD16x3G: // Special mode for ST7036
_function = 0x08; // Set function, 0 0 1 DL=0 (4-bit Databus), N=1 (2 Line), DH=0 (5x7font), IS2,IS1 (Select Instruction Set)
// Note: 4 bit mode is ignored for native SPI and I2C devices
// Saved to allow switch between Instruction sets at later time
_bias_lines = 0x05; // Bias: 1/5, 3-Lines LCD
break;
// case LCD12x3D1: // Special mode for KS0078 and PCF21XX
// case LCD16x3D1: // Special mode for SSD1803
case LCD12x4D: // Special mode for PCF2116
case LCD24x4D: // Special mode for KS0078
error("Error: LCD Controller type does not support this Display type\n\r");
break;
default:
// All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
_function = 0x08; // Set function, 0 0 1 DL=0 (4-bit Databus), N=1 (2 Line), DH=0 (5x7font), IS2,IS1 (Select Instruction Set)
// Note: 4 bit mode is ignored for native SPI and I2C devices
// Saved to allow switch between Instruction sets at later time
_bias_lines = 0x04; // Bias: 1/5, 1 or 2-Lines LCD
break;
} // switch type
// init special features
_writeCommand(0x20 | _function | 0x01); // Set function, IS2,IS1 = 01 (Select Instruction Set = 1)
_writeCommand(0x10 | _bias_lines); // Set Bias and 1,2 or 3 lines (Instr Set 1)
_contrast = LCD_ST7036_CONTRAST;
_writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast, 0 1 1 1 C3 C2 C1 C0 (Instr Set 1)
if (_ctrl == ST7036_3V3) {
_icon_power = 0x04; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=0 Bon=1 C5 C4 (Instr Set 1)
// Saved to allow contrast change at later time
}
else {
_icon_power = 0x00; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=0 Bon=0 C5 C4 (Instr Set 1)
}
_writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Contrast C5, C4 (Instr Set 1)
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x68 | (LCD_ST7036_RAB & 0x07)); // Voltagefollower On = 1, Ampl ratio Rab2, Rab1, Rab0 = 1 0 1 (Instr Set 1)
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x20 | _function); // Set function, IS2,IS1 = 00 (Select Instruction Set = 0)
break; // case ST7036_3V3 Controller
// case ST7036_5V Controller
case SSD1803_3V3:
// SSD1803 controller: Initialise Voltage booster for VLCD. VDD=3V3
// Note: supports 1,2, 3 or 4 lines
// case SSD1803_5V:
// SSD1803 controller: No Voltage booster for VLCD. VDD=5V
// Initialise Display configuration
switch (_type) {
case LCD8x1: //8x1 is a regular 1 line display
case LCD8x2B: //8x2D is a special case of 16x1
// case LCD12x1:
case LCD16x1:
case LCD24x1:
_function = 0x00; // Set function 0 0 1 DL N DH RE(0) IS
// Saved to allow switch between Instruction sets at later time
// DL=0 4-bit Databus,
// Note: 4 bit mode is ignored for native SPI and I2C devices
// N=0 1 Line / 3 Line
// DH=0 Double Height disable
// IS=0
_function_1 = 0x00; // Set function, 0 0 1 DL N BE RE(1) REV
// Saved to allow switch between Instruction sets at later time
// DL=0 4-bit Databus,
// Note: 4 bit mode is ignored for native SPI and I2C devices
// N=0 1 Line / 3 Line
// BE=0 Blink Enable off, special feature of SSD1803
// REV=0 Reverse off, special feature of SSD1803
_lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
// NW=0 1-Line LCD (N=0)
break;
case LCD12x3D: // Special mode for KS0078, ST7036 and PCF21XX
// case LCD12x3D1: // Special mode for KS0078 and PCF21XX
case LCD16x3D: // Special mode for KS0078 and ST7036
// case LCD16x3D1: // Special mode for SSD1803
// case LCD20x3D: // Special mode for SSD1803
_function = 0x00; // Set function 0 0 1 DL N DH RE(0) IS
// Saved to allow switch between Instruction sets at later time
// DL=0 4-bit Databus,
// Note: 4 bit mode is ignored for native SPI and I2C devices
// N=0 1 Line / 3 Line
// DH=0 Double Height disable
// IS=0
_function_1 = 0x00; // Set function, 0 0 1 DL N BE RE(1) REV
// Saved to allow switch between Instruction sets at later time
// DL=0 4-bit Databus,
// Note: 4 bit mode is ignored for native SPI and I2C devices
// N=0 1 Line / 3 Line
// BE=0 Blink Enable off, special feature of SSD1803
// REV=0 Reverse off, special feature of SSD1803
_lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
// NW=1 3-Line LCD (N=0)
break;
case LCD20x4D: // Special mode for SSD1803
_function = 0x08; // Set function 0 0 1 DL N DH RE(0) IS
// Saved to allow switch between Instruction sets at later time
// DL=0 4-bit Databus,
// Note: 4 bit mode is ignored for native SPI and I2C devices
// N=1 4 Line
// DH=0 Double Height disable
// IS=0
_function_1 = 0x08; // Set function, 0 0 1 DL N BE RE(1) REV
// Saved to allow switch between Instruction sets at later time
// DL=0 4-bit Databus,
// Note: 4 bit mode is ignored for native SPI and I2C devices
// N=1 4 Line
// BE=0 Blink Enable off, special feature of SSD1803
// REV=0 Reverse off, special feature of SSD1803
_lines = 0x01; // Ext function set 0 0 0 0 1 FW BW NW
// NW=1 4-Line LCD (N=1)
break;
case LCD24x4D: // Special mode for KS0078
error("Error: LCD Controller type does not support this Display type\n\r");
break;
default:
// All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
_function = 0x08; // Set function 0 0 1 DL N DH RE(0) IS
// Saved to allow switch between Instruction sets at later time
// DL=0 4-bit Databus,
// Note: 4 bit mode is ignored for native SPI and I2C devices
// N=1 2 line / 4 Line
// DH=0 Double Height disable
// IS=0
_function_1 = 0x08; // Set function, 0 0 1 DL N BE RE(1) REV
// Saved to allow switch between Instruction sets at later time
// DL=0 4-bit Databus,
// Note: 4 bit mode is ignored for native SPI and I2C devices
// N=1 2 line / 4 Line
// BE=0 Blink Enable off, special feature of SSD1803
// REV=0 Reverse off, special feature of SSD1803
_lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
// NW=0 2-Line LCD (N=1)
break;
} // switch type
// init special features
_writeCommand(0x20 | _function_1 | 0x02); // Set function, 0 0 1 DL N BE RE(1) REV
// Select Extended Instruction Set
_writeCommand(0x10); // Double Height and Bias, 0 0 0 1 UD2=0, UD1=0, BS1=0 Bias 1/5, DH=0 (Ext Instr Set)
_writeCommand(0x08 | _lines); // Set ext function 0 0 0 0 1 FW BW NW 1,2,3 or 4 lines (Ext Instr Set)
_writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-31, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set)
// _writeCommand(0x04); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM31-1, BDS=0 SEG100-1 "Top View" (Ext Instr Set)
// _writeCommand(0x76); // Set TC Control, 0 1 1 1 0 1 1 0 (Ext Instr Set)
// _writeData(0x02); // Set TC data, 0 0 0 0 0 TC2,TC1,TC0 = 0 1 0 (Ext Instr Set)
_writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH RE(0) IS=1 Select Instruction Set 1
// Select Std Instr set, Select IS=1
_contrast = LCD_SSD1_CONTRAST;
_writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast 0 1 1 1 C3, C2, C1, C0 (Instr Set 1)
_icon_power = 0x04; // Icon off, Booster on (Instr Set 1)
// Saved to allow contrast change at later time
_writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Power, Icon and Contrast, 0 1 0 1 Ion Bon C5 C4 (Instr Set 1)
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x68 | (LCD_SSD1_RAB & 0x07)); // Set Voltagefollower 0 1 1 0 Don = 1, Ampl ratio Rab2, Rab1, Rab0 = 1 1 0 (Instr Set 1)
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x20 | _function_1 | 0x02); // Set function, 0 0 1 DL N BE RE(1) REV
// Select Extended Instruction Set 1
_writeCommand(0x10); // Shift/Scroll enable, 0 0 0 1 DS4/HS4 DS3/HS3 DS2/HS2 DS1/HS1 (Ext Instr Set 1)
_writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
// Select Std Instr set, Select IS=0
break; // case SSD1803 Controller
// Note1: The PCF21XX family of controllers has several types that dont have an onboard voltage generator for V-LCD.
