test

Dependencies:   BMP280 HCSR04_from_mtmt MPU6050_2 mbed SDFileSystem3

Committer:
hitonari
Date:
Wed Sep 14 14:31:16 2022 +0000
Revision:
2:7663d92d33ce
Parent:
0:2b57931c6ed4
9/14 trim change

Who changed what in which revision?

UserRevisionLine numberNew contents of line
hitonari 0:2b57931c6ed4 1 #ifndef MPU9250_H
hitonari 0:2b57931c6ed4 2 #define MPU9250_H
hitonari 0:2b57931c6ed4 3
hitonari 0:2b57931c6ed4 4 #include "mbed.h"
hitonari 0:2b57931c6ed4 5 #include "math.h"
hitonari 0:2b57931c6ed4 6
hitonari 0:2b57931c6ed4 7 // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
hitonari 0:2b57931c6ed4 8 // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
hitonari 0:2b57931c6ed4 9 //
hitonari 0:2b57931c6ed4 10 //Magnetometer Registers
hitonari 0:2b57931c6ed4 11 #define AK8963_ADDRESS 0x0C<<1
hitonari 0:2b57931c6ed4 12 #define WHO_AM_I_AK8963 0x00 // should return 0x48
hitonari 0:2b57931c6ed4 13 #define INFO 0x01
hitonari 0:2b57931c6ed4 14 #define AK8963_ST1 0x02 // data ready status bit 0
hitonari 0:2b57931c6ed4 15 #define AK8963_XOUT_L 0x03 // data
hitonari 0:2b57931c6ed4 16 #define AK8963_XOUT_H 0x04
hitonari 0:2b57931c6ed4 17 #define AK8963_YOUT_L 0x05
hitonari 0:2b57931c6ed4 18 #define AK8963_YOUT_H 0x06
hitonari 0:2b57931c6ed4 19 #define AK8963_ZOUT_L 0x07
hitonari 0:2b57931c6ed4 20 #define AK8963_ZOUT_H 0x08
hitonari 0:2b57931c6ed4 21 #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
hitonari 0:2b57931c6ed4 22 #define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
hitonari 0:2b57931c6ed4 23 #define AK8963_ASTC 0x0C // Self test control
hitonari 0:2b57931c6ed4 24 #define AK8963_I2CDIS 0x0F // I2C disable
hitonari 0:2b57931c6ed4 25 #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
hitonari 0:2b57931c6ed4 26 #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
hitonari 0:2b57931c6ed4 27 #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
hitonari 0:2b57931c6ed4 28
hitonari 0:2b57931c6ed4 29 #define SELF_TEST_X_GYRO 0x00
hitonari 0:2b57931c6ed4 30 #define SELF_TEST_Y_GYRO 0x01
hitonari 0:2b57931c6ed4 31 #define SELF_TEST_Z_GYRO 0x02
hitonari 0:2b57931c6ed4 32
hitonari 0:2b57931c6ed4 33 /*#define X_FINE_GAIN 0x03 // [7:0] fine gain
hitonari 0:2b57931c6ed4 34 #define Y_FINE_GAIN 0x04
hitonari 0:2b57931c6ed4 35 #define Z_FINE_GAIN 0x05
hitonari 0:2b57931c6ed4 36 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
hitonari 0:2b57931c6ed4 37 #define XA_OFFSET_L_TC 0x07
hitonari 0:2b57931c6ed4 38 #define YA_OFFSET_H 0x08
hitonari 0:2b57931c6ed4 39 #define YA_OFFSET_L_TC 0x09
hitonari 0:2b57931c6ed4 40 #define ZA_OFFSET_H 0x0A
hitonari 0:2b57931c6ed4 41 #define ZA_OFFSET_L_TC 0x0B */
hitonari 0:2b57931c6ed4 42
hitonari 0:2b57931c6ed4 43 #define SELF_TEST_X_ACCEL 0x0D
hitonari 0:2b57931c6ed4 44 #define SELF_TEST_Y_ACCEL 0x0E
hitonari 0:2b57931c6ed4 45 #define SELF_TEST_Z_ACCEL 0x0F
hitonari 0:2b57931c6ed4 46
hitonari 0:2b57931c6ed4 47 #define SELF_TEST_A 0x10
hitonari 0:2b57931c6ed4 48
hitonari 0:2b57931c6ed4 49 #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
hitonari 0:2b57931c6ed4 50 #define XG_OFFSET_L 0x14
hitonari 0:2b57931c6ed4 51 #define YG_OFFSET_H 0x15
hitonari 0:2b57931c6ed4 52 #define YG_OFFSET_L 0x16
hitonari 0:2b57931c6ed4 53 #define ZG_OFFSET_H 0x17
hitonari 0:2b57931c6ed4 54 #define ZG_OFFSET_L 0x18
hitonari 0:2b57931c6ed4 55 #define SMPLRT_DIV 0x19
hitonari 0:2b57931c6ed4 56 #define CONFIG 0x1A
hitonari 0:2b57931c6ed4 57 #define GYRO_CONFIG 0x1B
hitonari 0:2b57931c6ed4 58 #define ACCEL_CONFIG 0x1C
hitonari 0:2b57931c6ed4 59 #define ACCEL_CONFIG2 0x1D
hitonari 0:2b57931c6ed4 60 #define LP_ACCEL_ODR 0x1E
hitonari 0:2b57931c6ed4 61 #define WOM_THR 0x1F
hitonari 0:2b57931c6ed4 62
hitonari 0:2b57931c6ed4 63 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
hitonari 0:2b57931c6ed4 64 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
hitonari 0:2b57931c6ed4 65 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
hitonari 0:2b57931c6ed4 66
hitonari 0:2b57931c6ed4 67 #define FIFO_EN 0x23
hitonari 0:2b57931c6ed4 68 #define I2C_MST_CTRL 0x24
hitonari 0:2b57931c6ed4 69 #define I2C_SLV0_ADDR 0x25
hitonari 0:2b57931c6ed4 70 #define I2C_SLV0_REG 0x26
hitonari 0:2b57931c6ed4 71 #define I2C_SLV0_CTRL 0x27
hitonari 0:2b57931c6ed4 72 #define I2C_SLV1_ADDR 0x28
hitonari 0:2b57931c6ed4 73 #define I2C_SLV1_REG 0x29
hitonari 0:2b57931c6ed4 74 #define I2C_SLV1_CTRL 0x2A
hitonari 0:2b57931c6ed4 75 #define I2C_SLV2_ADDR 0x2B
hitonari 0:2b57931c6ed4 76 #define I2C_SLV2_REG 0x2C
hitonari 0:2b57931c6ed4 77 #define I2C_SLV2_CTRL 0x2D
hitonari 0:2b57931c6ed4 78 #define I2C_SLV3_ADDR 0x2E
hitonari 0:2b57931c6ed4 79 #define I2C_SLV3_REG 0x2F
hitonari 0:2b57931c6ed4 80 #define I2C_SLV3_CTRL 0x30
hitonari 0:2b57931c6ed4 81 #define I2C_SLV4_ADDR 0x31
hitonari 0:2b57931c6ed4 82 #define I2C_SLV4_REG 0x32
hitonari 0:2b57931c6ed4 83 #define I2C_SLV4_DO 0x33
hitonari 0:2b57931c6ed4 84 #define I2C_SLV4_CTRL 0x34
hitonari 0:2b57931c6ed4 85 #define I2C_SLV4_DI 0x35
hitonari 0:2b57931c6ed4 86 #define I2C_MST_STATUS 0x36
hitonari 0:2b57931c6ed4 87 #define INT_PIN_CFG 0x37
hitonari 0:2b57931c6ed4 88 #define INT_ENABLE 0x38
hitonari 0:2b57931c6ed4 89 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
hitonari 0:2b57931c6ed4 90 #define INT_STATUS 0x3A
hitonari 0:2b57931c6ed4 91 #define ACCEL_XOUT_H 0x3B
hitonari 0:2b57931c6ed4 92 #define ACCEL_XOUT_L 0x3C
hitonari 0:2b57931c6ed4 93 #define ACCEL_YOUT_H 0x3D
hitonari 0:2b57931c6ed4 94 #define ACCEL_YOUT_L 0x3E
hitonari 0:2b57931c6ed4 95 #define ACCEL_ZOUT_H 0x3F
hitonari 0:2b57931c6ed4 96 #define ACCEL_ZOUT_L 0x40
hitonari 0:2b57931c6ed4 97 #define TEMP_OUT_H 0x41
hitonari 0:2b57931c6ed4 98 #define TEMP_OUT_L 0x42
hitonari 0:2b57931c6ed4 99 #define GYRO_XOUT_H 0x43
hitonari 0:2b57931c6ed4 100 #define GYRO_XOUT_L 0x44
hitonari 0:2b57931c6ed4 101 #define GYRO_YOUT_H 0x45
hitonari 0:2b57931c6ed4 102 #define GYRO_YOUT_L 0x46
hitonari 0:2b57931c6ed4 103 #define GYRO_ZOUT_H 0x47
hitonari 0:2b57931c6ed4 104 #define GYRO_ZOUT_L 0x48
hitonari 0:2b57931c6ed4 105 #define EXT_SENS_DATA_00 0x49
hitonari 0:2b57931c6ed4 106 #define EXT_SENS_DATA_01 0x4A
hitonari 0:2b57931c6ed4 107 #define EXT_SENS_DATA_02 0x4B
hitonari 0:2b57931c6ed4 108 #define EXT_SENS_DATA_03 0x4C
hitonari 0:2b57931c6ed4 109 #define EXT_SENS_DATA_04 0x4D
hitonari 0:2b57931c6ed4 110 #define EXT_SENS_DATA_05 0x4E
hitonari 0:2b57931c6ed4 111 #define EXT_SENS_DATA_06 0x4F
hitonari 0:2b57931c6ed4 112 #define EXT_SENS_DATA_07 0x50
hitonari 0:2b57931c6ed4 113 #define EXT_SENS_DATA_08 0x51
hitonari 0:2b57931c6ed4 114 #define EXT_SENS_DATA_09 0x52
hitonari 0:2b57931c6ed4 115 #define EXT_SENS_DATA_10 0x53
hitonari 0:2b57931c6ed4 116 #define EXT_SENS_DATA_11 0x54
