not include takeoff

Dependencies:   HCSR04_2 MPU6050_2 mbed SDFileSystem3

Fork of AutoFlight2017_now2 by 航空研究会

Committer:
TUATBM
Date:
Tue Aug 01 12:27:13 2017 +0000
Revision:
0:92024886c0be
Child:
1:f31e17341659
??????????????????????; ????

Who changed what in which revision?

UserRevisionLine numberNew contents of line
TUATBM 0:92024886c0be 1 #include "mbed.h"
TUATBM 0:92024886c0be 2 #include "math.h"
TUATBM 0:92024886c0be 3 #include "MPU9250.h"
TUATBM 0:92024886c0be 4
TUATBM 0:92024886c0be 5
TUATBM 0:92024886c0be 6 MPU9250::MPU9250(PinName sda, PinName scl, Serial* serial_p)
TUATBM 0:92024886c0be 7 :
TUATBM 0:92024886c0be 8 i2c_p(new I2C(sda,scl)),
TUATBM 0:92024886c0be 9 i2c(*i2c_p),
TUATBM 0:92024886c0be 10 pc_p(serial_p)
TUATBM 0:92024886c0be 11 {
TUATBM 0:92024886c0be 12 initializeValue();
TUATBM 0:92024886c0be 13 }
TUATBM 0:92024886c0be 14
TUATBM 0:92024886c0be 15 MPU9250::~MPU9250(){}
TUATBM 0:92024886c0be 16
TUATBM 0:92024886c0be 17
TUATBM 0:92024886c0be 18 /*---------- public function ----------*/
TUATBM 0:92024886c0be 19 bool MPU9250::Initialize(void){
TUATBM 0:92024886c0be 20 uint8_t whoami;
TUATBM 0:92024886c0be 21
TUATBM 0:92024886c0be 22 i2c.frequency(400000); // use fast (400 kHz) I2C
TUATBM 0:92024886c0be 23 timer.start();
TUATBM 0:92024886c0be 24
TUATBM 0:92024886c0be 25 whoami = Whoami_MPU9250();
TUATBM 0:92024886c0be 26 pc_p->printf("I AM 0x%x\n\r", whoami); pc_p->printf("I SHOULD BE 0x71\n\r");
TUATBM 0:92024886c0be 27
TUATBM 0:92024886c0be 28 if(whoami == IAM_MPU9250){
TUATBM 0:92024886c0be 29 resetMPU9250(); // Reset registers to default in preparation for device calibration
TUATBM 0:92024886c0be 30 calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
TUATBM 0:92024886c0be 31 wait(1);
TUATBM 0:92024886c0be 32
TUATBM 0:92024886c0be 33 initMPU9250();
TUATBM 0:92024886c0be 34 initAK8963(magCalibration);
TUATBM 0:92024886c0be 35
TUATBM 0:92024886c0be 36 pc_p->printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale));
TUATBM 0:92024886c0be 37 pc_p->printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale));
TUATBM 0:92024886c0be 38
TUATBM 0:92024886c0be 39 if(Mscale == 0) pc_p->printf("Magnetometer resolution = 14 bits\n\r");
TUATBM 0:92024886c0be 40 if(Mscale == 1) pc_p->printf("Magnetometer resolution = 16 bits\n\r");
TUATBM 0:92024886c0be 41 if(Mmode == 2) pc_p->printf("Magnetometer ODR = 8 Hz\n\r");
TUATBM 0:92024886c0be 42 if(Mmode == 6) pc_p->printf("Magnetometer ODR = 100 Hz\n\r");
TUATBM 0:92024886c0be 43
TUATBM 0:92024886c0be 44 getAres();
TUATBM 0:92024886c0be 45 getGres();
TUATBM 0:92024886c0be 46 getMres();
TUATBM 0:92024886c0be 47
TUATBM 0:92024886c0be 48 pc_p->printf("mpu9250 initialized\r\n");
TUATBM 0:92024886c0be 49 return true;
TUATBM 0:92024886c0be 50 }else return false;
TUATBM 0:92024886c0be 51 }
TUATBM 0:92024886c0be 52
TUATBM 0:92024886c0be 53 bool MPU9250::sensingAcGyMg(){
TUATBM 0:92024886c0be 54 if(readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt
TUATBM 0:92024886c0be 55 sensingAccel();
TUATBM 0:92024886c0be 56 sensingGyro();
TUATBM 0:92024886c0be 57 sensingMag();
TUATBM 0:92024886c0be 58 return true;
TUATBM 0:92024886c0be 59 }else return false;
TUATBM 0:92024886c0be 60 }
TUATBM 0:92024886c0be 61
TUATBM 0:92024886c0be 62
TUATBM 0:92024886c0be 63 void MPU9250::calculatePostureAngle(float degree[3]){
TUATBM 0:92024886c0be 64 Now = timer.read_us();
TUATBM 0:92024886c0be 65 deltat = (float)((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update
TUATBM 0:92024886c0be 66 lastUpdate = Now;
TUATBM 0:92024886c0be 67
TUATBM 0:92024886c0be 68 // if(lastUpdate - firstUpdate > 10000000.0f) {
TUATBM 0:92024886c0be 69 // beta = 0.04; // decrease filter gain after stabilized
TUATBM 0:92024886c0be 70 // zeta = 0.015; // increasey bias drift gain after stabilized
TUATBM 0:92024886c0be 71 // }
TUATBM 0:92024886c0be 72
TUATBM 0:92024886c0be 73 // Pass gyro rate as rad/s
TUATBM 0:92024886c0be 74 MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
TUATBM 0:92024886c0be 75 MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); //my, mx, mzになってるけどセンサの設置上の都合だろうか
TUATBM 0:92024886c0be 76
TUATBM 0:92024886c0be 77 // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
TUATBM 0:92024886c0be 78 // In this coordinate system, the positive z-axis is down toward Earth.
TUATBM 0:92024886c0be 79 // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
TUATBM 0:92024886c0be 80 // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
TUATBM 0:92024886c0be 81 // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
TUATBM 0:92024886c0be 82 // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
TUATBM 0:92024886c0be 83 // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
TUATBM 0:92024886c0be 84 // applied in the correct order which for this configuration is yaw, pitch, and then roll.