// You must supply this LCD voltage externally and not try to enable VGen.
// Note2: The early versions of PCF2116 controllers (eg PCF2116C) can not generate sufficiently negative voltage for the LCD at a VDD of 3V3.
// You must supply this voltage externally and not enable VGen or you must use a higher VDD (e.g. 5V) and enable VGen.
// More recent versions of the controller (eg PCF2116K) have an improved VGen that will work with 3V3.
// Note3: See datasheet, PCF2116 and other types provide a V0 pin to control the LCD contrast voltage that is provided by VGen. This pins allows
// contrast control similar to that of pin 3 on the standard 14pin LCD module connector.
// You can disable VGen by connecting Vo to VDD. VLCD will then be used directly as LCD voltage.
// Note4: PCF2113 and PCF2119 are different wrt to VLCD generator! There is no V0 pin. The contrast voltage is software controlled by setting the VA and VB registers.
// Vgen is automatically switched off when the contrast voltage VA or VB is set to 0x00. Note that certain limits apply to allowed values for VA and VB.
// Note5: See datasheet, members of the PCF21XX family support different numbers of rows/columns. Not all can support 3 or 4 rows.
// Note6: See datasheet, the PCF21XX-C and PCF21XX-K use a non-standard character set. This may result is strange looking text when not corrected..
case PCF2113_3V3:
// PCF2113 controller: Initialise Voltage booster for VLCD. VDD=3V3. VA and VB control contrast.
// Initialise Display configuration
switch (_type) {
// case LCD12x1:
// _function = 0x02; // FUNCTION SET DL=0 4 bit, 0, M=0 1-line/12 chars display mode, SL=1
// Note: 4 bit mode is ignored for I2C mode
case LCD24x1:
_function = 0x00; // FUNCTION SET DL=0 4 bit, 0, M=0 1-line/24 chars display mode, SL=0
// Note: 4 bit mode is ignored for I2C mode
break;
//Tested OK for PCF2113
case LCD12x2:
_function = 0x04; // FUNCTION SET DL=0 4 bit, 0, M=1 2-line/12 chars display mode, SL=0
break;
default:
error("Error: LCD Controller type does not support this Display type\n\r");
break;
} // switch type
// Init special features
_writeCommand(0x20 | _function | 0x01); // Set function, Select Instruction Set = 1
_writeCommand(0x04); // DISP CONF SET (Instr. Set 1) 0000 0, 1, P=0, Q=0
_writeCommand(0x10); // TEMP CTRL SET (Instr. Set 1) 0001 0, 0, TC1=0, TC2=0
// _writeCommand(0x42); // HV GEN (Instr. Set 1) 0100 S1=1, S2=0 (2x multiplier)
_writeCommand(0x40 | (LCD_PCF2_S12 & 0x03)); // HV GEN (Instr. Set 1) 0100 S1=1, S2=0 (2x multiplier)
_contrast = LCD_PCF2_CONTRAST;
_writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=0, VA=contrast
_writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=1, VB=contrast
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x02); // SCRN CONF (Instr. Set 1) L=0
_writeCommand(0x08); // ICON CONF (Instr. Set 1) IM=0 (Char mode) IB=0 (no icon blink) DM=0 (no direct mode)
_writeCommand(0x20 | _function); // Select Instruction Set = 0
break; // case PCF2113_3V3 Controller
// case PCF2113_5V:
// PCF2113 controller: No Voltage generator for VLCD. VDD=5V. Contrast voltage controlled by VA or VB.
//@TODO
case PCF2116_3V3:
// PCF2116 controller: Voltage generator for VLCD. VDD=5V. V0 controls contrast voltage.
// Initialise Display configuration
switch (_type) {
// case LCD12x1:
// case LCD12x2:
case LCD24x1:
_writeCommand(0x22); //FUNCTION SET 4 bit, N/M=0 1-line/24 chars display mode, G=1 Vgen on
//Note: 4 bit mode is ignored for I2C mode
wait_ms(10); // Wait 10ms to ensure powered up
break;
case LCD12x3D: // Special mode for KS0078 and PCF21XX
case LCD12x3D1: // Special mode for PCF21XX
case LCD12x4D: // Special mode for PCF21XX:
_writeCommand(0x2E); //FUNCTION SET 4 bit, N=1/M=1 4-line/12 chars display mode, G=1 VGen on
//Note: 4 bit mode is ignored for I2C mode
wait_ms(10); // Wait 10ms to ensure powered up
break;
case LCD24x2:
_writeCommand(0x2A); //FUNCTION SET 4 bit, N=1/M=0 2-line/24 chars display mode, G=1 VGen on
//Note: 4 bit mode is ignored for I2C mode
wait_ms(10); // Wait 10ms to ensure powered up
break;
default:
error("Error: LCD Controller type does not support this Display type\n\r");
break;
} // switch type
break; // case PCF2116_3V3 Controller
//Experimental for cellphone 3-line display, SA=0x74, No Ack supported, Character set C or K, DL = 8 bit, N=0,M=1 (reserved mode !!), external VLCD -2V5
//@TODO
case PCF2116_5V:
// PCF2116 controller: No Voltage generator for VLCD. VDD=5V. V0 controls contrast voltage.
// Initialise Display configuration
switch (_type) {
// case LCD12x1:
// case LCD12x2:
// case LCD24x1:
// _writeCommand(0x20); //FUNCTION SET 4 bit, N/M=0 1-line/24 chars display mode
//Note: 4 bit mode is ignored for I2C mode
// wait_ms(10); // Wait 10ms to ensure powered up
// break;
case LCD12x3D: // Special mode for KS0078 and PCF21XX
case LCD12x3D1: // Special mode for PCF21XX
case LCD12x4D: // Special mode for PCF21XX:
// _writeCommand(0x34); //FUNCTION SET 8 bit, N=0/M=1 4-line/12 chars display mode OK
// _writeCommand(0x24); //FUNCTION SET 4 bit, N=0/M=1 4-line/12 chars display mode OK
_writeCommand(0x2C); //FUNCTION SET 4 bit, N=1/M=1 4-line/12 chars display mode OK
//Note: 4 bit mode is ignored for I2C mode
wait_ms(10); // Wait 10ms to ensure powered up
break;
// case LCD24x2:
// _writeCommand(0x28); //FUNCTION SET 4 bit, N=1/M=0 2-line/24 chars display mode
//Note: 4 bit mode is ignored for I2C mode
// wait_ms(10); // Wait 10ms to ensure powered up
// break;
default:
error("Error: LCD Controller type does not support this Display type\n\r");
break;
} // switch type
break; // case PCF2116_5V Controller
case PCF2119_3V3:
// PCF2119 controller: Initialise Voltage booster for VLCD. VDD=3V3. VA and VB control contrast.
// Note1: See datasheet, the PCF2119 supports icons and provides separate constrast control for Icons and characters.
// Note2: Vgen is switched off when the contrast voltage VA or VB is set to 0x00.