hitonari 0:2b57931c6ed4 117 #define EXT_SENS_DATA_12 0x55
hitonari 0:2b57931c6ed4 118 #define EXT_SENS_DATA_13 0x56
hitonari 0:2b57931c6ed4 119 #define EXT_SENS_DATA_14 0x57
hitonari 0:2b57931c6ed4 120 #define EXT_SENS_DATA_15 0x58
hitonari 0:2b57931c6ed4 121 #define EXT_SENS_DATA_16 0x59
hitonari 0:2b57931c6ed4 122 #define EXT_SENS_DATA_17 0x5A
hitonari 0:2b57931c6ed4 123 #define EXT_SENS_DATA_18 0x5B
hitonari 0:2b57931c6ed4 124 #define EXT_SENS_DATA_19 0x5C
hitonari 0:2b57931c6ed4 125 #define EXT_SENS_DATA_20 0x5D
hitonari 0:2b57931c6ed4 126 #define EXT_SENS_DATA_21 0x5E
hitonari 0:2b57931c6ed4 127 #define EXT_SENS_DATA_22 0x5F
hitonari 0:2b57931c6ed4 128 #define EXT_SENS_DATA_23 0x60
hitonari 0:2b57931c6ed4 129 #define MOT_DETECT_STATUS 0x61
hitonari 0:2b57931c6ed4 130 #define I2C_SLV0_DO 0x63
hitonari 0:2b57931c6ed4 131 #define I2C_SLV1_DO 0x64
hitonari 0:2b57931c6ed4 132 #define I2C_SLV2_DO 0x65
hitonari 0:2b57931c6ed4 133 #define I2C_SLV3_DO 0x66
hitonari 0:2b57931c6ed4 134 #define I2C_MST_DELAY_CTRL 0x67
hitonari 0:2b57931c6ed4 135 #define SIGNAL_PATH_RESET 0x68
hitonari 0:2b57931c6ed4 136 #define MOT_DETECT_CTRL 0x69
hitonari 0:2b57931c6ed4 137 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
hitonari 0:2b57931c6ed4 138 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
hitonari 0:2b57931c6ed4 139 #define PWR_MGMT_2 0x6C
hitonari 0:2b57931c6ed4 140 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
hitonari 0:2b57931c6ed4 141 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
hitonari 0:2b57931c6ed4 142 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
hitonari 0:2b57931c6ed4 143 #define DMP_REG_1 0x70
hitonari 0:2b57931c6ed4 144 #define DMP_REG_2 0x71
hitonari 0:2b57931c6ed4 145 #define FIFO_COUNTH 0x72
hitonari 0:2b57931c6ed4 146 #define FIFO_COUNTL 0x73
hitonari 0:2b57931c6ed4 147 #define FIFO_R_W 0x74
hitonari 0:2b57931c6ed4 148 #define WHO_AM_I_MPU9250 0x75 // Should return 0x71
hitonari 0:2b57931c6ed4 149 #define XA_OFFSET_H 0x77
hitonari 0:2b57931c6ed4 150 #define XA_OFFSET_L 0x78
hitonari 0:2b57931c6ed4 151 #define YA_OFFSET_H 0x7A
hitonari 0:2b57931c6ed4 152 #define YA_OFFSET_L 0x7B
hitonari 0:2b57931c6ed4 153 #define ZA_OFFSET_H 0x7D
hitonari 0:2b57931c6ed4 154 #define ZA_OFFSET_L 0x7E
hitonari 0:2b57931c6ed4 155
hitonari 0:2b57931c6ed4 156 // Using the MSENSR-9250 breakout board, ADO is set to 0
hitonari 0:2b57931c6ed4 157 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
hitonari 0:2b57931c6ed4 158 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
hitonari 0:2b57931c6ed4 159 #define ADO 0
hitonari 0:2b57931c6ed4 160 #if ADO
hitonari 0:2b57931c6ed4 161 #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1
hitonari 0:2b57931c6ed4 162 #else
hitonari 0:2b57931c6ed4 163 #define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0
hitonari 0:2b57931c6ed4 164 #endif
hitonari 0:2b57931c6ed4 165
hitonari 0:2b57931c6ed4 166 // Set initial input parameters
hitonari 0:2b57931c6ed4 167 enum Ascale {
hitonari 0:2b57931c6ed4 168 AFS_2G = 0,
hitonari 0:2b57931c6ed4 169 AFS_4G,
hitonari 0:2b57931c6ed4 170 AFS_8G,
hitonari 0:2b57931c6ed4 171 AFS_16G
hitonari 0:2b57931c6ed4 172 };
hitonari 0:2b57931c6ed4 173
hitonari 0:2b57931c6ed4 174 enum Gscale {
hitonari 0:2b57931c6ed4 175 GFS_250DPS = 0,
hitonari 0:2b57931c6ed4 176 GFS_500DPS,
hitonari 0:2b57931c6ed4 177 GFS_1000DPS,
hitonari 0:2b57931c6ed4 178 GFS_2000DPS
hitonari 0:2b57931c6ed4 179 };
hitonari 0:2b57931c6ed4 180
hitonari 0:2b57931c6ed4 181 enum Mscale {
hitonari 0:2b57931c6ed4 182 MFS_14BITS = 0, // 0.6 mG per LSB
hitonari 0:2b57931c6ed4 183 MFS_16BITS // 0.15 mG per LSB
hitonari 0:2b57931c6ed4 184 };
hitonari 0:2b57931c6ed4 185
hitonari 0:2b57931c6ed4 186 uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G
hitonari 0:2b57931c6ed4 187 uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
hitonari 0:2b57931c6ed4 188 uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
hitonari 0:2b57931c6ed4 189 uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
hitonari 0:2b57931c6ed4 190 float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
hitonari 0:2b57931c6ed4 191
hitonari 0:2b57931c6ed4 192 //Set up I2C, (SDA,SCL)
hitonari 0:2b57931c6ed4 193 //I2C i2c(I2C_SDA, I2C_SCL);
hitonari 0:2b57931c6ed4 194 I2C i2c(PC_9, PA_8);
hitonari 0:2b57931c6ed4 195
hitonari 0:2b57931c6ed4 196 DigitalOut myled(LED1);
hitonari 0:2b57931c6ed4 197
hitonari 0:2b57931c6ed4 198 // Pin definitions
hitonari 0:2b57931c6ed4 199 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
hitonari 0:2b57931c6ed4 200
hitonari 0:2b57931c6ed4 201 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
hitonari 0:2b57931c6ed4 202 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
hitonari 0:2b57931c6ed4 203 int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
hitonari 0:2b57931c6ed4 204 float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias
hitonari 0:2b57931c6ed4 205 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
hitonari 0:2b57931c6ed4 206 float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
hitonari 0:2b57931c6ed4 207 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
hitonari 0:2b57931c6ed4 208 float temperature;
hitonari 0:2b57931c6ed4 209 float SelfTest[6];
hitonari 0:2b57931c6ed4 210
hitonari 0:2b57931c6ed4 211 int delt_t = 0; // used to control display output rate
hitonari 0:2b57931c6ed4 212 int count = 0; // used to control display output rate
hitonari 0:2b57931c6ed4 213
hitonari 0:2b57931c6ed4 214 // parameters for 6 DoF sensor fusion calculations
hitonari 0:2b57931c6ed4 215 float PI = 3.14159265358979323846f;
hitonari 0:2b57931c6ed4 216 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
hitonari 0:2b57931c6ed4 217 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
hitonari 0:2b57931c6ed4 218 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
hitonari 0:2b57931c6ed4 219 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
hitonari 0:2b57931c6ed4 220 #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
hitonari 0:2b57931c6ed4 221 #define Ki 0.0f
hitonari 0:2b57931c6ed4 222
hitonari 0:2b57931c6ed4 223 float pitch, yaw, roll;
hitonari 0:2b57931c6ed4 224 float deltat = 0.0f; // integration interval for both filter schemes
hitonari 0:2b57931c6ed4 225 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
hitonari 0:2b57931c6ed4 226 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
hitonari 0:2b57931c6ed4 227 float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
hitonari 0:2b57931c6ed4 228
hitonari 0:2b57931c6ed4 229 class MPU9250 {
hitonari 0:2b57931c6ed4 230
hitonari 0:2b57931c6ed4 231 protected:
hitonari 0:2b57931c6ed4 232