TUATBM 0:92024886c0be 85 // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
TUATBM 0:92024886c0be 86 translateQuaternionToDeg(q);
TUATBM 0:92024886c0be 87 calibrateDegree();
TUATBM 0:92024886c0be 88 degree[0] = roll;
TUATBM 0:92024886c0be 89 degree[1] = pitch;
TUATBM 0:92024886c0be 90 degree[2] = yaw;
TUATBM 0:92024886c0be 91 }
TUATBM 0:92024886c0be 92
TUATBM 0:92024886c0be 93 // Accelerometer and gyroscope self test; check calibration wrt factory settings
TUATBM 0:92024886c0be 94 void MPU9250::MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
TUATBM 0:92024886c0be 95 {
TUATBM 0:92024886c0be 96 uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
TUATBM 0:92024886c0be 97 uint8_t selfTest[6];
TUATBM 0:92024886c0be 98 int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
TUATBM 0:92024886c0be 99 float factoryTrim[6];
TUATBM 0:92024886c0be 100 uint8_t FS = 0;
TUATBM 0:92024886c0be 101
TUATBM 0:92024886c0be 102 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
TUATBM 0:92024886c0be 103 writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
TUATBM 0:92024886c0be 104 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
TUATBM 0:92024886c0be 105 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
TUATBM 0:92024886c0be 106 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
TUATBM 0:92024886c0be 107
TUATBM 0:92024886c0be 108 for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
TUATBM 0:92024886c0be 109 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
TUATBM 0:92024886c0be 110 aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
TUATBM 0:92024886c0be 111 aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
TUATBM 0:92024886c0be 112 aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
TUATBM 0:92024886c0be 113
TUATBM 0:92024886c0be 114 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
TUATBM 0:92024886c0be 115 gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
TUATBM 0:92024886c0be 116 gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
TUATBM 0:92024886c0be 117 gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
TUATBM 0:92024886c0be 118 }
TUATBM 0:92024886c0be 119
TUATBM 0:92024886c0be 120 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
TUATBM 0:92024886c0be 121 aAvg[ii] /= 200;
TUATBM 0:92024886c0be 122 gAvg[ii] /= 200;
TUATBM 0:92024886c0be 123 }
TUATBM 0:92024886c0be 124
TUATBM 0:92024886c0be 125 // Configure the accelerometer for self-test
TUATBM 0:92024886c0be 126 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
TUATBM 0:92024886c0be 127 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
TUATBM 0:92024886c0be 128 //delay(55); // Delay a while to let the device stabilize
TUATBM 0:92024886c0be 129
TUATBM 0:92024886c0be 130 for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
TUATBM 0:92024886c0be 131 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
TUATBM 0:92024886c0be 132 aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
TUATBM 0:92024886c0be 133 aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
TUATBM 0:92024886c0be 134 aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
TUATBM 0:92024886c0be 135
TUATBM 0:92024886c0be 136 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
TUATBM 0:92024886c0be 137 gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
TUATBM 0:92024886c0be 138 gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
TUATBM 0:92024886c0be 139 gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
TUATBM 0:92024886c0be 140 }
TUATBM 0:92024886c0be 141
TUATBM 0:92024886c0be 142 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
TUATBM 0:92024886c0be 143 aSTAvg[ii] /= 200;
TUATBM 0:92024886c0be 144 gSTAvg[ii] /= 200;
TUATBM 0:92024886c0be 145 }
TUATBM 0:92024886c0be 146
TUATBM 0:92024886c0be 147 // Configure the gyro and accelerometer for normal operation
TUATBM 0:92024886c0be 148 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
TUATBM 0:92024886c0be 149 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
TUATBM 0:92024886c0be 150 //delay(45); // Delay a while to let the device stabilize
TUATBM 0:92024886c0be 151
TUATBM 0:92024886c0be 152 // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
TUATBM 0:92024886c0be 153 selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
TUATBM 0:92024886c0be 154 selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
TUATBM 0:92024886c0be 155 selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
TUATBM 0:92024886c0be 156 selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
TUATBM 0:92024886c0be 157 selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
TUATBM 0:92024886c0be 158 selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
TUATBM 0:92024886c0be 159
TUATBM 0:92024886c0be 160 // Retrieve factory self-test value from self-test code reads
TUATBM 0:92024886c0be 161 factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
TUATBM 0:92024886c0be 162 factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
TUATBM 0:92024886c0be 163 factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
TUATBM 0:92024886c0be 164 factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
TUATBM 0:92024886c0be 165 factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
TUATBM 0:92024886c0be 166 factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
TUATBM 0:92024886c0be 167
TUATBM 0:92024886c0be 168 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
TUATBM 0:92024886c0be 169 // To get percent, must multiply by 100
TUATBM 0:92024886c0be 170 for (int i = 0; i < 3; i++) {
TUATBM 0:92024886c0be 171 destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
TUATBM 0:92024886c0be 172 destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
TUATBM 0:92024886c0be 173 }
TUATBM 0:92024886c0be 174 }
TUATBM 0:92024886c0be 175
TUATBM 0:92024886c0be 176 void MPU9250::pickupAccel(float accel[3]){
TUATBM 0:92024886c0be 177 sensingAccel();
TUATBM 0:92024886c0be 178 accel[0] = ax;
TUATBM 0:92024886c0be 179 accel[1] = ay;
TUATBM 0:92024886c0be 180 accel[2] = az;
TUATBM 0:92024886c0be 181 }
TUATBM 0:92024886c0be 182
TUATBM 0:92024886c0be 183 void MPU9250::pickupGyro(float gyro[3]){
TUATBM 0:92024886c0be 184 sensingGyro();
TUATBM 0:92024886c0be 185 gyro[0] = gx;
TUATBM 0:92024886c0be 186 gyro[1] = gy;
TUATBM 0:92024886c0be 187 gyro[2] = gz;
TUATBM 0:92024886c0be 188 }
TUATBM 0:92024886c0be 189
TUATBM 0:92024886c0be 190 void MPU9250::pickupMag(float mag[3]){
TUATBM 0:92024886c0be 191 sensingMag();
TUATBM 0:92024886c0be 192 mag[0] = mx;
TUATBM 0:92024886c0be 193 mag[1] = my;