//POR or Hardware Reset should be applied
wait_ms(10); // Wait 10ms to ensure powered up
// Initialise Display configuration
switch (_type) {
case LCD8x1:
// case LCD12x1:
case LCD16x1:
_function = 0x02; // FUNCTION SET DL=0 4 bit, 0 , M=0 1-line/16 chars display mode, SL=1
// Note: 4 bit mode is ignored for I2C mode
break;
case LCD24x1:
// case LCD32x1:
_function = 0x00; // FUNCTION SET DL=0 4 bit, 0 , M=0 1-line/32 chars display mode, SL=0
// Note: 4 bit mode is ignored for I2C mode
break;
case LCD8x2:
// case LCD12x2:
case LCD16x2:
_function = 0x04; // FUNCTION SET DL=0 4 bit, 0, M=1 2-line/16 chars display mode, SL=0
// Note: 4 bit mode is ignored for I2C mode
break;
default:
error("Error: LCD Controller type does not support this Display type\n\r");
break;
} // switch type
// Init special features
_writeCommand(0x20 | _function | 0x01); // Set function, Select Instruction Set = 1
_writeCommand(0x04); // DISP CONF SET (Instr. Set 1) 0000, 0, 1, P=0, Q=0
_writeCommand(0x10); // TEMP CTRL SET (Instr. Set 1) 0001, 0, 0, TC1=0, TC2=0
// _writeCommand(0x42); // HV GEN (Instr. Set 1) 0100, 0, 0, S1=1, S2=0 (2x multiplier)
_writeCommand(0x40 | (LCD_PCF2_S12 & 0x03)); // HV GEN (Instr. Set 1) 0100, 0, 0, S1=1, S2=0 (2x multiplier)
_contrast = LCD_PCF2_CONTRAST;
_writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=0, VA=contrast
_writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=1, VB=contrast
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x02); // SCRN CONF (Instr. Set 1) L=0
_writeCommand(0x08); // ICON CONF (Instr. Set 1) IM=0 (Char mode) IB=0 (no icon blink) DM=0 (no direct mode)
_writeCommand(0x20 | _function); // Select Instruction Set = 0
break; // case PCF2119_3V3 Controller
// case PCF2119_5V:
// PCF2119 controller: No Voltage booster for VLCD. VDD=3V3. VA and VB control contrast.
// Note1: See datasheet, the PCF2119 supports icons and provides separate constrast control for Icons and characters.
// Note2: Vgen is switched off when the contrast voltage VA or VB is set to 0x00.
//@TODO
case WS0010:
// WS0010 OLED controller: Initialise DC/DC Voltage converter for LEDs
// Note1: Identical to RS0010
// Note2: supports 1 or 2 lines (and 16x100 graphics)
// supports 4 fonts (English/Japanese (default), Western European-I, English/Russian, Western European-II)
// Cursor/Disp shift set 0001 SC RL 0 0
//
// Mode and Power set 0001 GC PWR 1 1
// GC = 0 (Graph Mode=1, Char Mode=0)
// PWR = 1 (DC/DC On/Off)
//@Todo: This may be needed to enable a warm reboot
//_writeCommand(0x13); // Char mode, DC/DC off
//wait_ms(10); // Wait 10ms to ensure powered down
_writeCommand(0x17); // Char mode, DC/DC on
wait_ms(10); // Wait 10ms to ensure powered up
// Initialise Display configuration
switch (_type) {
case LCD8x1: //8x1 is a regular 1 line display
case LCD8x2B: //8x2B is a special case of 16x1
// case LCD12x1:
case LCD16x1:
case LCD24x1:
_writeCommand(0x20); // Function set 001 DL N F FT1 FT0
// DL=0 (4 bits bus)
// N=0 (1 line)
// F=0 (5x7 dots font)
// FT=00 (00 = Engl/Jap, 01 = WestEur1, 10 = Engl/Russian, 11 = WestEur2
break;
case LCD12x3D: // Special mode for KS0078 and PCF21XX
case LCD12x3D1: // Special mode for PCF21XX
case LCD12x4D: // Special mode for PCF21XX:
case LCD24x4D: // Special mode for KS0078
error("Error: LCD Controller type does not support this Display type\n\r");
break;
default:
// All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
_writeCommand(0x28); // Function set 001 DL N F FT1 FT0
// DL=0 (4 bits bus)
// N=1 (2 lines)
// F=0 (5x7 dots font)
// FT=00 (00 = Engl/Jap, 01 = WestEur1, 10 = Engl/Russian, 11 = WestEur2
break;
} // switch type
break; // case WS0010 Controller
default:
// Devices fully compatible to HD44780 that do not use any DC/DC Voltage converters but external VLCD, no icons etc
// Initialise Display configuration
switch (_type) {
case LCD8x1: //8x1 is a regular 1 line display
case LCD8x2B: //8x2B is a special case of 16x1
// case LCD12x1:
case LCD16x1:
// case LCD20x1:
case LCD24x1:
// case LCD40x1:
_function = 0x00; // Function set 001 DL N F - -
// DL=0 (4 bits bus)
// N=0 (1 line)
// F=0 (5x7 dots font)
_writeCommand(0x20 | _function);
break;
case LCD12x3D: // Special mode for KS0078 and PCF21XX
case LCD12x3D1: // Special mode for KS0078 and PCF21XX
case LCD12x4D: // Special mode for KS0078 and PCF21XX:
case LCD16x3D: // Special mode for KS0078 and ST7036
// case LCD16x3D1: // Special mode for KS0078
// case LCD24x3D: // Special mode for KS0078
// case LCD24x3D1: // Special mode for KS0078
case LCD24x4D: // Special mode for KS0078
error("Error: LCD Controller type does not support this Display type\n\r");
break;
// All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
default:
_function = 0x08; // Function set 001 DL N F - -
// DL=0 (4 bits bus)
// Note: 4 bit mode is ignored for native SPI and I2C devices
// N=1 (2 lines)
// F=0 (5x7 dots font, only option for 2 line display)
// - (Don't care)
_writeCommand(0x20 | _function);
break;
} // switch type
break; // case default Controller
} // switch Controller specific initialisations
// Controller general initialisations
// _writeCommand(0x01); // cls, and set cursor to 0
// wait_ms(10); // The CLS command takes 1.64 ms.
// // Since we are not using the Busy flag, Lets be safe and take 10 ms
_writeCommand(0x02); // Return Home
// Cursor Home, DDRAM Address to Origin
_writeCommand(0x06); // Entry Mode 0000 0 1 I/D S
// Cursor Direction and Display Shift
// I/D=1 (Cur incr)
// S=0 (No display shift)
_writeCommand(0x14); // Cursor or Display shift 0001 S/C R/L x x
// S/C=0 Cursor moves
// R/L=1 Right
//
// _writeCommand(0x0C); // Display Ctrl 0000 1 D C B
// // Display On, Cursor Off, Blink Off
setCursor(CurOff_BlkOff);
setMode(DispOn);
}
/** Clear the screen, Cursor home.
*/
void TextLCD_Base::cls() {
// Select and configure second LCD controller when needed
if(_type==LCD40x4) {
_ctrl_idx=_LCDCtrl_1; // Select 2nd controller
// Second LCD controller Cursor always Off
_setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
// Second LCD controller Clearscreen
_writeCommand(0x01); // cls, and set cursor to 0
wait_ms(10); // The CLS command takes 1.64 ms.
// Since we are not using the Busy flag, Lets be safe and take 10 ms
_ctrl_idx=_LCDCtrl_0; // Select primary controller
}
// Primary LCD controller Clearscreen
_writeCommand(0x01); // cls, and set cursor to 0
wait_ms(10); // The CLS command takes 1.64 ms.
// Since we are not using the Busy flag, Lets be safe and take 10 ms
// Restore cursormode on primary LCD controller when needed
if(_type==LCD40x4) {
_setCursorAndDisplayMode(_currentMode,_currentCursor);
}
setAddress(0, 0); // Reset Cursor location
// Note: This is needed because some displays (eg PCF21XX) don't use line 0 in the '3 Line' mode.