hitonari 0:2b57931c6ed4 233 public:
hitonari 0:2b57931c6ed4 234 //===================================================================================================================
hitonari 0:2b57931c6ed4 235 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
hitonari 0:2b57931c6ed4 236 //===================================================================================================================
hitonari 0:2b57931c6ed4 237
hitonari 0:2b57931c6ed4 238 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
hitonari 0:2b57931c6ed4 239 {
hitonari 0:2b57931c6ed4 240 char data_write[2];
hitonari 0:2b57931c6ed4 241 data_write[0] = subAddress;
hitonari 0:2b57931c6ed4 242 data_write[1] = data;
hitonari 0:2b57931c6ed4 243 i2c.write(address, data_write, 2, 0);
hitonari 0:2b57931c6ed4 244 }
hitonari 0:2b57931c6ed4 245
hitonari 0:2b57931c6ed4 246 char readByte(uint8_t address, uint8_t subAddress)
hitonari 0:2b57931c6ed4 247 {
hitonari 0:2b57931c6ed4 248 char data[1]; // `data` will store the register data
hitonari 0:2b57931c6ed4 249 char data_write[1];
hitonari 0:2b57931c6ed4 250 data_write[0] = subAddress;
hitonari 0:2b57931c6ed4 251 i2c.write(address, data_write, 1, 1); // no stop
hitonari 0:2b57931c6ed4 252 i2c.read(address, data, 1, 0);
hitonari 0:2b57931c6ed4 253 return data[0];
hitonari 0:2b57931c6ed4 254 }
hitonari 0:2b57931c6ed4 255
hitonari 0:2b57931c6ed4 256 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
hitonari 0:2b57931c6ed4 257 {
hitonari 0:2b57931c6ed4 258 char data[14];
hitonari 0:2b57931c6ed4 259 char data_write[1];
hitonari 0:2b57931c6ed4 260 data_write[0] = subAddress;
hitonari 0:2b57931c6ed4 261 i2c.write(address, data_write, 1, 1); // no stop
hitonari 0:2b57931c6ed4 262 i2c.read(address, data, count, 0);
hitonari 0:2b57931c6ed4 263 for(int ii = 0; ii < count; ii++) {
hitonari 0:2b57931c6ed4 264 dest[ii] = data[ii];
hitonari 0:2b57931c6ed4 265 }
hitonari 0:2b57931c6ed4 266 }
hitonari 0:2b57931c6ed4 267
hitonari 0:2b57931c6ed4 268
hitonari 0:2b57931c6ed4 269 void getMres() {
hitonari 0:2b57931c6ed4 270 switch (Mscale)
hitonari 0:2b57931c6ed4 271 {
hitonari 0:2b57931c6ed4 272 // Possible magnetometer scales (and their register bit settings) are:
hitonari 0:2b57931c6ed4 273 // 14 bit resolution (0) and 16 bit resolution (1)
hitonari 0:2b57931c6ed4 274 case MFS_14BITS:
hitonari 0:2b57931c6ed4 275 mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
hitonari 0:2b57931c6ed4 276 break;
hitonari 0:2b57931c6ed4 277 case MFS_16BITS:
hitonari 0:2b57931c6ed4 278 mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
hitonari 0:2b57931c6ed4 279 break;
hitonari 0:2b57931c6ed4 280 }
hitonari 0:2b57931c6ed4 281 }
hitonari 0:2b57931c6ed4 282
hitonari 0:2b57931c6ed4 283
hitonari 0:2b57931c6ed4 284 void getGres() {
hitonari 0:2b57931c6ed4 285 switch (Gscale)
hitonari 0:2b57931c6ed4 286 {
hitonari 0:2b57931c6ed4 287 // Possible gyro scales (and their register bit settings) are:
hitonari 0:2b57931c6ed4 288 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
hitonari 0:2b57931c6ed4 289 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
hitonari 0:2b57931c6ed4 290 case GFS_250DPS:
hitonari 0:2b57931c6ed4 291 gRes = 250.0/32768.0;
hitonari 0:2b57931c6ed4 292 break;
hitonari 0:2b57931c6ed4 293 case GFS_500DPS:
hitonari 0:2b57931c6ed4 294 gRes = 500.0/32768.0;
hitonari 0:2b57931c6ed4 295 break;
hitonari 0:2b57931c6ed4 296 case GFS_1000DPS:
hitonari 0:2b57931c6ed4 297 gRes = 1000.0/32768.0;
hitonari 0:2b57931c6ed4 298 break;
hitonari 0:2b57931c6ed4 299 case GFS_2000DPS:
hitonari 0:2b57931c6ed4 300 gRes = 2000.0/32768.0;
hitonari 0:2b57931c6ed4 301 break;
hitonari 0:2b57931c6ed4 302 }
hitonari 0:2b57931c6ed4 303 }
hitonari 0:2b57931c6ed4 304
hitonari 0:2b57931c6ed4 305
hitonari 0:2b57931c6ed4 306 void getAres() {
hitonari 0:2b57931c6ed4 307 switch (Ascale)
hitonari 0:2b57931c6ed4 308 {
hitonari 0:2b57931c6ed4 309 // Possible accelerometer scales (and their register bit settings) are:
hitonari 0:2b57931c6ed4 310 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
hitonari 0:2b57931c6ed4 311 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
hitonari 0:2b57931c6ed4 312 case AFS_2G:
hitonari 0:2b57931c6ed4 313 aRes = 2.0/32768.0;
hitonari 0:2b57931c6ed4 314 break;
hitonari 0:2b57931c6ed4 315 case AFS_4G:
hitonari 0:2b57931c6ed4 316 aRes = 4.0/32768.0;
hitonari 0:2b57931c6ed4 317 break;
hitonari 0:2b57931c6ed4 318 case AFS_8G:
hitonari 0:2b57931c6ed4 319 aRes = 8.0/32768.0;
hitonari 0:2b57931c6ed4 320 break;
hitonari 0:2b57931c6ed4 321 case AFS_16G:
hitonari 0:2b57931c6ed4 322 aRes = 16.0/32768.0;
hitonari 0:2b57931c6ed4 323 break;
hitonari 0:2b57931c6ed4 324 }
hitonari 0:2b57931c6ed4 325 }
hitonari 0:2b57931c6ed4 326
hitonari 0:2b57931c6ed4 327
hitonari 0:2b57931c6ed4 328 void readAccelData(int16_t * destination)
hitonari 0:2b57931c6ed4 329 {
hitonari 0:2b57931c6ed4 330 uint8_t rawData[6]; // x/y/z accel register data stored here
hitonari 0:2b57931c6ed4 331 //readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
hitonari 0:2b57931c6ed4 332 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, rawData);
hitonari 0:2b57931c6ed4 333
hitonari 0:2b57931c6ed4 334 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
hitonari 0:2b57931c6ed4 335 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
hitonari 0:2b57931c6ed4 336 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
hitonari 0:2b57931c6ed4 337 }
hitonari 0:2b57931c6ed4 338
hitonari 0:2b57931c6ed4 339 void readGyroData(int16_t * destination)
hitonari 0:2b57931c6ed4 340 {
hitonari 0:2b57931c6ed4 341 uint8_t rawData[6]; // x/y/z gyro register data stored here
hitonari 0:2b57931c6ed4 342 //readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
hitonari 0:2b57931c6ed4 343 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, rawData);
hitonari 0:2b57931c6ed4 344 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
hitonari 0:2b57931c6ed4 345 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
hitonari 0:2b57931c6ed4 346 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
hitonari 0:2b57931c6ed4 347 }
hitonari 0:2b57931c6ed4 348
hitonari 0:2b57931c6ed4 349 void readMagData(int16_t * destination)
hitonari 0:2b57931c6ed4 350 {
hitonari 0:2b57931c6ed4 351 uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
hitonari 0:2b57931c6ed4 352 if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
hitonari 0:2b57931c6ed4 353 //readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
hitonari 0:2b57931c6ed4 354 readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, rawData);
hitonari 0:2b57931c6ed4 355 uint8_t c = rawData[6]; // End data read by reading ST2 register