TUATBM 0:92024886c0be 194 mag[2] = mz;
TUATBM 0:92024886c0be 195 }
TUATBM 0:92024886c0be 196
TUATBM 0:92024886c0be 197 float MPU9250::pickupTemp(void){
TUATBM 0:92024886c0be 198 sensingTemp();
TUATBM 0:92024886c0be 199 return temperature;
TUATBM 0:92024886c0be 200 }
TUATBM 0:92024886c0be 201
TUATBM 0:92024886c0be 202 void MPU9250::displayAccel(void){
TUATBM 0:92024886c0be 203 pc_p->printf("ax = %f", 1000*ax);
TUATBM 0:92024886c0be 204 pc_p->printf(" ay = %f", 1000*ay);
TUATBM 0:92024886c0be 205 pc_p->printf(" az = %f mg\n\r", 1000*az);
TUATBM 0:92024886c0be 206 }
TUATBM 0:92024886c0be 207
TUATBM 0:92024886c0be 208 void MPU9250::displayGyro(void){
TUATBM 0:92024886c0be 209 pc_p->printf("gx = %f", gx);
TUATBM 0:92024886c0be 210 pc_p->printf(" gy = %f", gy);
TUATBM 0:92024886c0be 211 pc_p->printf(" gz = %f deg/s\n\r", gz);
TUATBM 0:92024886c0be 212 }
TUATBM 0:92024886c0be 213
TUATBM 0:92024886c0be 214 void MPU9250::displayMag(void){
TUATBM 0:92024886c0be 215 pc_p->printf("mx = %f,", mx);
TUATBM 0:92024886c0be 216 pc_p->printf(" my = %f,", my);
TUATBM 0:92024886c0be 217 pc_p->printf(" mz = %f mG\n\r", mz);
TUATBM 0:92024886c0be 218 }
TUATBM 0:92024886c0be 219
TUATBM 0:92024886c0be 220 void MPU9250::displayQuaternion(void){
TUATBM 0:92024886c0be 221 pc_p->printf("q0 = %f\n\r", q[0]);
TUATBM 0:92024886c0be 222 pc_p->printf("q1 = %f\n\r", q[1]);
TUATBM 0:92024886c0be 223 pc_p->printf("q2 = %f\n\r", q[2]);
TUATBM 0:92024886c0be 224 pc_p->printf("q3 = %f\n\r", q[3]);
TUATBM 0:92024886c0be 225 }
TUATBM 0:92024886c0be 226
TUATBM 0:92024886c0be 227 void MPU9250::displayAngle(void){
TUATBM 0:92024886c0be 228 //pc_p->printf("$%d %d %d;",(int)(yaw*100),(int)(pitch*100),(int)(roll*100));
TUATBM 0:92024886c0be 229 pc_p->printf("Roll: %f\tPitch: %f\tYaw: %f\n\r", roll, pitch, yaw);
TUATBM 0:92024886c0be 230 }
TUATBM 0:92024886c0be 231
TUATBM 0:92024886c0be 232 void MPU9250::displayTemperature(void){
TUATBM 0:92024886c0be 233 pc_p->printf(" temperature = %f C\n\r", temperature);
TUATBM 0:92024886c0be 234 }
TUATBM 0:92024886c0be 235
TUATBM 0:92024886c0be 236 void MPU9250::setMagBias(float bias_x, float bias_y, float bias_z){
TUATBM 0:92024886c0be 237 magbias[0] = bias_x;
TUATBM 0:92024886c0be 238 magbias[1] = bias_y;
TUATBM 0:92024886c0be 239 magbias[2] = bias_z;
TUATBM 0:92024886c0be 240 }
TUATBM 0:92024886c0be 241
TUATBM 0:92024886c0be 242 /*---------- private function ----------*/
TUATBM 0:92024886c0be 243
TUATBM 0:92024886c0be 244 void MPU9250::writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
TUATBM 0:92024886c0be 245 {
TUATBM 0:92024886c0be 246 char data_write[2];
TUATBM 0:92024886c0be 247
TUATBM 0:92024886c0be 248 data_write[0] = subAddress;
TUATBM 0:92024886c0be 249 data_write[1] = data;
TUATBM 0:92024886c0be 250 i2c.write(address, data_write, 2, 0);
TUATBM 0:92024886c0be 251 }
TUATBM 0:92024886c0be 252
TUATBM 0:92024886c0be 253 char MPU9250::readByte(uint8_t address, uint8_t subAddress)
TUATBM 0:92024886c0be 254 {
TUATBM 0:92024886c0be 255 char data[1]; // `data` will store the register data
TUATBM 0:92024886c0be 256 char data_write[1];
TUATBM 0:92024886c0be 257
TUATBM 0:92024886c0be 258 data_write[0] = subAddress;
TUATBM 0:92024886c0be 259 i2c.write(address, data_write, 1, 1); // no stop
TUATBM 0:92024886c0be 260 i2c.read(address, data, 1, 0);
TUATBM 0:92024886c0be 261 return data[0];
TUATBM 0:92024886c0be 262 }
TUATBM 0:92024886c0be 263
TUATBM 0:92024886c0be 264 void MPU9250::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
TUATBM 0:92024886c0be 265 {
TUATBM 0:92024886c0be 266 char data[14];
TUATBM 0:92024886c0be 267 char data_write[1];
TUATBM 0:92024886c0be 268
TUATBM 0:92024886c0be 269 data_write[0] = subAddress;
TUATBM 0:92024886c0be 270 i2c.write(address, data_write, 1, 1); // no stop
TUATBM 0:92024886c0be 271 i2c.read(address, data, count, 0);
TUATBM 0:92024886c0be 272 for(int ii = 0; ii < count; ii++) {
TUATBM 0:92024886c0be 273 dest[ii] = data[ii];
TUATBM 0:92024886c0be 274 }
TUATBM 0:92024886c0be 275 }
TUATBM 0:92024886c0be 276
TUATBM 0:92024886c0be 277 void MPU9250::initializeValue(void){
TUATBM 0:92024886c0be 278 Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G
TUATBM 0:92024886c0be 279 Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
TUATBM 0:92024886c0be 280 Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
TUATBM 0:92024886c0be 281 Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
TUATBM 0:92024886c0be 282
TUATBM 0:92024886c0be 283 GyroMeasError = PI * (60.0f / 180.0f);
TUATBM 0:92024886c0be 284 beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
TUATBM 0:92024886c0be 285 GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
TUATBM 0:92024886c0be 286 zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
TUATBM 0:92024886c0be 287
TUATBM 0:92024886c0be 288 deltat = 0.0f; // integration interval for both filter schemes
TUATBM 0:92024886c0be 289 lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
TUATBM 0:92024886c0be 290
TUATBM 0:92024886c0be 291 for(int i=0; i<3; i++){
TUATBM 0:92024886c0be 292 magCalibration[i] = 0;
TUATBM 0:92024886c0be 293 gyroBias[i] = 0;
TUATBM 0:92024886c0be 294 accelBias[i] = 0;
TUATBM 0:92024886c0be 295 magbias[i] = 0;
TUATBM 0:92024886c0be 296
TUATBM 0:92024886c0be 297 eInt[i] = 0.0f;
TUATBM 0:92024886c0be 298 }
TUATBM 0:92024886c0be 299
TUATBM 0:92024886c0be 300 q[0] = 1.0f;
TUATBM 0:92024886c0be 301 q[1] = 0.0f;
TUATBM 0:92024886c0be 302 q[2] = 0.0f;
TUATBM 0:92024886c0be 303 q[3] = 0.0f;
TUATBM 0:92024886c0be 304 }
TUATBM 0:92024886c0be 305
TUATBM 0:92024886c0be 306 void MPU9250::initMPU9250(void)
TUATBM 0:92024886c0be 307 {
TUATBM 0:92024886c0be 308 // Initialize MPU9250 device
TUATBM 0:92024886c0be 309 // wake up device
TUATBM 0:92024886c0be 310 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
TUATBM 0:92024886c0be 311 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
TUATBM 0:92024886c0be 312
TUATBM 0:92024886c0be 313 // get stable time source
TUATBM 0:92024886c0be 314 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
TUATBM 0:92024886c0be 315
TUATBM 0:92024886c0be 316 // Configure Gyro and Accelerometer
TUATBM 0:92024886c0be 317 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
TUATBM 0:92024886c0be 318 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
TUATBM 0:92024886c0be 319 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
TUATBM 0:92024886c0be 320 writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
TUATBM 0:92024886c0be 321
TUATBM 0:92024886c0be 322 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