}
/** Locate cursor to a screen column and row
*
* @param column The horizontal position from the left, indexed from 0
* @param row The vertical position from the top, indexed from 0
*/
void TextLCD_Base::locate(int column, int row) {
// setAddress() does all the heavy lifting:
// check column and row sanity,
// switch controllers for LCD40x4 if needed
// switch cursor for LCD40x4 if needed
// set the new memory address to show cursor at correct location
setAddress(column, row);
}
/** Write a single character (Stream implementation)
*/
int TextLCD_Base::_putc(int value) {
int addr;
if (value == '\n') {
//No character to write
//Update Cursor
_column = 0;
_row++;
if (_row >= rows()) {
_row = 0;
}
}
else {
//Character to write
_writeData(value);
//Update Cursor
_column++;
if (_column >= columns()) {
_column = 0;
_row++;
if (_row >= rows()) {
_row = 0;
}
}
} //else
//Set next memoryaddress, make sure cursor blinks at next location
addr = getAddress(_column, _row);
_writeCommand(0x80 | addr);
return value;
}
// get a single character (Stream implementation)
int TextLCD_Base::_getc() {
return -1;
}
// Write a nibble using the 4-bit interface
void TextLCD_Base::_writeNibble(int value) {
// Enable is Low
this->_setEnable(true);
this->_setData(value & 0x0F); // Low nibble
wait_us(1); // Data setup time
this->_setEnable(false);
wait_us(1); // Datahold time
// Enable is Low
}
// Write a byte using the 4-bit interface
void TextLCD_Base::_writeByte(int value) {
// Enable is Low
this->_setEnable(true);
this->_setData(value >> 4); // High nibble
wait_us(1); // Data setup time
this->_setEnable(false);
wait_us(1); // Data hold time
this->_setEnable(true);
this->_setData(value >> 0); // Low nibble
wait_us(1); // Data setup time
this->_setEnable(false);
wait_us(1); // Datahold time
// Enable is Low
}
// Write a command byte to the LCD controller
void TextLCD_Base::_writeCommand(int command) {
this->_setRS(false);
wait_us(1); // Data setup time for RS
this->_writeByte(command);
wait_us(40); // most instructions take 40us
}
// Write a data byte to the LCD controller
void TextLCD_Base::_writeData(int data) {
this->_setRS(true);
wait_us(1); // Data setup time for RS
this->_writeByte(data);
wait_us(40); // data writes take 40us
}
// This replaces the original _address() method.
// It is confusing since it returns the memoryaddress or-ed with the set memorycommand 0x80.
// Left it in here for compatibility with older code. New applications should use getAddress() instead.
int TextLCD_Base::_address(int column, int row) {
return 0x80 | getAddress(column, row);
}
// This is new method to return the memory address based on row, column and displaytype.
//
/** Return the memoryaddress of screen column and row location
*
* @param column The horizontal position from the left, indexed from 0
* @param row The vertical position from the top, indexed from 0
* @param return The memoryaddress of screen column and row location
*
*/
int TextLCD_Base::getAddress(int column, int row) {
switch (_addr_mode) {
case LCD_T_A:
//Default addressing mode for 1, 2 and 4 rows (except 40x4)
//The two available rows are split and stacked on top of eachother. Addressing for 3rd and 4th line continues where lines 1 and 2 were split.
//Displays top rows when less than four are used.
switch (row) {
case 0:
return 0x00 + column;
case 1:
return 0x40 + column;
case 2:
return 0x00 + _nr_cols + column;
case 3:
return 0x40 + _nr_cols + column;
// Should never get here.
default:
return 0x00;
}
case LCD_T_B:
// LCD8x2B is a special layout of LCD16x1
if (row==0)
return 0x00 + column;
else
// return _nr_cols + column;
return 0x08 + column;
case LCD_T_C:
// LCD16x1C is a special layout of LCD8x2
#if(1)
if (column < 8)
return 0x00 + column;
else
return 0x40 + (column - 8);
#else
if (column < (_nr_cols >> 1))
return 0x00 + column;
else
return 0x40 + (column - (_nr_cols >> 1));
#endif
// Not sure about this one, seems wrong.
// Left in for compatibility with original library
// case LCD16x2B:
// return 0x00 + (row * 40) + column;
case LCD_T_D:
//Alternate addressing mode for 3 and 4 row displays (except 40x4). Used by PCF21XX, KS0078, ST7036, SSD1803
//The 4 available rows start at a hardcoded address.
//Displays top rows when less than four are used.
switch (row) {
case 0:
return 0x00 + column;
case 1:
return 0x20 + column;
case 2:
return 0x40 + column;
case 3:
return 0x60 + column;
// Should never get here.
default:
return 0x00;
}
case LCD_T_D1:
//Alternate addressing mode for 3 row displays. Used by PCF21XX, KS0078, SSD1803
//The 4 available rows start at a hardcoded address.
//Skips top row of 4 row display and starts display at row 1
switch (row) {
case 0:
return 0x20 + column;
case 1:
return 0x40 + column;
case 2:
return 0x60 + column;
// Should never get here.
default:
return 0x00;
}
case LCD_T_E:
// LCD40x4 is a special case since it has 2 controllers.
// Each controller is configured as 40x2 (Type A)
if (row<2) {
// Test to see if we need to switch between controllers
if (_ctrl_idx != _LCDCtrl_0) {
// Second LCD controller Cursor Off
_setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
// Select primary controller
_ctrl_idx = _LCDCtrl_0;
// Restore cursormode on primary LCD controller
_setCursorAndDisplayMode(_currentMode, _currentCursor);
}
return 0x00 + (row * 0x40) + column;
}
else {
// Test to see if we need to switch between controllers
if (_ctrl_idx != _LCDCtrl_1) {
// Primary LCD controller Cursor Off
_setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
// Select secondary controller
_ctrl_idx = _LCDCtrl_1;
// Restore cursormode on secondary LCD controller
_setCursorAndDisplayMode(_currentMode, _currentCursor);
}
return 0x00 + ((row-2) * 0x40) + column;
}
case LCD_T_F:
//Alternate addressing mode for 3 row displays.
//The first half of 3rd row continues from 1st row, the second half continues from 2nd row.
switch (row) {
case 0:
return 0x00 + column;
case 1:
return 0x40 + column;
case 2:
if (column < (_nr_cols >> 1)) // check first or second half of line
return (0x00 + _nr_cols + column);
else
return (0x40 + _nr_cols + (column - (_nr_cols >> 1)));
// Should never get here.
default:
return 0x00;
}
case LCD_T_G:
//Alternate addressing mode for 3 row displays. Used by ST7036
switch (row) {
case 0:
return 0x00 + column;
case 1:
return 0x10 + column;
case 2:
return 0x20 + column;
// Should never get here.
default:
return 0x00;
}
// Should never get here.
default:
return 0x00;
} // switch _addr_mode
}
/** Set the memoryaddress of screen column and row location
*
* @param column The horizontal position from the left, indexed from 0
* @param row The vertical position from the top, indexed from 0
*/
void TextLCD_Base::setAddress(int column, int row) {
// Sanity Check column
if (column < 0) {
_column = 0;
}
else if (column >= columns()) {
_column = columns() - 1;
} else _column = column;
// Sanity Check row
if (row < 0) {
_row = 0;
}
else if (row >= rows()) {
_row = rows() - 1;
} else _row = row;
// Compute the memory address
// For LCD40x4: switch controllers if needed
// switch cursor if needed
int addr = getAddress(_column, _row);
_writeCommand(0x80 | addr);
}
/** Return the number of columns
*
* @param return The number of columns
*
* Note: some configurations are commented out because they have not yet been tested due to lack of hardware
*/
int TextLCD_Base::columns() {
// Columns encoded in b7..b0
//return (_type & 0xFF);
return _nr_cols;
}
/** Return the number of rows
*
* @param return The number of rows
*
* Note: some configurations are commented out because they have not yet been tested due to lack of hardware
*/
int TextLCD_Base::rows() {