hitonari 0:2b57931c6ed4 356 if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
hitonari 0:2b57931c6ed4 357 destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
hitonari 0:2b57931c6ed4 358 destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian
hitonari 0:2b57931c6ed4 359 destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
hitonari 0:2b57931c6ed4 360 }
hitonari 0:2b57931c6ed4 361 }
hitonari 0:2b57931c6ed4 362 }
hitonari 0:2b57931c6ed4 363
hitonari 0:2b57931c6ed4 364 int16_t readTempData()
hitonari 0:2b57931c6ed4 365 {
hitonari 0:2b57931c6ed4 366 uint8_t rawData[2]; // x/y/z gyro register data stored here
hitonari 0:2b57931c6ed4 367 readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
hitonari 0:2b57931c6ed4 368 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
hitonari 0:2b57931c6ed4 369 }
hitonari 0:2b57931c6ed4 370
hitonari 0:2b57931c6ed4 371
hitonari 0:2b57931c6ed4 372 void resetMPU9250() {
hitonari 0:2b57931c6ed4 373 // reset device
hitonari 0:2b57931c6ed4 374 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
hitonari 0:2b57931c6ed4 375 wait(0.1);
hitonari 0:2b57931c6ed4 376 }
hitonari 0:2b57931c6ed4 377
hitonari 0:2b57931c6ed4 378 void initAK8963(float * destination)
hitonari 0:2b57931c6ed4 379 {
hitonari 0:2b57931c6ed4 380 // First extract the factory calibration for each magnetometer axis
hitonari 0:2b57931c6ed4 381 uint8_t rawData[3]; // x/y/z gyro calibration data stored here
hitonari 0:2b57931c6ed4 382 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
hitonari 0:2b57931c6ed4 383 wait(0.01);
hitonari 0:2b57931c6ed4 384 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
hitonari 0:2b57931c6ed4 385 wait(0.01);
hitonari 0:2b57931c6ed4 386 readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
hitonari 0:2b57931c6ed4 387 destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
hitonari 0:2b57931c6ed4 388 destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
hitonari 0:2b57931c6ed4 389 destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
hitonari 0:2b57931c6ed4 390 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
hitonari 0:2b57931c6ed4 391 wait(0.01);
hitonari 0:2b57931c6ed4 392 // Configure the magnetometer for continuous read and highest resolution
hitonari 0:2b57931c6ed4 393 // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
hitonari 0:2b57931c6ed4 394 // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
hitonari 0:2b57931c6ed4 395 writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
hitonari 0:2b57931c6ed4 396 wait(0.01);
hitonari 0:2b57931c6ed4 397 }
hitonari 0:2b57931c6ed4 398
hitonari 0:2b57931c6ed4 399
hitonari 0:2b57931c6ed4 400 void initMPU9250()
hitonari 0:2b57931c6ed4 401 {
hitonari 0:2b57931c6ed4 402 // Initialize MPU9250 device
hitonari 0:2b57931c6ed4 403 // wake up device
hitonari 0:2b57931c6ed4 404 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
hitonari 0:2b57931c6ed4 405 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
hitonari 0:2b57931c6ed4 406
hitonari 0:2b57931c6ed4 407 // get stable time source
hitonari 0:2b57931c6ed4 408 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
hitonari 0:2b57931c6ed4 409
hitonari 0:2b57931c6ed4 410 // Configure Gyro and Accelerometer
hitonari 0:2b57931c6ed4 411 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
hitonari 0:2b57931c6ed4 412 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
hitonari 0:2b57931c6ed4 413 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
hitonari 0:2b57931c6ed4 414 writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
hitonari 0:2b57931c6ed4 415
hitonari 0:2b57931c6ed4 416 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
hitonari 0:2b57931c6ed4 417 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
hitonari 0:2b57931c6ed4 418
hitonari 0:2b57931c6ed4 419 // Set gyroscope full scale range
hitonari 0:2b57931c6ed4 420 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
hitonari 0:2b57931c6ed4 421 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value
hitonari 0:2b57931c6ed4 422 // c = c & ~0xE0; // Clear self-test bits [7:5]
hitonari 0:2b57931c6ed4 423 c = c & ~0x02; // Clear Fchoice bits [1:0]
hitonari 0:2b57931c6ed4 424 c = c & ~0x18; // Clear AFS bits [4:3]
hitonari 0:2b57931c6ed4 425 c = c | Gscale << 3; // Set full scale range for the gyro
hitonari 0:2b57931c6ed4 426 // c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
hitonari 0:2b57931c6ed4 427 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register
hitonari 0:2b57931c6ed4 428
hitonari 0:2b57931c6ed4 429 // Set accelerometer full-scale range configuration
hitonari 0:2b57931c6ed4 430 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value
hitonari 0:2b57931c6ed4 431 // c = c & ~0xE0; // Clear self-test bits [7:5]
hitonari 0:2b57931c6ed4 432 c = c & ~0x18; // Clear AFS bits [4:3]
hitonari 0:2b57931c6ed4 433 c = c | Ascale << 3; // Set full scale range for the accelerometer
hitonari 0:2b57931c6ed4 434 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value
hitonari 0:2b57931c6ed4 435
hitonari 0:2b57931c6ed4 436 // Set accelerometer sample rate configuration
hitonari 0:2b57931c6ed4 437 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
hitonari 0:2b57931c6ed4 438 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
hitonari 0:2b57931c6ed4 439 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
hitonari 0:2b57931c6ed4 440 c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
hitonari 0:2b57931c6ed4 441 c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
hitonari 0:2b57931c6ed4 442 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value
hitonari 0:2b57931c6ed4 443
hitonari 0:2b57931c6ed4 444 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
hitonari 0:2b57931c6ed4 445 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
hitonari 0:2b57931c6ed4 446
hitonari 0:2b57931c6ed4 447 // Configure Interrupts and Bypass Enable
hitonari 0:2b57931c6ed4 448 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
hitonari 0:2b57931c6ed4 449 // can join the I2C bus and all can be controlled by the Arduino as master
hitonari 0:2b57931c6ed4 450 writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
hitonari 0:2b57931c6ed4 451 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
hitonari 0:2b57931c6ed4 452 }
hitonari 0:2b57931c6ed4 453
hitonari 0:2b57931c6ed4 454 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
hitonari 0:2b57931c6ed4 455 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
hitonari 0:2b57931c6ed4 456 void calibrateMPU9250(float * dest1, float * dest2)
hitonari 0:2b57931c6ed4 457 {
hitonari 0:2b57931c6ed4 458 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