TUATBM 0:92024886c0be 323 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
TUATBM 0:92024886c0be 324
TUATBM 0:92024886c0be 325 // Set gyroscope full scale range
TUATBM 0:92024886c0be 326 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
TUATBM 0:92024886c0be 327 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value
TUATBM 0:92024886c0be 328 // c = c & ~0xE0; // Clear self-test bits [7:5]
TUATBM 0:92024886c0be 329 c = c & ~0x02; // Clear Fchoice bits [1:0]
TUATBM 0:92024886c0be 330 c = c & ~0x18; // Clear AFS bits [4:3]
TUATBM 0:92024886c0be 331 c = c | Gscale << 3; // Set full scale range for the gyro
TUATBM 0:92024886c0be 332 // c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
TUATBM 0:92024886c0be 333 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register
TUATBM 0:92024886c0be 334
TUATBM 0:92024886c0be 335 // Set accelerometer full-scale range configuration
TUATBM 0:92024886c0be 336 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value
TUATBM 0:92024886c0be 337 // c = c & ~0xE0; // Clear self-test bits [7:5]
TUATBM 0:92024886c0be 338 c = c & ~0x18; // Clear AFS bits [4:3]
TUATBM 0:92024886c0be 339 c = c | Ascale << 3; // Set full scale range for the accelerometer
TUATBM 0:92024886c0be 340 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value
TUATBM 0:92024886c0be 341
TUATBM 0:92024886c0be 342 // Set accelerometer sample rate configuration
TUATBM 0:92024886c0be 343 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
TUATBM 0:92024886c0be 344 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
TUATBM 0:92024886c0be 345 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
TUATBM 0:92024886c0be 346 c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
TUATBM 0:92024886c0be 347 c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
TUATBM 0:92024886c0be 348 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value
TUATBM 0:92024886c0be 349
TUATBM 0:92024886c0be 350 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
TUATBM 0:92024886c0be 351 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
TUATBM 0:92024886c0be 352
TUATBM 0:92024886c0be 353 // Configure Interrupts and Bypass Enable
TUATBM 0:92024886c0be 354 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
TUATBM 0:92024886c0be 355 // can join the I2C bus and all can be controlled by the Arduino as master
TUATBM 0:92024886c0be 356 writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
TUATBM 0:92024886c0be 357 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
TUATBM 0:92024886c0be 358 }
TUATBM 0:92024886c0be 359
TUATBM 0:92024886c0be 360 void MPU9250::initAK8963(float * destination)
TUATBM 0:92024886c0be 361 {
TUATBM 0:92024886c0be 362 // First extract the factory calibration for each magnetometer axis
TUATBM 0:92024886c0be 363 uint8_t rawData[3]; // x/y/z gyro calibration data stored here
TUATBM 0:92024886c0be 364
TUATBM 0:92024886c0be 365 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
TUATBM 0:92024886c0be 366 wait(0.01);
TUATBM 0:92024886c0be 367
TUATBM 0:92024886c0be 368 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
TUATBM 0:92024886c0be 369 wait(0.01);
TUATBM 0:92024886c0be 370
TUATBM 0:92024886c0be 371 readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
TUATBM 0:92024886c0be 372 destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
TUATBM 0:92024886c0be 373 destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
TUATBM 0:92024886c0be 374 destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
TUATBM 0:92024886c0be 375 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
TUATBM 0:92024886c0be 376 wait(0.01);
TUATBM 0:92024886c0be 377
TUATBM 0:92024886c0be 378 // Configure the magnetometer for continuous read and highest resolution
TUATBM 0:92024886c0be 379 // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
TUATBM 0:92024886c0be 380 // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
TUATBM 0:92024886c0be 381 writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
TUATBM 0:92024886c0be 382 wait(0.01);
TUATBM 0:92024886c0be 383 }
TUATBM 0:92024886c0be 384
TUATBM 0:92024886c0be 385 void MPU9250::resetMPU9250(void)
TUATBM 0:92024886c0be 386 {
TUATBM 0:92024886c0be 387 // reset device
TUATBM 0:92024886c0be 388 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
TUATBM 0:92024886c0be 389 wait(0.1);
TUATBM 0:92024886c0be 390 }
TUATBM 0:92024886c0be 391
TUATBM 0:92024886c0be 392 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
TUATBM 0:92024886c0be 393 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
TUATBM 0:92024886c0be 394 void MPU9250::calibrateMPU9250(float * dest1, float * dest2)
TUATBM 0:92024886c0be 395 {
TUATBM 0:92024886c0be 396 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
TUATBM 0:92024886c0be 397 uint16_t ii, packet_count, fifo_count;
TUATBM 0:92024886c0be 398 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
TUATBM 0:92024886c0be 399 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
TUATBM 0:92024886c0be 400
TUATBM 0:92024886c0be 401 // reset device, reset all registers, clear gyro and accelerometer bias registers
TUATBM 0:92024886c0be 402 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
TUATBM 0:92024886c0be 403 wait(0.1);
TUATBM 0:92024886c0be 404
TUATBM 0:92024886c0be 405 // get stable time source
TUATBM 0:92024886c0be 406 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
TUATBM 0:92024886c0be 407 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
TUATBM 0:92024886c0be 408 writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
TUATBM 0:92024886c0be 409 wait(0.2);
TUATBM 0:92024886c0be 410
TUATBM 0:92024886c0be 411 // Configure device for bias calculation
TUATBM 0:92024886c0be 412 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
TUATBM 0:92024886c0be 413 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
TUATBM 0:92024886c0be 414 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
TUATBM 0:92024886c0be 415 writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
TUATBM 0:92024886c0be 416 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
TUATBM 0:92024886c0be 417 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
TUATBM 0:92024886c0be 418 wait(0.015);
TUATBM 0:92024886c0be 419
TUATBM 0:92024886c0be 420 // Configure MPU9250 gyro and accelerometer for bias calculation
TUATBM 0:92024886c0be 421 writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
TUATBM 0:92024886c0be 422 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
TUATBM 0:92024886c0be 423 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