// Rows encoded in b15..b8
//return ((_type >> 8) & 0xFF);
return _nr_rows;
}
/** Set the Cursormode
*
* @param cursorMode The Cursor mode (CurOff_BlkOff, CurOn_BlkOff, CurOff_BlkOn, CurOn_BlkOn)
*/
void TextLCD_Base::setCursor(LCDCursor cursorMode) {
// Save new cursor mode, needed when 2 controllers are in use or when display is switched off/on
_currentCursor = cursorMode;
// Configure only current LCD controller
_setCursorAndDisplayMode(_currentMode, _currentCursor);
}
/** Set the Displaymode
*
* @param displayMode The Display mode (DispOff, DispOn)
*/
void TextLCD_Base::setMode(LCDMode displayMode) {
// Save new displayMode, needed when 2 controllers are in use or when cursor is changed
_currentMode = displayMode;
// Select and configure second LCD controller when needed
if(_type==LCD40x4) {
if (_ctrl_idx==_LCDCtrl_0) {
// Configure primary LCD controller
_setCursorAndDisplayMode(_currentMode, _currentCursor);
// Select 2nd controller
_ctrl_idx=_LCDCtrl_1;
// Configure secondary LCD controller
_setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
// Restore current controller
_ctrl_idx=_LCDCtrl_0;
}
else {
// Select primary controller
_ctrl_idx=_LCDCtrl_0;
// Configure primary LCD controller
_setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
// Restore current controller
_ctrl_idx=_LCDCtrl_1;
// Configure secondary LCD controller
_setCursorAndDisplayMode(_currentMode, _currentCursor);
}
}
else {
// Configure primary LCD controller
_setCursorAndDisplayMode(_currentMode, _currentCursor);
}
}
/** Low level method to restore the cursortype and display mode for current controller
*/
void TextLCD_Base::_setCursorAndDisplayMode(LCDMode displayMode, LCDCursor cursorType) {
// Configure current LCD controller
_writeCommand(0x08 | displayMode | cursorType);
}
/** Set the Backlight mode
*
* @param backlightMode The Backlight mode (LightOff, LightOn)
*/
void TextLCD_Base::setBacklight(LCDBacklight backlightMode) {
if (backlightMode == LightOn) {
this->_setBL(true);
}
else {
this->_setBL(false);
}
}
/** Set User Defined Characters
*
* @param unsigned char c The Index of the UDC (0..7)
* @param char *udc_data The bitpatterns for the UDC (8 bytes of 5 significant bits)
*/
void TextLCD_Base::setUDC(unsigned char c, char *udc_data) {
// Select and configure second LCD controller when needed
if(_type==LCD40x4) {
_LCDCtrl_Idx current_ctrl_idx = _ctrl_idx; // Temp save current controller
// Select primary controller
_ctrl_idx=_LCDCtrl_0;
// Configure primary LCD controller
_setUDC(c, udc_data);
// Select 2nd controller
_ctrl_idx=_LCDCtrl_1;
// Configure secondary LCD controller
_setUDC(c, udc_data);
// Restore current controller
_ctrl_idx=current_ctrl_idx;
}
else {
// Configure primary LCD controller
_setUDC(c, udc_data);
}
}
/** Low level method to store user defined characters for current controller
*/
void TextLCD_Base::_setUDC(unsigned char c, char *udc_data) {
// Select CG RAM for current LCD controller
_writeCommand(0x40 + ((c & 0x07) << 3)); //Set CG-RAM address,
//8 sequential locations needed per UDC
// Store UDC pattern
for (int i=0; i<8; i++) {
_writeData(*udc_data++);
}
//Select DD RAM again for current LCD controller
int addr = getAddress(_column, _row);
_writeCommand(0x80 | addr);
}
/** Set Contrast
* setContrast method is supported by some compatible devices (eg ST7032i) that have onboard LCD voltage generation
* Initial code for ST70XX imported from fork by JH1PJL
*
* @param unsigned char c contrast data (6 significant bits, valid range 0..63, Value 0 will disable the Vgen)
* @return none
*/
//@TODO Add support for 40x4 dual controller
void TextLCD_Base::setContrast(unsigned char c) {
// Function set mode stored during Init. Make sure we dont accidentally switch between 1-line and 2-line mode!
// Icon/Booster mode stored during Init. Make sure we dont accidentally change this!
_contrast = c & 0x3F; // Sanity check
switch (_ctrl) {
case PCF2113_3V3 :
case PCF2119_3V3 :
if (_contrast < 5) _contrast = 0; // See datasheet. Sanity check for PCF2113/PCF2119
if (_contrast > 55) _contrast = 55;
_writeCommand(0x20 | _function | 0x01); // Set function, Select Instruction Set = 1
_writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=0, VA=contrast
_writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=1, VB=contrast
_writeCommand(0x20 | _function); // Select Instruction Set = 0
break;
case ST7032_3V3 :
case ST7032_5V :
case ST7036_3V3 :
// case ST7036_5V :
case SSD1803_3V3 :
_writeCommand(0x20 | _function | 0x01); // Select Instruction Set = 1
_writeCommand(0x70 | (_contrast & 0x0F)); // Contrast Low bits
_writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Contrast High bits
_writeCommand(0x20 | _function); // Select Instruction Set = 0
break;
#if(0)
//not yet tested
case PT6314 :
// Only 2 significant bits
// 0x00 = 100%
// 0x01 = 75%
// 0x02 = 50%
// 0x03 = 25%
_writeCommand(0x20 | _function | ((~_contrast) >> 4)); // Invert and shift to use 2 MSBs
break;
#endif
default:
//Unsupported feature for other controllers
break;
} // end switch
}
/** Set Power
* setPower method is supported by some compatible devices (eg SSD1803) that have power down modes
*
* @param bool powerOn Power on/off
* @return none
*/
//@TODO Add support for 40x4 dual controller
void TextLCD_Base::setPower(bool powerOn) {
static int _tmp_contrast = LCD_DEF_CONTRAST;
if (powerOn) {
// Switch on
setMode(DispOn);
// Try to set contrast=0
_tmp_contrast = _contrast; // Temp. save current contrast
setContrast(0); // Contrast 0
// Controllers that supports specific Power Down mode
switch (_ctrl) {
// case PCF2113_3V3 :
// case PCF2119_3V3 :
// case ST7032_3V3 :
// case ST7032_5V :
//@todo
case SSD1803_3V3 :
// case SSD1803_5V :
_writeCommand(0x20 | _function_1 | 0x02); // Select Ext Instr Set
_writeCommand(0x03); // Power Down
_writeCommand(0x20 | _function); // Select Std Instr Set
break;
case KS0078:
//@todo
break;
default:
//Unsupported feature for other controllers
break;
} // end switch
}
else {
// Switch off
setMode(DispOff);
// Try to restore contrast
setContrast(_tmp_contrast); // Contrast
// Controllers that support specific Power Down mode
switch (_ctrl) {
// case PCF2113_3V3 :
// case PCF2119_3V3 :
// case ST7032_3V3 :
// case ST7032_5V :
//@todo
case SSD1803_3V3 :
// case SSD1803_5V :
_writeCommand(0x20 | _function_1 | 0x02); // Select Ext Instr Set
_writeCommand(0x02); // Power On
_writeCommand(0x20 | _function); // Select Std Instr Set
break;
case KS0078:
//@todo
break;
default:
//Unsupported feature for other controllers
break;
} // end switch
}
}
//--------- End TextLCD_Base -----------
//--------- Start TextLCD Bus -----------
/* Create a TextLCD interface for using regular mbed pins
*
* @param rs Instruction/data control line
* @param e Enable line (clock)
* @param d4-d7 Data lines for using as a 4-bit interface
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param bl Backlight control line (optional, default = NC)
* @param e2 Enable2 line (clock for second controller, LCD40x4 only)
* @param ctrl LCD controller (default = HD44780)
*/
TextLCD::TextLCD(PinName rs, PinName e,
PinName d4, PinName d5, PinName d6, PinName d7,
LCDType type, PinName bl, PinName e2, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_rs(rs), _e(e), _d(d4, d5, d6, d7) {
// The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
if (bl != NC) {
_bl = new DigitalOut(bl); //Construct new pin
_bl->write(0); //Deactivate
}
else {
// No Hardware Backlight pin
_bl = NULL; //Construct dummy pin
}
// The hardware Enable2 pin is only needed for LCD40x4. Test and make sure whether it exists or not to prevent illegal access.