hitonari 0:2b57931c6ed4 459 uint16_t ii, packet_count, fifo_count;
hitonari 0:2b57931c6ed4 460 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
hitonari 0:2b57931c6ed4 461
hitonari 0:2b57931c6ed4 462 // reset device, reset all registers, clear gyro and accelerometer bias registers
hitonari 0:2b57931c6ed4 463 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
hitonari 0:2b57931c6ed4 464 wait(0.1);
hitonari 0:2b57931c6ed4 465
hitonari 0:2b57931c6ed4 466 // get stable time source
hitonari 0:2b57931c6ed4 467 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
hitonari 0:2b57931c6ed4 468 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
hitonari 0:2b57931c6ed4 469 writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
hitonari 0:2b57931c6ed4 470 wait(0.2);
hitonari 0:2b57931c6ed4 471
hitonari 0:2b57931c6ed4 472 // Configure device for bias calculation
hitonari 0:2b57931c6ed4 473 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
hitonari 0:2b57931c6ed4 474 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
hitonari 0:2b57931c6ed4 475 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
hitonari 0:2b57931c6ed4 476 writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
hitonari 0:2b57931c6ed4 477 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
hitonari 0:2b57931c6ed4 478 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
hitonari 0:2b57931c6ed4 479 wait(0.015);
hitonari 0:2b57931c6ed4 480
hitonari 0:2b57931c6ed4 481 // Configure MPU9250 gyro and accelerometer for bias calculation
hitonari 0:2b57931c6ed4 482 writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
hitonari 0:2b57931c6ed4 483 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
hitonari 0:2b57931c6ed4 484 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
hitonari 0:2b57931c6ed4 485 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
hitonari 0:2b57931c6ed4 486
hitonari 0:2b57931c6ed4 487 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
hitonari 0:2b57931c6ed4 488 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
hitonari 0:2b57931c6ed4 489
hitonari 0:2b57931c6ed4 490 // Configure FIFO to capture accelerometer and gyro data for bias calculation
hitonari 0:2b57931c6ed4 491 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
hitonari 0:2b57931c6ed4 492 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
hitonari 0:2b57931c6ed4 493 wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
hitonari 0:2b57931c6ed4 494
hitonari 0:2b57931c6ed4 495 // At end of sample accumulation, turn off FIFO sensor read
hitonari 0:2b57931c6ed4 496 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
hitonari 0:2b57931c6ed4 497 readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
hitonari 0:2b57931c6ed4 498 fifo_count = ((uint16_t)data[0] << 8) | data[1];
hitonari 0:2b57931c6ed4 499 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
hitonari 0:2b57931c6ed4 500
hitonari 0:2b57931c6ed4 501 for (ii = 0; ii < packet_count; ii++) {
hitonari 0:2b57931c6ed4 502 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
hitonari 0:2b57931c6ed4 503 readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
hitonari 0:2b57931c6ed4 504 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
hitonari 0:2b57931c6ed4 505 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
hitonari 0:2b57931c6ed4 506 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
hitonari 0:2b57931c6ed4 507 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
hitonari 0:2b57931c6ed4 508 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
hitonari 0:2b57931c6ed4 509 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
hitonari 0:2b57931c6ed4 510
hitonari 0:2b57931c6ed4 511 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
hitonari 0:2b57931c6ed4 512 accel_bias[1] += (int32_t) accel_temp[1];
hitonari 0:2b57931c6ed4 513 accel_bias[2] += (int32_t) accel_temp[2];
hitonari 0:2b57931c6ed4 514 gyro_bias[0] += (int32_t) gyro_temp[0];
hitonari 0:2b57931c6ed4 515 gyro_bias[1] += (int32_t) gyro_temp[1];
hitonari 0:2b57931c6ed4 516 gyro_bias[2] += (int32_t) gyro_temp[2];
hitonari 0:2b57931c6ed4 517
hitonari 0:2b57931c6ed4 518 }
hitonari 0:2b57931c6ed4 519 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
hitonari 0:2b57931c6ed4 520 accel_bias[1] /= (int32_t) packet_count;
hitonari 0:2b57931c6ed4 521 accel_bias[2] /= (int32_t) packet_count;
hitonari 0:2b57931c6ed4 522 gyro_bias[0] /= (int32_t) packet_count;
hitonari 0:2b57931c6ed4 523 gyro_bias[1] /= (int32_t) packet_count;
hitonari 0:2b57931c6ed4 524 gyro_bias[2] /= (int32_t) packet_count;
hitonari 0:2b57931c6ed4 525
hitonari 0:2b57931c6ed4 526 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
hitonari 0:2b57931c6ed4 527 else {accel_bias[2] += (int32_t) accelsensitivity;}
hitonari 0:2b57931c6ed4 528
hitonari 0:2b57931c6ed4 529 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
hitonari 0:2b57931c6ed4 530 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
hitonari 0:2b57931c6ed4 531 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
hitonari 0:2b57931c6ed4 532 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
hitonari 0:2b57931c6ed4 533 data[3] = (-gyro_bias[1]/4) & 0xFF;
hitonari 0:2b57931c6ed4 534 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
hitonari 0:2b57931c6ed4 535 data[5] = (-gyro_bias[2]/4) & 0xFF;
hitonari 0:2b57931c6ed4 536
hitonari 0:2b57931c6ed4 537 /// Push gyro biases to hardware registers
hitonari 0:2b57931c6ed4 538 /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
hitonari 0:2b57931c6ed4 539 writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
hitonari 0:2b57931c6ed4 540 writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
hitonari 0:2b57931c6ed4 541 writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
hitonari 0:2b57931c6ed4 542 writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
hitonari 0:2b57931c6ed4 543 writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
hitonari 0:2b57931c6ed4 544 */
hitonari 0:2b57931c6ed4 545 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
hitonari 0:2b57931c6ed4 546 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
hitonari 0:2b57931c6ed4 547 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
hitonari 0:2b57931c6ed4 548
hitonari 0:2b57931c6ed4 549 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
hitonari 0:2b57931c6ed4 550 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
hitonari 0:2b57931c6ed4 551 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
hitonari 0:2b57931c6ed4 552 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
hitonari 0:2b57931c6ed4 553 // the accelerometer biases calculated above must be divided by 8.