TUATBM 0:92024886c0be 424 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
TUATBM 0:92024886c0be 425
TUATBM 0:92024886c0be 426 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
TUATBM 0:92024886c0be 427 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
TUATBM 0:92024886c0be 428
TUATBM 0:92024886c0be 429 // Configure FIFO to capture accelerometer and gyro data for bias calculation
TUATBM 0:92024886c0be 430 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
TUATBM 0:92024886c0be 431 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
TUATBM 0:92024886c0be 432 wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
TUATBM 0:92024886c0be 433
TUATBM 0:92024886c0be 434 // At end of sample accumulation, turn off FIFO sensor read
TUATBM 0:92024886c0be 435 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
TUATBM 0:92024886c0be 436 readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
TUATBM 0:92024886c0be 437 fifo_count = ((uint16_t)data[0] << 8) | data[1];
TUATBM 0:92024886c0be 438 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
TUATBM 0:92024886c0be 439
TUATBM 0:92024886c0be 440 for (ii = 0; ii < packet_count; ii++) {
TUATBM 0:92024886c0be 441 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
TUATBM 0:92024886c0be 442 readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
TUATBM 0:92024886c0be 443 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
TUATBM 0:92024886c0be 444 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
TUATBM 0:92024886c0be 445 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
TUATBM 0:92024886c0be 446 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
TUATBM 0:92024886c0be 447 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
TUATBM 0:92024886c0be 448 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
TUATBM 0:92024886c0be 449
TUATBM 0:92024886c0be 450 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
TUATBM 0:92024886c0be 451 accel_bias[1] += (int32_t) accel_temp[1];
TUATBM 0:92024886c0be 452 accel_bias[2] += (int32_t) accel_temp[2];
TUATBM 0:92024886c0be 453 gyro_bias[0] += (int32_t) gyro_temp[0];
TUATBM 0:92024886c0be 454 gyro_bias[1] += (int32_t) gyro_temp[1];
TUATBM 0:92024886c0be 455 gyro_bias[2] += (int32_t) gyro_temp[2];
TUATBM 0:92024886c0be 456
TUATBM 0:92024886c0be 457 }
TUATBM 0:92024886c0be 458 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
TUATBM 0:92024886c0be 459 accel_bias[1] /= (int32_t) packet_count;
TUATBM 0:92024886c0be 460 accel_bias[2] /= (int32_t) packet_count;
TUATBM 0:92024886c0be 461 gyro_bias[0] /= (int32_t) packet_count;
TUATBM 0:92024886c0be 462 gyro_bias[1] /= (int32_t) packet_count;
TUATBM 0:92024886c0be 463 gyro_bias[2] /= (int32_t) packet_count;
TUATBM 0:92024886c0be 464
TUATBM 0:92024886c0be 465 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
TUATBM 0:92024886c0be 466 else {accel_bias[2] += (int32_t) accelsensitivity;}
TUATBM 0:92024886c0be 467
TUATBM 0:92024886c0be 468 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
TUATBM 0:92024886c0be 469 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
TUATBM 0:92024886c0be 470 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
TUATBM 0:92024886c0be 471 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
TUATBM 0:92024886c0be 472 data[3] = (-gyro_bias[1]/4) & 0xFF;
TUATBM 0:92024886c0be 473 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
TUATBM 0:92024886c0be 474 data[5] = (-gyro_bias[2]/4) & 0xFF;
TUATBM 0:92024886c0be 475
TUATBM 0:92024886c0be 476 /// Push gyro biases to hardware registers
TUATBM 0:92024886c0be 477 /*
TUATBM 0:92024886c0be 478 writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
TUATBM 0:92024886c0be 479 writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
TUATBM 0:92024886c0be 480 writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
TUATBM 0:92024886c0be 481 writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
TUATBM 0:92024886c0be 482 writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
TUATBM 0:92024886c0be 483 writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
TUATBM 0:92024886c0be 484 */
TUATBM 0:92024886c0be 485 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
TUATBM 0:92024886c0be 486 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
TUATBM 0:92024886c0be 487 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
TUATBM 0:92024886c0be 488
TUATBM 0:92024886c0be 489 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
TUATBM 0:92024886c0be 490 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
TUATBM 0:92024886c0be 491 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
TUATBM 0:92024886c0be 492 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
TUATBM 0:92024886c0be 493 // the accelerometer biases calculated above must be divided by 8.
TUATBM 0:92024886c0be 494
TUATBM 0:92024886c0be 495 readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
TUATBM 0:92024886c0be 496 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
TUATBM 0:92024886c0be 497 readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
TUATBM 0:92024886c0be 498 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
TUATBM 0:92024886c0be 499 readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
TUATBM 0:92024886c0be 500 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
TUATBM 0:92024886c0be 501
TUATBM 0:92024886c0be 502 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
TUATBM 0:92024886c0be 503 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
TUATBM 0:92024886c0be 504
TUATBM 0:92024886c0be 505 for(ii = 0; ii < 3; ii++) {
TUATBM 0:92024886c0be 506 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
TUATBM 0:92024886c0be 507 }
TUATBM 0:92024886c0be 508
TUATBM 0:92024886c0be 509 // Construct total accelerometer bias, including calculated average accelerometer bias from above
TUATBM 0:92024886c0be 510 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
TUATBM 0:92024886c0be 511 accel_bias_reg[1] -= (accel_bias[1]/8);
TUATBM 0:92024886c0be 512 accel_bias_reg[2] -= (accel_bias[2]/8);
TUATBM 0:92024886c0be 513
TUATBM 0:92024886c0be 514 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
TUATBM 0:92024886c0be 515 data[1] = (accel_bias_reg[0]) & 0xFF;
TUATBM 0:92024886c0be 516 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
TUATBM 0:92024886c0be 517 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
TUATBM 0:92024886c0be 518 data[3] = (accel_bias_reg[1]) & 0xFF;
TUATBM 0:92024886c0be 519 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