if (e2 != NC) {
_e2 = new DigitalOut(e2); //Construct new pin
_e2->write(0); //Deactivate
}
else {
// No Hardware Enable pin
_e2 = NULL; //Construct dummy pin
}
_init();
}
/** Destruct a TextLCD interface for using regular mbed pins
*
* @param none
* @return none
*/
TextLCD::~TextLCD() {
if (_bl != NULL) {delete _bl;} // BL pin
if (_e2 != NULL) {delete _e2;} // E2 pin
}
/** Set E pin (or E2 pin)
* Used for mbed pins, I2C bus expander or SPI shiftregister
* Default PinName value for E2 is NC, must be used as pointer to avoid issues with mbed lib and DigitalOut pins
* @param value true or false
* @return none
*/
void TextLCD::_setEnable(bool value) {
if(_ctrl_idx==_LCDCtrl_0) {
if (value) {
_e = 1; // Set E bit
}
else {
_e = 0; // Reset E bit
}
}
else {
if (value) {
if (_e2 != NULL) {_e2->write(1);} //Set E2 bit
}
else {
if (_e2 != NULL) {_e2->write(0);} //Reset E2 bit
}
}
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD::_setRS(bool value) {
if (value) {
_rs = 1; // Set RS bit
}
else {
_rs = 0; // Reset RS bit
}
}
/** Set BL pin
* Used for mbed pins, I2C bus expander or SPI shiftregister
* Default PinName value is NC, must be used as pointer to avoid issues with mbed lib and DigitalOut pins
* @param value true or false
* @return none
*/
void TextLCD::_setBL(bool value) {
if (value) {
if (_bl != NULL) {_bl->write(1);} //Set BL bit
}
else {
if (_bl != NULL) {_bl->write(0);} //Reset BL bit
}
}
// Place the 4bit data on the databus
// Used for mbed pins, I2C bus expander or SPI shifregister
void TextLCD::_setData(int value) {
_d = value & 0x0F; // Write Databits
}
//----------- End TextLCD ---------------
//--------- Start TextLCD_I2C -----------
/** Create a TextLCD interface using an I2C PC8574 (or PCF8574A) or MCP23008 portexpander
*
* @param i2c I2C Bus
* @param deviceAddress I2C slave address (PCF8574, PCF8574A or MCP23008, default = 0x40)
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param ctrl LCD controller (default = HD44780)
*/
TextLCD_I2C::TextLCD_I2C(I2C *i2c, char deviceAddress, LCDType type, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_i2c(i2c){
_slaveAddress = deviceAddress & 0xFE;
// Setup the I2C bus
// The max bitrate for PCF8574 is 100kbit, the max bitrate for MCP23008 is 400kbit,
_i2c->frequency(100000);
#if (MCP23008==1)
// MCP23008 portexpander Init
_write_register(IODIR, 0x00); // All outputs
_write_register(IPOL, 0x00); // No reverse polarity
_write_register(GPINTEN, 0x00); // No interrupt
_write_register(DEFVAL, 0x00); // Default value to compare against for interrupts
_write_register(INTCON, 0x00); // No interrupt on changes
_write_register(IOCON, 0x00); // Interrupt polarity
_write_register(GPPU, 0x00); // No Pullup
_write_register(INTF, 0x00); //
_write_register(INTCAP, 0x00); //
_write_register(GPIO, 0x00); // Output/Input pins
_write_register(OLAT, 0x00); // Output Latch
// Init the portexpander bus
_lcd_bus = D_LCD_BUS_DEF;
// write the new data to the portexpander
_write_register(GPIO, _lcd_bus);
#else
// PCF8574 of PCF8574A portexpander
// Init the portexpander bus
_lcd_bus = D_LCD_BUS_DEF;
// write the new data to the portexpander
_i2c->write(_slaveAddress, &_lcd_bus, 1);
#endif
_init();
}
// Set E pin (or E2 pin)
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_I2C::_setEnable(bool value) {
if(_ctrl_idx==_LCDCtrl_0) {
if (value) {
_lcd_bus |= D_LCD_E; // Set E bit
}
else {
_lcd_bus &= ~D_LCD_E; // Reset E bit
}
}
else {
if (value) {
_lcd_bus |= D_LCD_E2; // Set E2 bit
}
else {
_lcd_bus &= ~D_LCD_E2; // Reset E2bit
}
}
#if (MCP23008==1)
// MCP23008 portexpander
// write the new data to the portexpander
_write_register(GPIO, _lcd_bus);
#else
// PCF8574 of PCF8574A portexpander
// write the new data to the I2C portexpander
_i2c->write(_slaveAddress, &_lcd_bus, 1);
#endif
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_I2C::_setRS(bool value) {
if (value) {
_lcd_bus |= D_LCD_RS; // Set RS bit
}
else {
_lcd_bus &= ~D_LCD_RS; // Reset RS bit
}
#if (MCP23008==1)
// MCP23008 portexpander
// write the new data to the portexpander
_write_register(GPIO, _lcd_bus);
#else
// PCF8574 of PCF8574A portexpander
// write the new data to the I2C portexpander
_i2c->write(_slaveAddress, &_lcd_bus, 1);
#endif
}
// Set BL pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_I2C::_setBL(bool value) {
if (value) {
_lcd_bus |= D_LCD_BL; // Set BL bit
}
else {
_lcd_bus &= ~D_LCD_BL; // Reset BL bit
}
#if (MCP23008==1)
// MCP23008 portexpander
// write the new data to the portexpander
_write_register(GPIO, _lcd_bus);
#else
// PCF8574 of PCF8574A portexpander
// write the new data to the I2C portexpander
_i2c->write(_slaveAddress, &_lcd_bus, 1);
#endif
}
// Place the 4bit data on the databus
// Used for mbed pins, I2C bus expander or SPI shifregister
void TextLCD_I2C::_setData(int value) {
int data;
// Set bit by bit to support any mapping of expander portpins to LCD pins
data = value & 0x0F;
if (data & 0x01){
_lcd_bus |= D_LCD_D4; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D4; // Reset Databit
}
if (data & 0x02){
_lcd_bus |= D_LCD_D5; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D5; // Reset Databit
}
if (data & 0x04) {
_lcd_bus |= D_LCD_D6; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D6; // Reset Databit
}
if (data & 0x08) {
_lcd_bus |= D_LCD_D7; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D7; // Reset Databit
}
#if (MCP23008==1)
// MCP23008 portexpander
// write the new data to the portexpander
_write_register(GPIO, _lcd_bus);
#else
// PCF8574 of PCF8574A portexpander
// write the new data to the I2C portexpander
_i2c->write(_slaveAddress, &_lcd_bus, 1);
#endif
}
// Write data to MCP23008 I2C portexpander
void TextLCD_I2C::_write_register (int reg, int value) {
char data[] = {reg, value};
_i2c->write(_slaveAddress, data, 2);
}
//---------- End TextLCD_I2C ------------
//--------- Start TextLCD_I2C_N ---------
/** Create a TextLCD interface using a controller with native I2C interface
*
* @param i2c I2C Bus
* @param deviceAddress I2C slave address (default = 0x7C)
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param bl Backlight control line (optional, default = NC)
* @param ctrl LCD controller (default = ST7032_3V3)
*/
TextLCD_I2C_N::TextLCD_I2C_N(I2C *i2c, char deviceAddress, LCDType type, PinName bl, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
// _i2c(i2c){
_i2c(i2c), _ps(p20) {
//Test
// Init PS
wait_us(500);
_ps = 0;
wait_us(250);
_slaveAddress = deviceAddress & 0xFE;
// Setup the I2C bus
// The max bitrate for ST7032i is 400kbit, lets stick to default here
_i2c->frequency(100000);
// The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
if (bl != NC) {
_bl = new DigitalOut(bl); //Construct new pin
_bl->write(0); //Deactivate
}
else {
// No Hardware Backlight pin
_bl = NULL; //Construct dummy pin
}
//Sanity check
if (_ctrl & LCD_C_I2C) {
_init();
}
else {
error("Error: LCD Controller type does not support native I2C interface\n\r");
}
}
TextLCD_I2C_N::~TextLCD_I2C_N() {
if (_bl != NULL) {delete _bl;} // BL pin
}
// Not used in this mode
void TextLCD_I2C_N::_setEnable(bool value) {
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister and native I2C or SPI
void TextLCD_I2C_N::_setRS(bool value) {
// The controlbyte defines the meaning of the next byte. This next byte can either be data or command.
// Start Slaveaddress+RW b7 b6 b5 b4 b3 b2 b1 b0 b7...........b0 Stop
// Co RS RW 0 0 0 0 0 command or data
//
// C0=1 indicates that another controlbyte will follow after the next data or command byte
// RS=1 means that next byte is data, RS=0 means that next byte is command
// RW=0 means write to controller. RW=1 means that controller will be read from after the next command.
// Many native I2C controllers dont support this option and it is not used by this lib.
//
if (value) {
_controlbyte = 0x40; // Next byte is data, No more control bytes will follow
}
else {
_controlbyte = 0x00; // Next byte is command, No more control bytes will follow
}
}
// Set BL pin
void TextLCD_I2C_N::_setBL(bool value) {
if (_bl) {
_bl->write(value);
}
}
// Not used in this mode
void TextLCD_I2C_N::_setData(int value) {
}
// Write a byte using I2C
void TextLCD_I2C_N::_writeByte(int value) {
// The controlbyte defines the meaning of the next byte. This next byte can either be data or command.