hitonari 0:2b57931c6ed4 554
hitonari 0:2b57931c6ed4 555 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
hitonari 0:2b57931c6ed4 556 readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
hitonari 0:2b57931c6ed4 557 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
hitonari 0:2b57931c6ed4 558 readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
hitonari 0:2b57931c6ed4 559 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
hitonari 0:2b57931c6ed4 560 readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
hitonari 0:2b57931c6ed4 561 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
hitonari 0:2b57931c6ed4 562
hitonari 0:2b57931c6ed4 563 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
hitonari 0:2b57931c6ed4 564 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
hitonari 0:2b57931c6ed4 565
hitonari 0:2b57931c6ed4 566 for(ii = 0; ii < 3; ii++) {
hitonari 0:2b57931c6ed4 567 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
hitonari 0:2b57931c6ed4 568 }
hitonari 0:2b57931c6ed4 569
hitonari 0:2b57931c6ed4 570 // Construct total accelerometer bias, including calculated average accelerometer bias from above
hitonari 0:2b57931c6ed4 571 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
hitonari 0:2b57931c6ed4 572 accel_bias_reg[1] -= (accel_bias[1]/8);
hitonari 0:2b57931c6ed4 573 accel_bias_reg[2] -= (accel_bias[2]/8);
hitonari 0:2b57931c6ed4 574
hitonari 0:2b57931c6ed4 575 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
hitonari 0:2b57931c6ed4 576 data[1] = (accel_bias_reg[0]) & 0xFF;
hitonari 0:2b57931c6ed4 577 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
hitonari 0:2b57931c6ed4 578 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
hitonari 0:2b57931c6ed4 579 data[3] = (accel_bias_reg[1]) & 0xFF;
hitonari 0:2b57931c6ed4 580 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
hitonari 0:2b57931c6ed4 581 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
hitonari 0:2b57931c6ed4 582 data[5] = (accel_bias_reg[2]) & 0xFF;
hitonari 0:2b57931c6ed4 583 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
hitonari 0:2b57931c6ed4 584
hitonari 0:2b57931c6ed4 585 // Apparently this is not working for the acceleration biases in the MPU-9250
hitonari 0:2b57931c6ed4 586 // Are we handling the temperature correction bit properly?
hitonari 0:2b57931c6ed4 587 // Push accelerometer biases to hardware registers
hitonari 0:2b57931c6ed4 588 /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
hitonari 0:2b57931c6ed4 589 writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
hitonari 0:2b57931c6ed4 590 writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
hitonari 0:2b57931c6ed4 591 writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
hitonari 0:2b57931c6ed4 592 writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
hitonari 0:2b57931c6ed4 593 writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
hitonari 0:2b57931c6ed4 594 */
hitonari 0:2b57931c6ed4 595 // Output scaled accelerometer biases for manual subtraction in the main program
hitonari 0:2b57931c6ed4 596 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
hitonari 0:2b57931c6ed4 597 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
hitonari 0:2b57931c6ed4 598 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
hitonari 0:2b57931c6ed4 599 }
hitonari 0:2b57931c6ed4 600
hitonari 0:2b57931c6ed4 601
hitonari 0:2b57931c6ed4 602 // Accelerometer and gyroscope self test; check calibration wrt factory settings
hitonari 0:2b57931c6ed4 603 void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
hitonari 0:2b57931c6ed4 604 {
hitonari 0:2b57931c6ed4 605 uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
hitonari 0:2b57931c6ed4 606 uint8_t selfTest[6];
hitonari 0:2b57931c6ed4 607 int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
hitonari 0:2b57931c6ed4 608 float factoryTrim[6];
hitonari 0:2b57931c6ed4 609 uint8_t FS = 0;
hitonari 0:2b57931c6ed4 610
hitonari 0:2b57931c6ed4 611 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
hitonari 0:2b57931c6ed4 612 writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
hitonari 0:2b57931c6ed4 613 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
hitonari 0:2b57931c6ed4 614 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
hitonari 0:2b57931c6ed4 615 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
hitonari 0:2b57931c6ed4 616
hitonari 0:2b57931c6ed4 617 for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
hitonari 0:2b57931c6ed4 618
hitonari 0:2b57931c6ed4 619 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
hitonari 0:2b57931c6ed4 620 aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
hitonari 0:2b57931c6ed4 621 aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
hitonari 0:2b57931c6ed4 622 aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
hitonari 0:2b57931c6ed4 623
hitonari 0:2b57931c6ed4 624 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
hitonari 0:2b57931c6ed4 625 gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
hitonari 0:2b57931c6ed4 626 gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
hitonari 0:2b57931c6ed4 627 gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
hitonari 0:2b57931c6ed4 628 }
hitonari 0:2b57931c6ed4 629
hitonari 0:2b57931c6ed4 630 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
hitonari 0:2b57931c6ed4 631 aAvg[ii] /= 200;
hitonari 0:2b57931c6ed4 632 gAvg[ii] /= 200;
hitonari 0:2b57931c6ed4 633 }
hitonari 0:2b57931c6ed4 634
hitonari 0:2b57931c6ed4 635 // Configure the accelerometer for self-test
hitonari 0:2b57931c6ed4 636 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
hitonari 0:2b57931c6ed4 637 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
hitonari 0:2b57931c6ed4 638 //delay(55); // Delay a while to let the device stabilize
hitonari 0:2b57931c6ed4 639
hitonari 0:2b57931c6ed4 640 for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
hitonari 0:2b57931c6ed4 641
hitonari 0:2b57931c6ed4 642 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
hitonari 0:2b57931c6ed4 643 aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
hitonari 0:2b57931c6ed4 644 aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
hitonari 0:2b57931c6ed4 645 aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
hitonari 0:2b57931c6ed4 646
hitonari 0:2b57931c6ed4 647 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
hitonari 0:2b57931c6ed4 648 gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
hitonari 0:2b57931c6ed4 649 gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
hitonari 0:2b57931c6ed4 650 gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
hitonari 0:2b57931c6ed4 651 }
hitonari 0:2b57931c6ed4 652
hitonari 0:2b57931c6ed4 653 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
hitonari 0:2b57931c6ed4 654 aSTAvg[ii] /= 200;
hitonari 0:2b57931c6ed4 655 gSTAvg[ii] /= 200;
hitonari 0:2b57931c6ed4 656 }
hitonari 0:2b57931c6ed4 657
hitonari 0:2b57931c6ed4 658 // Configure the gyro and accelerometer for normal operation
hitonari 0:2b57931c6ed4 659 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
hitonari 0:2b57931c6ed4 660 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
hitonari 0:2b57931c6ed4 661 //delay(45); // Delay a while to let the device stabilize
hitonari 0:2b57931c6ed4 662
hitonari 0:2b57931c6ed4 663 // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