TUATBM 0:92024886c0be 520 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
TUATBM 0:92024886c0be 521 data[5] = (accel_bias_reg[2]) & 0xFF;
TUATBM 0:92024886c0be 522 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
TUATBM 0:92024886c0be 523
TUATBM 0:92024886c0be 524 // Apparently this is not working for the acceleration biases in the MPU-9250
TUATBM 0:92024886c0be 525 // Are we handling the temperature correction bit properly?
TUATBM 0:92024886c0be 526 // Push accelerometer biases to hardware registers
TUATBM 0:92024886c0be 527 /*
TUATBM 0:92024886c0be 528 writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
TUATBM 0:92024886c0be 529 writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
TUATBM 0:92024886c0be 530 writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
TUATBM 0:92024886c0be 531 writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
TUATBM 0:92024886c0be 532 writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
TUATBM 0:92024886c0be 533 writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
TUATBM 0:92024886c0be 534 */
TUATBM 0:92024886c0be 535 // Output scaled accelerometer biases for manual subtraction in the main program
TUATBM 0:92024886c0be 536 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
TUATBM 0:92024886c0be 537 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
TUATBM 0:92024886c0be 538 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
TUATBM 0:92024886c0be 539 }
TUATBM 0:92024886c0be 540
TUATBM 0:92024886c0be 541 void MPU9250::getMres(void)
TUATBM 0:92024886c0be 542 {
TUATBM 0:92024886c0be 543 switch (Mscale)
TUATBM 0:92024886c0be 544 {
TUATBM 0:92024886c0be 545 // Possible magnetometer scales (and their register bit settings) are:
TUATBM 0:92024886c0be 546 // 14 bit resolution (0) and 16 bit resolution (1)
TUATBM 0:92024886c0be 547 case MFS_14BITS:
TUATBM 0:92024886c0be 548 mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
TUATBM 0:92024886c0be 549 break;
TUATBM 0:92024886c0be 550 case MFS_16BITS:
TUATBM 0:92024886c0be 551 mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
TUATBM 0:92024886c0be 552 break;
TUATBM 0:92024886c0be 553 }
TUATBM 0:92024886c0be 554 }
TUATBM 0:92024886c0be 555
TUATBM 0:92024886c0be 556 void MPU9250::getGres(void) {
TUATBM 0:92024886c0be 557 switch (Gscale)
TUATBM 0:92024886c0be 558 {
TUATBM 0:92024886c0be 559 // Possible gyro scales (and their register bit settings) are:
TUATBM 0:92024886c0be 560 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
TUATBM 0:92024886c0be 561 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
TUATBM 0:92024886c0be 562 case GFS_250DPS:
TUATBM 0:92024886c0be 563 gRes = 250.0/32768.0;
TUATBM 0:92024886c0be 564 break;
TUATBM 0:92024886c0be 565 case GFS_500DPS:
TUATBM 0:92024886c0be 566 gRes = 500.0/32768.0;
TUATBM 0:92024886c0be 567 break;
TUATBM 0:92024886c0be 568 case GFS_1000DPS:
TUATBM 0:92024886c0be 569 gRes = 1000.0/32768.0;
TUATBM 0:92024886c0be 570 break;
TUATBM 0:92024886c0be 571 case GFS_2000DPS:
TUATBM 0:92024886c0be 572 gRes = 2000.0/32768.0;
TUATBM 0:92024886c0be 573 break;
TUATBM 0:92024886c0be 574 }
TUATBM 0:92024886c0be 575 }
TUATBM 0:92024886c0be 576
TUATBM 0:92024886c0be 577
TUATBM 0:92024886c0be 578 void MPU9250::getAres(void)
TUATBM 0:92024886c0be 579 {
TUATBM 0:92024886c0be 580 switch (Ascale)
TUATBM 0:92024886c0be 581 {
TUATBM 0:92024886c0be 582 // Possible accelerometer scales (and their register bit settings) are:
TUATBM 0:92024886c0be 583 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
TUATBM 0:92024886c0be 584 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
TUATBM 0:92024886c0be 585 case AFS_2G:
TUATBM 0:92024886c0be 586 aRes = 2.0/32768.0;
TUATBM 0:92024886c0be 587 break;
TUATBM 0:92024886c0be 588 case AFS_4G:
TUATBM 0:92024886c0be 589 aRes = 4.0/32768.0;
TUATBM 0:92024886c0be 590 break;
TUATBM 0:92024886c0be 591 case AFS_8G:
TUATBM 0:92024886c0be 592 aRes = 8.0/32768.0;
TUATBM 0:92024886c0be 593 break;
TUATBM 0:92024886c0be 594 case AFS_16G:
TUATBM 0:92024886c0be 595 aRes = 16.0/32768.0;
TUATBM 0:92024886c0be 596 break;
TUATBM 0:92024886c0be 597 }
TUATBM 0:92024886c0be 598 }
TUATBM 0:92024886c0be 599
TUATBM 0:92024886c0be 600 void MPU9250::readAccelData(int16_t * destination)
TUATBM 0:92024886c0be 601 {
TUATBM 0:92024886c0be 602 uint8_t rawData[6]; // x/y/z accel register data stored here
TUATBM 0:92024886c0be 603
TUATBM 0:92024886c0be 604 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
TUATBM 0:92024886c0be 605 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
TUATBM 0:92024886c0be 606 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
TUATBM 0:92024886c0be 607 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
TUATBM 0:92024886c0be 608 }
TUATBM 0:92024886c0be 609
TUATBM 0:92024886c0be 610 void MPU9250::readGyroData(int16_t * destination)
TUATBM 0:92024886c0be 611 {
TUATBM 0:92024886c0be 612 uint8_t rawData[6]; // x/y/z gyro register data stored here
TUATBM 0:92024886c0be 613
TUATBM 0:92024886c0be 614 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
TUATBM 0:92024886c0be 615 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
TUATBM 0:92024886c0be 616 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
TUATBM 0:92024886c0be 617 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
TUATBM 0:92024886c0be 618 }
TUATBM 0:92024886c0be 619
TUATBM 0:92024886c0be 620 void MPU9250::readMagData(int16_t * destination)
TUATBM 0:92024886c0be 621 {
TUATBM 0:92024886c0be 622 uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
TUATBM 0:92024886c0be 623
TUATBM 0:92024886c0be 624 if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
TUATBM 0:92024886c0be 625 readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
TUATBM 0:92024886c0be 626 uint8_t c = rawData[6]; // End data read by reading ST2 register
TUATBM 0:92024886c0be 627 if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
TUATBM 0:92024886c0be 628 destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
TUATBM 0:92024886c0be 629 destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian
TUATBM 0:92024886c0be 630 destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
TUATBM 0:92024886c0be 631 }
TUATBM 0:92024886c0be 632 }
TUATBM 0:92024886c0be 633 }
TUATBM 0:92024886c0be 634
TUATBM 0:92024886c0be 635 int16_t MPU9250::readTempData(void)
TUATBM 0:92024886c0be 636 {
TUATBM 0:92024886c0be 637 uint8_t rawData[2]; // x/y/z gyro register data stored here
TUATBM 0:92024886c0be 638
TUATBM 0:92024886c0be 639 readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