// Start Slaveaddress+RW b7 b6 b5 b4 b3 b2 b1 b0 b7...........b0 Stop
// Co RS RW 0 0 0 0 0 command or data
//
// C0=1 indicates that another controlbyte will follow after the next data or command byte
// RS=1 means that next byte is data, RS=0 means that next byte is command
// RW=0 means write to controller. RW=1 means that controller will be read from after the next command.
// Many native I2C controllers dont support this option and it is not used by this lib.
//
char data[] = {_controlbyte, value};
#if(LCD_I2C_ACK==1)
//Controllers that support ACK
_i2c->write(_slaveAddress, data, 2);
#else
//Controllers that dont support ACK
_i2c->start();
_i2c->write(_slaveAddress);
_i2c->write(data[0]);
_i2c->write(data[1]);
_i2c->stop();
#endif
}
//-------- End TextLCD_I2C_N ------------
//--------- Start TextLCD_SPI -----------
/** Create a TextLCD interface using an SPI 74595 portexpander
*
* @param spi SPI Bus
* @param cs chip select pin (active low)
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param ctrl LCD controller (default = HD44780)
*/
TextLCD_SPI::TextLCD_SPI(SPI *spi, PinName cs, LCDType type, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_spi(spi),
_cs(cs) {
// Init cs
_setCS(true);
// Setup the spi for 8 bit data, low steady state clock,
// rising edge capture, with a 500KHz or 1MHz clock rate
_spi->format(8,0);
_spi->frequency(500000);
//_spi.frequency(1000000);
// Init the portexpander bus
_lcd_bus = D_LCD_BUS_DEF;
// write the new data to the portexpander
_setCS(false);
_spi->write(_lcd_bus);
_setCS(true);
_init();
}
// Set E pin (or E2 pin)
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI::_setEnable(bool value) {
if(_ctrl_idx==_LCDCtrl_0) {
if (value) {
_lcd_bus |= D_LCD_E; // Set E bit
}
else {
_lcd_bus &= ~D_LCD_E; // Reset E bit
}
}
else {
if (value) {
_lcd_bus |= D_LCD_E2; // Set E2 bit
}
else {
_lcd_bus &= ~D_LCD_E2; // Reset E2 bit
}
}
// write the new data to the SPI portexpander
_setCS(false);
_spi->write(_lcd_bus);
_setCS(true);
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI::_setRS(bool value) {
if (value) {
_lcd_bus |= D_LCD_RS; // Set RS bit
}
else {
_lcd_bus &= ~D_LCD_RS; // Reset RS bit
}
// write the new data to the SPI portexpander
_setCS(false);
_spi->write(_lcd_bus);
_setCS(true);
}
// Set BL pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI::_setBL(bool value) {
if (value) {
_lcd_bus |= D_LCD_BL; // Set BL bit
}
else {
_lcd_bus &= ~D_LCD_BL; // Reset BL bit
}
// write the new data to the SPI portexpander
_setCS(false);
_spi->write(_lcd_bus);
_setCS(true);
}
// Place the 4bit data on the databus
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI::_setData(int value) {
int data;
// Set bit by bit to support any mapping of expander portpins to LCD pins
data = value & 0x0F;
if (data & 0x01) {
_lcd_bus |= D_LCD_D4; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D4; // Reset Databit
}
if (data & 0x02) {
_lcd_bus |= D_LCD_D5; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D5; // Reset Databit
}
if (data & 0x04) {
_lcd_bus |= D_LCD_D6; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D6; // Reset Databit
}
if (data & 0x08) {
_lcd_bus |= D_LCD_D7; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D7; // Reset Databit
}
// write the new data to the SPI portexpander
_setCS(false);
_spi->write(_lcd_bus);
_setCS(true);
}
// Set CS line.
// Only used for SPI bus
void TextLCD_SPI::_setCS(bool value) {
if (value) {
_cs = 1; // Set CS pin
}
else {
_cs = 0; // Reset CS pin
}
}
//---------- End TextLCD_SPI ------------
//--------- Start TextLCD_SPI_N ---------
/** Create a TextLCD interface using a controller with a native SPI4 interface
*
* @param spi SPI Bus
* @param cs chip select pin (active low)
* @param rs Instruction/data control line
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param bl Backlight control line (optional, default = NC)
* @param ctrl LCD controller (default = ST7032_3V3)
*/
TextLCD_SPI_N::TextLCD_SPI_N(SPI *spi, PinName cs, PinName rs, LCDType type, PinName bl, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_spi(spi),
_cs(cs),
_rs(rs) {
// Init CS
_cs = 1;
// Setup the spi for 8 bit data, low steady state clock,
// rising edge capture, with a 500KHz or 1MHz clock rate
_spi->format(8,0);
_spi->frequency(1000000);
// The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
if (bl != NC) {
_bl = new DigitalOut(bl); //Construct new pin
_bl->write(0); //Deactivate
}
else {
// No Hardware Backlight pin
_bl = NULL; //Construct dummy pin
}
//Sanity check
if (_ctrl & LCD_C_SPI4) {
_init();
}
else {
error("Error: LCD Controller type does not support native SPI4 interface\n\r");
}
}
TextLCD_SPI_N::~TextLCD_SPI_N() {
if (_bl != NULL) {delete _bl;} // BL pin
}
// Not used in this mode
void TextLCD_SPI_N::_setEnable(bool value) {
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI_N::_setRS(bool value) {
_rs = value;
}
// Set BL pin
void TextLCD_SPI_N::_setBL(bool value) {
if (_bl) {
_bl->write(value);
}
}
// Not used in this mode
void TextLCD_SPI_N::_setData(int value) {
}
// Write a byte using SPI
void TextLCD_SPI_N::_writeByte(int value) {
_cs = 0;
wait_us(1);
_spi->write(value);
wait_us(1);
_cs = 1;
}
//-------- End TextLCD_SPI_N ------------
#if(1)
//Code checked out on logic analyser. Not yet tested on hardware..
//-------- Start TextLCD_SPI_N_3_9 --------
/** Create a TextLCD interface using a controller with a native SPI3 9 bits interface
*
* @param spi SPI Bus
* @param cs chip select pin (active low)
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param bl Backlight control line (optional, default = NC)
* @param ctrl LCD controller (default = AIP31068)
*/
TextLCD_SPI_N_3_9::TextLCD_SPI_N_3_9(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_spi(spi),
// _cs(cs) {
_cs(cs), _ps(p20) {
// Init PS
wait_us(500);
_ps = 0;
wait_us(250);
// Init CS
_cs = 1;
// Setup the spi for 9 bit data, low steady state clock,
// rising edge capture, with a 500KHz or 1MHz clock rate
// _spi->format(9,0);
_spi->format(9,3);
_spi->frequency(1000000);
// The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
if (bl != NC) {
_bl = new DigitalOut(bl); //Construct new pin
_bl->write(0); //Deactivate
}
else {
// No Hardware Backlight pin
_bl = NULL; //Construct dummy pin
}
//Sanity check
if (_ctrl & LCD_C_SPI3_9) {
_init();
}
else {
error("Error: LCD Controller type does not support native SPI3 9 bits interface\n\r");
}
}
TextLCD_SPI_N_3_9::~TextLCD_SPI_N_3_9() {
if (_bl != NULL) {delete _bl;} // BL pin
}
// Not used in this mode
void TextLCD_SPI_N_3_9::_setEnable(bool value) {
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI_N_3_9::_setRS(bool value) {
// The controlbits define the meaning of the next byte. This next byte can either be data or command.