hitonari 0:2b57931c6ed4 664 selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
hitonari 0:2b57931c6ed4 665 selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
hitonari 0:2b57931c6ed4 666 selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
hitonari 0:2b57931c6ed4 667 selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
hitonari 0:2b57931c6ed4 668 selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
hitonari 0:2b57931c6ed4 669 selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
hitonari 0:2b57931c6ed4 670
hitonari 0:2b57931c6ed4 671 // Retrieve factory self-test value from self-test code reads
hitonari 0:2b57931c6ed4 672 factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
hitonari 0:2b57931c6ed4 673 factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
hitonari 0:2b57931c6ed4 674 factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
hitonari 0:2b57931c6ed4 675 factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
hitonari 0:2b57931c6ed4 676 factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
hitonari 0:2b57931c6ed4 677 factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
hitonari 0:2b57931c6ed4 678
hitonari 0:2b57931c6ed4 679 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
hitonari 0:2b57931c6ed4 680 // To get percent, must multiply by 100
hitonari 0:2b57931c6ed4 681 for (int i = 0; i < 3; i++) {
hitonari 0:2b57931c6ed4 682 destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
hitonari 0:2b57931c6ed4 683 destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
hitonari 0:2b57931c6ed4 684 }
hitonari 0:2b57931c6ed4 685
hitonari 0:2b57931c6ed4 686 }
hitonari 0:2b57931c6ed4 687
hitonari 0:2b57931c6ed4 688
hitonari 0:2b57931c6ed4 689
hitonari 0:2b57931c6ed4 690 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
hitonari 0:2b57931c6ed4 691 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
hitonari 0:2b57931c6ed4 692 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
hitonari 0:2b57931c6ed4 693 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
hitonari 0:2b57931c6ed4 694 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
hitonari 0:2b57931c6ed4 695 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
hitonari 0:2b57931c6ed4 696 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
hitonari 0:2b57931c6ed4 697 {
hitonari 0:2b57931c6ed4 698 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
hitonari 0:2b57931c6ed4 699 float norm;
hitonari 0:2b57931c6ed4 700 float hx, hy, _2bx, _2bz;
hitonari 0:2b57931c6ed4 701 float s1, s2, s3, s4;
hitonari 0:2b57931c6ed4 702 float qDot1, qDot2, qDot3, qDot4;
hitonari 0:2b57931c6ed4 703
hitonari 0:2b57931c6ed4 704 // Auxiliary variables to avoid repeated arithmetic
hitonari 0:2b57931c6ed4 705 float _2q1mx;
hitonari 0:2b57931c6ed4 706 float _2q1my;
hitonari 0:2b57931c6ed4 707 float _2q1mz;
hitonari 0:2b57931c6ed4 708 float _2q2mx;
hitonari 0:2b57931c6ed4 709 float _4bx;
hitonari 0:2b57931c6ed4 710 float _4bz;
hitonari 0:2b57931c6ed4 711 float _2q1 = 2.0f * q1;
hitonari 0:2b57931c6ed4 712 float _2q2 = 2.0f * q2;
hitonari 0:2b57931c6ed4 713 float _2q3 = 2.0f * q3;
hitonari 0:2b57931c6ed4 714 float _2q4 = 2.0f * q4;
hitonari 0:2b57931c6ed4 715 float _2q1q3 = 2.0f * q1 * q3;
hitonari 0:2b57931c6ed4 716 float _2q3q4 = 2.0f * q3 * q4;
hitonari 0:2b57931c6ed4 717 float q1q1 = q1 * q1;
hitonari 0:2b57931c6ed4 718 float q1q2 = q1 * q2;
hitonari 0:2b57931c6ed4 719 float q1q3 = q1 * q3;
hitonari 0:2b57931c6ed4 720 float q1q4 = q1 * q4;
hitonari 0:2b57931c6ed4 721 float q2q2 = q2 * q2;
hitonari 0:2b57931c6ed4 722 float q2q3 = q2 * q3;
hitonari 0:2b57931c6ed4 723 float q2q4 = q2 * q4;
hitonari 0:2b57931c6ed4 724 float q3q3 = q3 * q3;
hitonari 0:2b57931c6ed4 725 float q3q4 = q3 * q4;
hitonari 0:2b57931c6ed4 726 float q4q4 = q4 * q4;
hitonari 0:2b57931c6ed4 727
hitonari 0:2b57931c6ed4 728 // Normalise accelerometer measurement
hitonari 0:2b57931c6ed4 729 norm = sqrt(ax * ax + ay * ay + az * az);
hitonari 0:2b57931c6ed4 730 if (norm == 0.0f) return; // handle NaN
hitonari 0:2b57931c6ed4 731 norm = 1.0f/norm;
hitonari 0:2b57931c6ed4 732 ax *= norm;
hitonari 0:2b57931c6ed4 733 ay *= norm;
hitonari 0:2b57931c6ed4 734 az *= norm;
hitonari 0:2b57931c6ed4 735
hitonari 0:2b57931c6ed4 736 // Normalise magnetometer measurement
hitonari 0:2b57931c6ed4 737 norm = sqrt(mx * mx + my * my + mz * mz);
hitonari 0:2b57931c6ed4 738 if (norm == 0.0f) return; // handle NaN
hitonari 0:2b57931c6ed4 739 norm = 1.0f/norm;
hitonari 0:2b57931c6ed4 740 mx *= norm;
hitonari 0:2b57931c6ed4 741 my *= norm;
hitonari 0:2b57931c6ed4 742 mz *= norm;
hitonari 0:2b57931c6ed4 743
hitonari 0:2b57931c6ed4 744 // Reference direction of Earth's magnetic field
hitonari 0:2b57931c6ed4 745 _2q1mx = 2.0f * q1 * mx;
hitonari 0:2b57931c6ed4 746 _2q1my = 2.0f * q1 * my;
hitonari 0:2b57931c6ed4 747 _2q1mz = 2.0f * q1 * mz;
hitonari 0:2b57931c6ed4 748 _2q2mx = 2.0f * q2 * mx;
hitonari 0:2b57931c6ed4 749 hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
hitonari 0:2b57931c6ed4 750 hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
hitonari 0:2b57931c6ed4 751 _2bx = sqrt(hx * hx + hy * hy);
hitonari 0:2b57931c6ed4 752 _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
hitonari 0:2b57931c6ed4 753 _4bx = 2.0f * _2bx;
hitonari 0:2b57931c6ed4 754 _4bz = 2.0f * _2bz;
hitonari 0:2b57931c6ed4 755
hitonari 0:2b57931c6ed4 756 // Gradient decent algorithm corrective step
hitonari 0:2b57931c6ed4 757 s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
hitonari 0:2b57931c6ed4 758 s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
hitonari 0:2b57931c6ed4 759 s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
hitonari 0:2b57931c6ed4 760 s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
hitonari 0:2b57931c6ed4 761 norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
hitonari 0:2b57931c6ed4 762 norm = 1.0f/norm;
hitonari 0:2b57931c6ed4 763 s1 *= norm;
hitonari 0:2b57931c6ed4 764 s2 *= norm;
hitonari 0:2b57931c6ed4 765 s3 *= norm;
hitonari 0:2b57931c6ed4 766 s4 *= norm;
hitonari 0:2b57931c6ed4 767
hitonari 0:2b57931c6ed4 768 // Compute rate of change of quaternion
hitonari 0:2b57931c6ed4 769 qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
hitonari 0:2b57931c6ed4 770 qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
hitonari 0:2b57931c6ed4 771 qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
hitonari 0:2b57931c6ed4 772 qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
hitonari 0:2b57931c6ed4 773
hitonari 0:2b57931c6ed4 774 // Integrate to yield quaternion
hitonari 0:2b57931c6ed4 775 q1 += qDot1 * deltat;
hitonari 0:2b57931c6ed4 776 q2 += qDot2 * deltat;
hitonari 0:2b57931c6ed4 777 q3 += qDot3 * deltat;
hitonari 0:2b57931c6ed4 778 q4 += qDot4 * deltat;
hitonari 0:2b57931c6ed4 779 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
hitonari 0:2b57931c6ed4 780 norm = 1.0f/norm;
hitonari 0:2b57931c6ed4 781 q[0] = q1 * norm;
hitonari 0:2b57931c6ed4 782 q[1] = q2 * norm;
hitonari 0:2b57931c6ed4 783 q[2] = q3 * norm;
hitonari 0:2b57931c6ed4 784 q[3] = q4 * norm;
hitonari 0:2b57931c6ed4 785
hitonari 0:2b57931c6ed4 786 }
hitonari 0:2b57931c6ed4 787
hitonari 0:2b57931c6ed4 788
hitonari 0:2b57931c6ed4 789
hitonari 0:2b57931c6ed4 790 // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
hitonari 0:2b57931c6ed4 791 // measured ones.