TUATBM 0:92024886c0be 640
TUATBM 0:92024886c0be 641 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
TUATBM 0:92024886c0be 642 }
TUATBM 0:92024886c0be 643
TUATBM 0:92024886c0be 644 uint8_t MPU9250::Whoami_MPU9250(void){
TUATBM 0:92024886c0be 645 return readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);
TUATBM 0:92024886c0be 646 }
TUATBM 0:92024886c0be 647
TUATBM 0:92024886c0be 648 uint8_t MPU9250::Whoami_AK8963(void){
TUATBM 0:92024886c0be 649 return readByte(WHO_AM_I_AK8963, WHO_AM_I_AK8963);
TUATBM 0:92024886c0be 650 }
TUATBM 0:92024886c0be 651
TUATBM 0:92024886c0be 652 void MPU9250::sensingAccel(void){
TUATBM 0:92024886c0be 653 readAccelData(accelCount);
TUATBM 0:92024886c0be 654 ax = (float)accelCount[0]*aRes - accelBias[0];
TUATBM 0:92024886c0be 655 ay = (float)accelCount[1]*aRes - accelBias[1];
TUATBM 0:92024886c0be 656 az = (float)accelCount[2]*aRes - accelBias[2];
TUATBM 0:92024886c0be 657 }
TUATBM 0:92024886c0be 658
TUATBM 0:92024886c0be 659 void MPU9250::sensingGyro(void){
TUATBM 0:92024886c0be 660 readGyroData(gyroCount);
TUATBM 0:92024886c0be 661 gx = (float)gyroCount[0]*gRes - gyroBias[0];
TUATBM 0:92024886c0be 662 gy = (float)gyroCount[1]*gRes - gyroBias[1];
TUATBM 0:92024886c0be 663 gz = (float)gyroCount[2]*gRes - gyroBias[2];
TUATBM 0:92024886c0be 664 }
TUATBM 0:92024886c0be 665
TUATBM 0:92024886c0be 666 void MPU9250::sensingMag(void){
TUATBM 0:92024886c0be 667 readMagData(magCount);
TUATBM 0:92024886c0be 668 mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];
TUATBM 0:92024886c0be 669 my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
TUATBM 0:92024886c0be 670 mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
TUATBM 0:92024886c0be 671 }
TUATBM 0:92024886c0be 672
TUATBM 0:92024886c0be 673 void MPU9250::sensingTemp(void){
TUATBM 0:92024886c0be 674 tempCount = readTempData();
TUATBM 0:92024886c0be 675 temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
TUATBM 0:92024886c0be 676 }
TUATBM 0:92024886c0be 677
TUATBM 0:92024886c0be 678 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
TUATBM 0:92024886c0be 679 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
TUATBM 0:92024886c0be 680 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
TUATBM 0:92024886c0be 681 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
TUATBM 0:92024886c0be 682 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
TUATBM 0:92024886c0be 683 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
TUATBM 0:92024886c0be 684 void MPU9250::MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
TUATBM 0:92024886c0be 685 {
TUATBM 0:92024886c0be 686 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
TUATBM 0:92024886c0be 687 float norm;
TUATBM 0:92024886c0be 688 float hx, hy, _2bx, _2bz;
TUATBM 0:92024886c0be 689 float s1, s2, s3, s4;
TUATBM 0:92024886c0be 690 float qDot1, qDot2, qDot3, qDot4;
TUATBM 0:92024886c0be 691
TUATBM 0:92024886c0be 692 // Auxiliary variables to avoid repeated arithmetic
TUATBM 0:92024886c0be 693 float _2q1mx;
TUATBM 0:92024886c0be 694 float _2q1my;
TUATBM 0:92024886c0be 695 float _2q1mz;
TUATBM 0:92024886c0be 696 float _2q2mx;
TUATBM 0:92024886c0be 697 float _4bx;
TUATBM 0:92024886c0be 698 float _4bz;
TUATBM 0:92024886c0be 699 float _2q1 = 2.0f * q1;
TUATBM 0:92024886c0be 700 float _2q2 = 2.0f * q2;
TUATBM 0:92024886c0be 701 float _2q3 = 2.0f * q3;
TUATBM 0:92024886c0be 702 float _2q4 = 2.0f * q4;
TUATBM 0:92024886c0be 703 float _2q1q3 = 2.0f * q1 * q3;
TUATBM 0:92024886c0be 704 float _2q3q4 = 2.0f * q3 * q4;
TUATBM 0:92024886c0be 705 float q1q1 = q1 * q1;
TUATBM 0:92024886c0be 706 float q1q2 = q1 * q2;
TUATBM 0:92024886c0be 707 float q1q3 = q1 * q3;
TUATBM 0:92024886c0be 708 float q1q4 = q1 * q4;
TUATBM 0:92024886c0be 709 float q2q2 = q2 * q2;
TUATBM 0:92024886c0be 710 float q2q3 = q2 * q3;
TUATBM 0:92024886c0be 711 float q2q4 = q2 * q4;
TUATBM 0:92024886c0be 712 float q3q3 = q3 * q3;
TUATBM 0:92024886c0be 713 float q3q4 = q3 * q4;
TUATBM 0:92024886c0be 714 float q4q4 = q4 * q4;
TUATBM 0:92024886c0be 715
TUATBM 0:92024886c0be 716 // Normalise accelerometer measurement
TUATBM 0:92024886c0be 717 norm = sqrt(ax * ax + ay * ay + az * az);
TUATBM 0:92024886c0be 718 if (norm == 0.0f) return; // handle NaN
TUATBM 0:92024886c0be 719 norm = 1.0f/norm;
TUATBM 0:92024886c0be 720 ax *= norm;
TUATBM 0:92024886c0be 721 ay *= norm;
TUATBM 0:92024886c0be 722 az *= norm;
TUATBM 0:92024886c0be 723
TUATBM 0:92024886c0be 724 // Normalise magnetometer measurement
TUATBM 0:92024886c0be 725 norm = sqrt(mx * mx + my * my + mz * mz);
TUATBM 0:92024886c0be 726 if (norm == 0.0f) return; // handle NaN
TUATBM 0:92024886c0be 727 norm = 1.0f/norm;
TUATBM 0:92024886c0be 728 mx *= norm;
TUATBM 0:92024886c0be 729 my *= norm;
TUATBM 0:92024886c0be 730 mz *= norm;
TUATBM 0:92024886c0be 731
TUATBM 0:92024886c0be 732 // Reference direction of Earth's magnetic field
TUATBM 0:92024886c0be 733 _2q1mx = 2.0f * q1 * mx;
TUATBM 0:92024886c0be 734 _2q1my = 2.0f * q1 * my;
TUATBM 0:92024886c0be 735 _2q1mz = 2.0f * q1 * mz;
TUATBM 0:92024886c0be 736 _2q2mx = 2.0f * q2 * mx;
TUATBM 0:92024886c0be 737 hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
TUATBM 0:92024886c0be 738 hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
TUATBM 0:92024886c0be 739 _2bx = sqrt(hx * hx + hy * hy);
TUATBM 0:92024886c0be 740 _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
TUATBM 0:92024886c0be 741 _4bx = 2.0f * _2bx;
TUATBM 0:92024886c0be 742 _4bz = 2.0f * _2bz;
TUATBM 0:92024886c0be 743
TUATBM 0:92024886c0be 744 // Gradient decent algorithm corrective step
TUATBM 0:92024886c0be 745 s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
TUATBM 0:92024886c0be 746 s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
TUATBM 0:92024886c0be 747 s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
TUATBM 0:92024886c0be 748 s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
TUATBM 0:92024886c0be 749 norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
TUATBM 0:92024886c0be 750 norm = 1.0f/norm;
TUATBM 0:92024886c0be 751 s1 *= norm;
TUATBM 0:92024886c0be 752 s2 *= norm;
TUATBM 0:92024886c0be 753 s3 *= norm;
TUATBM 0:92024886c0be 754 s4 *= norm;
TUATBM 0:92024886c0be 755
TUATBM 0:92024886c0be 756 // Compute rate of change of quaternion
TUATBM 0:92024886c0be 757 qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
TUATBM 0:92024886c0be 758 qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
TUATBM 0:92024886c0be 759 qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