// b8 b7...........b0
// RS command or data
//
// RS=1 means that next byte is data, RS=0 means that next byte is command
//
if (value) {
_controlbyte = 0x01; // Next byte is data
}
else {
_controlbyte = 0x00; // Next byte is command
}
}
// Set BL pin
void TextLCD_SPI_N_3_9::_setBL(bool value) {
if (_bl) {
_bl->write(value);
}
}
// Not used in this mode
void TextLCD_SPI_N_3_9::_setData(int value) {
}
// Write a byte using SPI3 9 bits mode
void TextLCD_SPI_N_3_9::_writeByte(int value) {
_cs = 0;
wait_us(1);
_spi->write( (_controlbyte << 8) | (value & 0xFF));
wait_us(1);
_cs = 1;
}
//------- End TextLCD_SPI_N_3_9 -----------
#endif
#if(1)
//------- Start TextLCD_SPI_N_3_10 --------
/** Create a TextLCD interface using a controller with a native SPI3 10 bits interface
*
* @param spi SPI Bus
* @param cs chip select pin (active low)
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param bl Backlight control line (optional, default = NC)
* @param ctrl LCD controller (default = AIP31068)
*/
TextLCD_SPI_N_3_10::TextLCD_SPI_N_3_10(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_spi(spi),
_cs(cs) {
// Init CS
_cs = 1;
// Setup the spi for 10 bit data, low steady state clock,
// rising edge capture, with a 500KHz or 1MHz clock rate
_spi->format(10,0);
_spi->frequency(1000000);
// The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
if (bl != NC) {
_bl = new DigitalOut(bl); //Construct new pin
_bl->write(0); //Deactivate
}
else {
// No Hardware Backlight pin
_bl = NULL; //Construct dummy pin
}
//Sanity check
if (_ctrl & LCD_C_SPI3_10) {
_init();
}
else {
error("Error: LCD Controller type does not support native SPI3 10 bits interface\n\r");
}
}
TextLCD_SPI_N_3_10::~TextLCD_SPI_N_3_10() {
if (_bl != NULL) {delete _bl;} // BL pin
}
// Not used in this mode
void TextLCD_SPI_N_3_10::_setEnable(bool value) {
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI_N_3_10::_setRS(bool value) {
// The controlbits define the meaning of the next byte. This next byte can either be data or command.
// b9 b8 b7...........b0
// RS RW command or data
//
// RS=1 means that next byte is data, RS=0 means that next byte is command
// RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib)
//
if (value) {
_controlbyte = 0x02; // Next byte is data
}
else {
_controlbyte = 0x00; // Next byte is command
}
}
// Set BL pin
void TextLCD_SPI_N_3_10::_setBL(bool value) {
if (_bl) {
_bl->write(value);
}
}
// Not used in this mode
void TextLCD_SPI_N_3_10::_setData(int value) {
}
// Write a byte using SPI3 10 bits mode
void TextLCD_SPI_N_3_10::_writeByte(int value) {
_cs = 0;
wait_us(1);
_spi->write( (_controlbyte << 8) | (value & 0xFF));
wait_us(1);
_cs = 1;
}
//------- End TextLCD_SPI_N_3_10 ----------
#endif
#if(0)
//Code to be checked out on logic analyser. Not yet tested on hardware..
//------- Start TextLCD_SPI_N_3_16 --------
/** Create a TextLCD interface using a controller with a native SPI3 16 bits interface
*
* @param spi SPI Bus
* @param cs chip select pin (active low)
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param bl Backlight control line (optional, default = NC)
* @param ctrl LCD controller (default = PT6314)
*/
TextLCD_SPI_N_3_16::TextLCD_SPI_N_3_16(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_spi(spi),
_cs(cs) {
// Init CS
_cs = 1;
// Setup the spi for 8 bit data, low steady state clock,
// rising edge capture, with a 500KHz or 1MHz clock rate
_spi->format(8,0);
_spi->frequency(1000000);
// The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
if (bl != NC) {
_bl = new DigitalOut(bl); //Construct new pin
_bl->write(0); //Deactivate
}
else {
// No Hardware Backlight pin
_bl = NULL; //Construct dummy pin
}
//Sanity check
if (_ctrl & LCD_C_SPI3_16) {
_init();
}
else {
error("Error: LCD Controller type does not support native SPI3 16 bits interface\n\r");
}
}
TextLCD_SPI_N_3_16::~TextLCD_SPI_N_3_16() {
if (_bl != NULL) {delete _bl;} // BL pin
}
// Not used in this mode
void TextLCD_SPI_N_3_16::_setEnable(bool value) {
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI_N_3_16::_setRS(bool value) {
// The 16bit mode is split in 2 bytes. The first byte is for synchronisation and controlbits. The controlbits define the meaning of the next byte.
// The 8 actual bits represent either a data or a command byte.
// b15 b14 b13 b12 b11 b10 b9 b8 - b7 b6 b5 b4 b3 b2 b1 b0
// 1 1 1 1 1 RW RS 0 d7 d6 d5 d4 d3 d2 d1 d0
//
// RS=1 means that next byte is data, RS=0 means that next byte is command
// RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib)
//
if (value) {
_controlbyte = 0xFA; // Next byte is data
}
else {
_controlbyte = 0xF8; // Next byte is command
}
}
// Set BL pin
void TextLCD_SPI_N_3_16::_setBL(bool value) {
if (_bl) {
_bl->write(value);
}
}
// Not used in this mode
void TextLCD_SPI_N_3_16::_setData(int value) {
}
// Write a byte using SPI3 16 bits mode
void TextLCD_SPI_N_3_16::_writeByte(int value) {
_cs = 0;
wait_us(1);
_spi->write(_controlbyte);
_spi->write(value);
wait_us(1);
_cs = 1;
}
//------- End TextLCD_SPI_N_3_16 ----------
#endif
#if(1)
//Code to be checked out on logic analyser. Not yet tested on hardware..
//------- Start TextLCD_SPI_N_3_24 --------
/** Create a TextLCD interface using a controller with a native SPI3 24 bits interface
*
* @param spi SPI Bus
* @param cs chip select pin (active low)
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param bl Backlight control line (optional, default = NC)
* @param ctrl LCD controller (default = SSD1803)
*/
TextLCD_SPI_N_3_24::TextLCD_SPI_N_3_24(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_spi(spi),
_cs(cs) {
// Init CS
_cs = 1;
// Setup the spi for 8 bit data, low steady state clock,
// rising edge capture, with a 500KHz or 1MHz clock rate
_spi->format(8,0);
_spi->frequency(1000000);
// The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
if (bl != NC) {
_bl = new DigitalOut(bl); //Construct new pin
_bl->write(0); //Deactivate
}
else {
// No Hardware Backlight pin
_bl = NULL; //Construct dummy pin
}
//Sanity check
if (_ctrl & LCD_C_SPI3_24) {
_init();
}
else {
error("Error: LCD Controller type does not support native SPI3 24 bits interface\n\r");
}
}
TextLCD_SPI_N_3_24::~TextLCD_SPI_N_3_24() {
if (_bl != NULL) {delete _bl;} // BL pin
}
// Not used in this mode
void TextLCD_SPI_N_3_24::_setEnable(bool value) {
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI_N_3_24::_setRS(bool value) {
// The 24bit mode is split in 3 bytes. The first byte is for synchronisation and controlbits. The controlbits define the meaning of the next two bytes.
// Each byte encodes 4 actual bits. The 8 actual bits represent either a data or a command byte.
// b23 b22 b21 b20 b19 b18 b17 b16 - b15 b14 b13 b12 b11 b10 b9 b8 - b7 b6 b5 b4 b3 b2 b1 b0
// 1 1 1 1 1 RW RS 0 d0 d1 d2 d3 0 0 0 0 d4 d5 d6 d7 0 0 0 0
//
// RS=1 means that next byte is data, RS=0 means that next byte is command
// RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib)
//
// Note: SPI3_24 expects LSB first. This is inconsistent with regular SPI convention (and hardware) that sends MSB first.
if (value) {
_controlbyte = 0xFA; // Next byte is data
}
else {
_controlbyte = 0xF8; // Next byte is command
}
}
// Set BL pin
void TextLCD_SPI_N_3_24::_setBL(bool value) {
if (_bl) {
_bl->write(value);
}
}
// Not used in this mode
void TextLCD_SPI_N_3_24::_setData(int value) {
}
//Mapping table to flip the bits around cause SPI3_24 expects LSB first.
const uint8_t map3_24[16] = {0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0};
// Write a byte using SPI3 24 bits mode
void TextLCD_SPI_N_3_24::_writeByte(int value) {
_cs = 0;
wait_us(1);
_spi->write(_controlbyte);
//Map and send the LSB nibble
_spi->write( map3_24[value & 0x0F]);
//Map and send the MSB nibble
_spi->write( map3_24[(value >> 4) & 0x0F]);
wait_us(1);
_cs = 1;
}
//------- End TextLCD_SPI_N_3_24 ----------
#endif