hitonari 0:2b57931c6ed4 792 void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
hitonari 0:2b57931c6ed4 793 {
hitonari 0:2b57931c6ed4 794 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
hitonari 0:2b57931c6ed4 795 float norm;
hitonari 0:2b57931c6ed4 796 float hx, hy, bx, bz;
hitonari 0:2b57931c6ed4 797 float vx, vy, vz, wx, wy, wz;
hitonari 0:2b57931c6ed4 798 float ex, ey, ez;
hitonari 0:2b57931c6ed4 799 float pa, pb, pc;
hitonari 0:2b57931c6ed4 800
hitonari 0:2b57931c6ed4 801 // Auxiliary variables to avoid repeated arithmetic
hitonari 0:2b57931c6ed4 802 float q1q1 = q1 * q1;
hitonari 0:2b57931c6ed4 803 float q1q2 = q1 * q2;
hitonari 0:2b57931c6ed4 804 float q1q3 = q1 * q3;
hitonari 0:2b57931c6ed4 805 float q1q4 = q1 * q4;
hitonari 0:2b57931c6ed4 806 float q2q2 = q2 * q2;
hitonari 0:2b57931c6ed4 807 float q2q3 = q2 * q3;
hitonari 0:2b57931c6ed4 808 float q2q4 = q2 * q4;
hitonari 0:2b57931c6ed4 809 float q3q3 = q3 * q3;
hitonari 0:2b57931c6ed4 810 float q3q4 = q3 * q4;
hitonari 0:2b57931c6ed4 811 float q4q4 = q4 * q4;
hitonari 0:2b57931c6ed4 812
hitonari 0:2b57931c6ed4 813 // Normalise accelerometer measurement
hitonari 0:2b57931c6ed4 814 norm = sqrt(ax * ax + ay * ay + az * az);
hitonari 0:2b57931c6ed4 815 if (norm == 0.0f) return; // handle NaN
hitonari 0:2b57931c6ed4 816 norm = 1.0f / norm; // use reciprocal for division
hitonari 0:2b57931c6ed4 817 ax *= norm;
hitonari 0:2b57931c6ed4 818 ay *= norm;
hitonari 0:2b57931c6ed4 819 az *= norm;
hitonari 0:2b57931c6ed4 820
hitonari 0:2b57931c6ed4 821 // Normalise magnetometer measurement
hitonari 0:2b57931c6ed4 822 norm = sqrt(mx * mx + my * my + mz * mz);
hitonari 0:2b57931c6ed4 823 if (norm == 0.0f) return; // handle NaN
hitonari 0:2b57931c6ed4 824 norm = 1.0f / norm; // use reciprocal for division
hitonari 0:2b57931c6ed4 825 mx *= norm;
hitonari 0:2b57931c6ed4 826 my *= norm;
hitonari 0:2b57931c6ed4 827 mz *= norm;
hitonari 0:2b57931c6ed4 828
hitonari 0:2b57931c6ed4 829 // Reference direction of Earth's magnetic field
hitonari 0:2b57931c6ed4 830 hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
hitonari 0:2b57931c6ed4 831 hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
hitonari 0:2b57931c6ed4 832 bx = sqrt((hx * hx) + (hy * hy));
hitonari 0:2b57931c6ed4 833 bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
hitonari 0:2b57931c6ed4 834
hitonari 0:2b57931c6ed4 835 // Estimated direction of gravity and magnetic field
hitonari 0:2b57931c6ed4 836 vx = 2.0f * (q2q4 - q1q3);
hitonari 0:2b57931c6ed4 837 vy = 2.0f * (q1q2 + q3q4);
hitonari 0:2b57931c6ed4 838 vz = q1q1 - q2q2 - q3q3 + q4q4;
hitonari 0:2b57931c6ed4 839 wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
hitonari 0:2b57931c6ed4 840 wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
hitonari 0:2b57931c6ed4 841 wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
hitonari 0:2b57931c6ed4 842
hitonari 0:2b57931c6ed4 843 // Error is cross product between estimated direction and measured direction of gravity
hitonari 0:2b57931c6ed4 844 ex = (ay * vz - az * vy) + (my * wz - mz * wy);
hitonari 0:2b57931c6ed4 845 ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
hitonari 0:2b57931c6ed4 846 ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
hitonari 0:2b57931c6ed4 847 if (Ki > 0.0f)
hitonari 0:2b57931c6ed4 848 {
hitonari 0:2b57931c6ed4 849 eInt[0] += ex; // accumulate integral error
hitonari 0:2b57931c6ed4 850 eInt[1] += ey;
hitonari 0:2b57931c6ed4 851 eInt[2] += ez;
hitonari 0:2b57931c6ed4 852 }
hitonari 0:2b57931c6ed4 853 else
hitonari 0:2b57931c6ed4 854 {
hitonari 0:2b57931c6ed4 855 eInt[0] = 0.0f; // prevent integral wind up
hitonari 0:2b57931c6ed4 856 eInt[1] = 0.0f;
hitonari 0:2b57931c6ed4 857 eInt[2] = 0.0f;
hitonari 0:2b57931c6ed4 858 }
hitonari 0:2b57931c6ed4 859
hitonari 0:2b57931c6ed4 860 // Apply feedback terms
hitonari 0:2b57931c6ed4 861 gx = gx + Kp * ex + Ki * eInt[0];
hitonari 0:2b57931c6ed4 862 gy = gy + Kp * ey + Ki * eInt[1];
hitonari 0:2b57931c6ed4 863 gz = gz + Kp * ez + Ki * eInt[2];
hitonari 0:2b57931c6ed4 864
hitonari 0:2b57931c6ed4 865 // Integrate rate of change of quaternion
hitonari 0:2b57931c6ed4 866 pa = q2;
hitonari 0:2b57931c6ed4 867 pb = q3;
hitonari 0:2b57931c6ed4 868 pc = q4;
hitonari 0:2b57931c6ed4 869 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
hitonari 0:2b57931c6ed4 870 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
hitonari 0:2b57931c6ed4 871 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
hitonari 0:2b57931c6ed4 872 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
hitonari 0:2b57931c6ed4 873
hitonari 0:2b57931c6ed4 874 // Normalise quaternion
hitonari 0:2b57931c6ed4 875 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
hitonari 0:2b57931c6ed4 876 norm = 1.0f / norm;
hitonari 0:2b57931c6ed4 877 q[0] = q1 * norm;
hitonari 0:2b57931c6ed4 878 q[1] = q2 * norm;
hitonari 0:2b57931c6ed4 879 q[2] = q3 * norm;
hitonari 0:2b57931c6ed4 880 q[3] = q4 * norm;
hitonari 0:2b57931c6ed4 881
hitonari 0:2b57931c6ed4 882 }
hitonari 0:2b57931c6ed4 883 };
hitonari 0:2b57931c6ed4 884 #endif