TUATBM 0:92024886c0be 760 qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
TUATBM 0:92024886c0be 761
TUATBM 0:92024886c0be 762 // Integrate to yield quaternion
TUATBM 0:92024886c0be 763 q1 += qDot1 * deltat;
TUATBM 0:92024886c0be 764 q2 += qDot2 * deltat;
TUATBM 0:92024886c0be 765 q3 += qDot3 * deltat;
TUATBM 0:92024886c0be 766 q4 += qDot4 * deltat;
TUATBM 0:92024886c0be 767 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
TUATBM 0:92024886c0be 768 norm = 1.0f/norm;
TUATBM 0:92024886c0be 769 q[0] = q1 * norm;
TUATBM 0:92024886c0be 770 q[1] = q2 * norm;
TUATBM 0:92024886c0be 771 q[2] = q3 * norm;
TUATBM 0:92024886c0be 772 q[3] = q4 * norm;
TUATBM 0:92024886c0be 773
TUATBM 0:92024886c0be 774 }
TUATBM 0:92024886c0be 775
TUATBM 0:92024886c0be 776 void MPU9250::MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
TUATBM 0:92024886c0be 777 {
TUATBM 0:92024886c0be 778 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
TUATBM 0:92024886c0be 779 float norm;
TUATBM 0:92024886c0be 780 float hx, hy, bx, bz;
TUATBM 0:92024886c0be 781 float vx, vy, vz, wx, wy, wz;
TUATBM 0:92024886c0be 782 float ex, ey, ez;
TUATBM 0:92024886c0be 783 float pa, pb, pc;
TUATBM 0:92024886c0be 784
TUATBM 0:92024886c0be 785 // Auxiliary variables to avoid repeated arithmetic
TUATBM 0:92024886c0be 786 float q1q1 = q1 * q1;
TUATBM 0:92024886c0be 787 float q1q2 = q1 * q2;
TUATBM 0:92024886c0be 788 float q1q3 = q1 * q3;
TUATBM 0:92024886c0be 789 float q1q4 = q1 * q4;
TUATBM 0:92024886c0be 790 float q2q2 = q2 * q2;
TUATBM 0:92024886c0be 791 float q2q3 = q2 * q3;
TUATBM 0:92024886c0be 792 float q2q4 = q2 * q4;
TUATBM 0:92024886c0be 793 float q3q3 = q3 * q3;
TUATBM 0:92024886c0be 794 float q3q4 = q3 * q4;
TUATBM 0:92024886c0be 795 float q4q4 = q4 * q4;
TUATBM 0:92024886c0be 796
TUATBM 0:92024886c0be 797 // Normalise accelerometer measurement
TUATBM 0:92024886c0be 798 norm = sqrt(ax * ax + ay * ay + az * az);
TUATBM 0:92024886c0be 799 if (norm == 0.0f) return; // handle NaN
TUATBM 0:92024886c0be 800 norm = 1.0f / norm; // use reciprocal for division
TUATBM 0:92024886c0be 801 ax *= norm;
TUATBM 0:92024886c0be 802 ay *= norm;
TUATBM 0:92024886c0be 803 az *= norm;
TUATBM 0:92024886c0be 804
TUATBM 0:92024886c0be 805 // Normalise magnetometer measurement
TUATBM 0:92024886c0be 806 norm = sqrt(mx * mx + my * my + mz * mz);
TUATBM 0:92024886c0be 807 if (norm == 0.0f) return; // handle NaN
TUATBM 0:92024886c0be 808 norm = 1.0f / norm; // use reciprocal for division
TUATBM 0:92024886c0be 809 mx *= norm;
TUATBM 0:92024886c0be 810 my *= norm;
TUATBM 0:92024886c0be 811 mz *= norm;
TUATBM 0:92024886c0be 812
TUATBM 0:92024886c0be 813 // Reference direction of Earth's magnetic field
TUATBM 0:92024886c0be 814 hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
TUATBM 0:92024886c0be 815 hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
TUATBM 0:92024886c0be 816 bx = sqrt((hx * hx) + (hy * hy));
TUATBM 0:92024886c0be 817 bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
TUATBM 0:92024886c0be 818
TUATBM 0:92024886c0be 819 // Estimated direction of gravity and magnetic field
TUATBM 0:92024886c0be 820 vx = 2.0f * (q2q4 - q1q3);
TUATBM 0:92024886c0be 821 vy = 2.0f * (q1q2 + q3q4);
TUATBM 0:92024886c0be 822 vz = q1q1 - q2q2 - q3q3 + q4q4;
TUATBM 0:92024886c0be 823 wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
TUATBM 0:92024886c0be 824 wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
TUATBM 0:92024886c0be 825 wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
TUATBM 0:92024886c0be 826
TUATBM 0:92024886c0be 827 // Error is cross product between estimated direction and measured direction of gravity
TUATBM 0:92024886c0be 828 ex = (ay * vz - az * vy) + (my * wz - mz * wy);
TUATBM 0:92024886c0be 829 ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
TUATBM 0:92024886c0be 830 ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
TUATBM 0:92024886c0be 831 if (Ki > 0.0f){
TUATBM 0:92024886c0be 832 eInt[0] += ex; // accumulate integral error
TUATBM 0:92024886c0be 833 eInt[1] += ey;
TUATBM 0:92024886c0be 834 eInt[2] += ez;
TUATBM 0:92024886c0be 835
TUATBM 0:92024886c0be 836 }else{
TUATBM 0:92024886c0be 837 eInt[0] = 0.0f; // prevent integral wind up
TUATBM 0:92024886c0be 838 eInt[1] = 0.0f;
TUATBM 0:92024886c0be 839 eInt[2] = 0.0f;
TUATBM 0:92024886c0be 840 }
TUATBM 0:92024886c0be 841
TUATBM 0:92024886c0be 842 // Apply feedback terms
TUATBM 0:92024886c0be 843 gx = gx + Kp * ex + Ki * eInt[0];
TUATBM 0:92024886c0be 844 gy = gy + Kp * ey + Ki * eInt[1];
TUATBM 0:92024886c0be 845 gz = gz + Kp * ez + Ki * eInt[2];
TUATBM 0:92024886c0be 846
TUATBM 0:92024886c0be 847 // Integrate rate of change of quaternion
TUATBM 0:92024886c0be 848 pa = q2;
TUATBM 0:92024886c0be 849 pb = q3;
TUATBM 0:92024886c0be 850 pc = q4;
TUATBM 0:92024886c0be 851 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
TUATBM 0:92024886c0be 852 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
TUATBM 0:92024886c0be 853 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
TUATBM 0:92024886c0be 854 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
TUATBM 0:92024886c0be 855
TUATBM 0:92024886c0be 856 // Normalise quaternion
TUATBM 0:92024886c0be 857 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
TUATBM 0:92024886c0be 858 norm = 1.0f / norm;
TUATBM 0:92024886c0be 859 q[0] = q1 * norm;
TUATBM 0:92024886c0be 860 q[1] = q2 * norm;
TUATBM 0:92024886c0be 861 q[2] = q3 * norm;
TUATBM 0:92024886c0be 862 q[3] = q4 * norm;
TUATBM 0:92024886c0be 863
TUATBM 0:92024886c0be 864 }
TUATBM 0:92024886c0be 865
TUATBM 0:92024886c0be 866 void MPU9250::translateQuaternionToDeg(float quaternion[4]){
TUATBM 0:92024886c0be 867 yaw = atan2(2.0f * (quaternion[1] * quaternion[2] + quaternion[0] * quaternion[3]), quaternion[0] * quaternion[0] + quaternion[1] * quaternion[1] - quaternion[2] * quaternion[2] - quaternion[3] * quaternion[3]);
TUATBM 0:92024886c0be 868 roll = -asin(2.0f * (quaternion[1] * quaternion[3] - quaternion[0] * quaternion[2]));
TUATBM 0:92024886c0be 869 pitch = atan2(2.0f * (quaternion[0] * quaternion[1] + quaternion[2] * quaternion[3]), quaternion[0] * quaternion[0] - quaternion[1] * quaternion[1] - quaternion[2] * quaternion[2] + quaternion[3] * quaternion[3]);
TUATBM 0:92024886c0be 870 }
TUATBM 0:92024886c0be 871
TUATBM 0:92024886c0be 872 void MPU9250::calibrateDegree(void){
TUATBM 0:92024886c0be 873 pitch *= 180.0f / PI;
TUATBM 0:92024886c0be 874 yaw *= 180.0f / PI;
TUATBM 0:92024886c0be 875 yaw -= DECLINATION;
TUATBM 0:92024886c0be 876 roll *= 180.0f / PI;
TUATBM 0:92024886c0be 877 }