主導機 mbed用のプログラムです 改良しました
Dependencies: mbed
Fork of F3RC_syudou_master_ver2 by
User.cpp
- Committer:
- yuto17320508
- Date:
- 2017-08-23
- Revision:
- 20:b84beed117ef
- Parent:
- 19:a3f57c9833b6
- Child:
- 21:d9f5b74d5034
File content as of revision 20:b84beed117ef:
#include "Utils.h" #include "USBHost.h" #include "hci.h" #include "ps3.h" #include "User.h" #include "mbed.h" #define _USE_MATH_DEFINES #include "math.h" #define Pi 3.14159 int RSX,RSY,LSX,LSY,BSU,BSL; //これより下に関数外に書く要素を記入する //spi通信用 SPI spi(p5,p6,p7); DigitalOut cs(p8); //オムニホイール /* 正転の向き ↙ ↖ → */ PwmOut motor_f_1(p21); PwmOut motor_f_2(p22); PwmOut motor_l_1(p23); PwmOut motor_l_2(p24); PwmOut motor_r_1(p25); PwmOut motor_r_2(p26); double fai=1/3*Pi;//φ //個体差 double power_f=0.8; double power_l=0.8; double power_r=0.8; double M1; double M2; double M3; //ジョイスティックの中心座標 double center=127; //ジョイスティック閾値 double delta=90; double bound_p=center+delta; double bound_m=center-delta; //回転の比 double roll_spd=0.5; void motor_act() { if(M1 >=0) { motor_f_1=M1; motor_f_2=0; } else { motor_f_1=0; motor_f_2=-M1; } if(M2 >=0) { motor_l_1=M2; motor_l_2=0; } else { motor_l_1=0; motor_l_2=-M2; } if(M3 >=0) { motor_r_1=M3; motor_r_2=0; } else { motor_r_1=0; motor_r_2=-M3; } } double sita; double sita_2; void UserLoopSetting() { spi.format(8,3); spi.frequency(1000000); motor_f_1.period_us(50); motor_f_2.period_us(50); motor_l_1.period_us(50); motor_l_2.period_us(50); motor_r_1.period_us(50); motor_r_2.period_us(50); } void UserLoop(char n,const u8* data) { u16 ButtonState; if(n==0) { //有線Ps3USB.cpp RSX = ((ps3report*)data)->RightStickX; RSY = ((ps3report*)data)->RightStickY; LSX = ((ps3report*)data)->LeftStickX; LSY = ((ps3report*)data)->LeftStickY; BSU = (u8)(((ps3report*)data)->ButtonState & 0x00ff); BSL = (u8)(((ps3report*)data)->ButtonState >> 8); //ボタンの処理 ButtonState = ((ps3report*)data)->ButtonState; } else {//無線TestShell.cpp RSX = ((ps3report*)(data + 1))->RightStickX; RSY = ((ps3report*)(data + 1))->RightStickY; LSX = ((ps3report*)(data + 1))->LeftStickX; LSY = ((ps3report*)(data + 1))->LeftStickY; BSU = (u8)(((ps3report*)(data + 1))->ButtonState & 0x00ff); BSL = (u8)(((ps3report*)(data + 1))->ButtonState >> 8); //ボタンの処理 ButtonState = ((ps3report*)(data + 1))->ButtonState; } //ここより下にプログラムを書く //spi通信用プログラム int L_up,L_down,L_open,L_close,R_up,R_down,R_open,R_close; int send = 0; if((ButtonState >> BUTTONUP)&1 == 1) {//対応するボタンを書く(今回上ボタン L_up = 1; } else { L_up = 0; } if((ButtonState >> BUTTONDOWN)&1 == 1) {//対応するボタンを書く(今回下ボタン L_down = 2; } else { L_down = 0; } if((ButtonState >> BUTTONL1)&1 == 1) {//対応するボタンを書く(今回L1ボタン L_open = 4; } else { L_open = 0; } if((ButtonState >> BUTTONL2)&1 == 1) {//対応するボタンを書く(今回L2ボタン L_close = 8; } else { L_close = 0; } if((ButtonState >> BUTTONTRIANGEL)&1 == 1) {//対応するボタンを書く(今回△ボタン R_up = 16; } else { R_up = 0; } if((ButtonState >> BUTTONCROSS)&1 == 1) {//対応するボタンを書く(今回×ボタン R_down = 32; } else { R_down = 0; } if((ButtonState >> BUTTONR1)&1 == 1) {//対応するボタンを書く(今回R1ボタン R_open = 64; } else { R_open = 0; } if((ButtonState >> BUTTONR2)&1 == 1) {//対応するボタンを書く(今回R2ボタン R_close = 128; } else { R_close = 0; } send = L_up+L_down+L_open+L_close+R_up+R_down+R_open+R_close; cs = 0; spi. write(send); cs = 1; // printf("%d\r\n",send); //オムニホイールのプログラム if(LSX>=bound_m && LSX<=bound_p && LSY>=bound_m && LSY<=bound_p) { M1=0; M2=0; M3=0; if(RSX>=bound_p && RSX<=255) { M1=power_f*roll_spd; M2=power_l*roll_spd; M3=power_r*roll_spd; } else if(RSX>=0 && RSX<=bound_m) { M1=-1.0*power_f*roll_spd; M2=-1.0*power_l*roll_spd; M3=-1.0*power_r*roll_spd; } motor_act(); sita=0; } else { if(LSX>=center && LSX<=255 && LSY>=center && LSY<=255) { //第四象限 sita = -1.0*(atan2((double)LSY-center,(double)LSX-center))*180/Pi; sita_2=90-sita; M1=sin((sita_2-fai+0)*Pi/180)*power_f; M2=sin((sita_2-fai+240)*Pi/180)*power_l; M3=sin((sita_2-fai+120)*Pi/180)*power_r; motor_act(); } else if(LSX>=0 && LSX<=center && LSY>=center && LSY<=255) { //第三象限 sita = -1.0*(atan2((double)LSY-center,(double)LSX-center))*180/Pi; sita_2=90-sita; M1=sin((sita_2-fai+0)*Pi/180)*power_f; M2=sin((sita_2-fai+240)*Pi/180)*power_l; M3=sin((sita_2-fai+120)*Pi/180)*power_r; motor_act(); } else if(LSX>=0 && LSX<=center && LSY>=0 && LSY<=center) { //第二象限 sita = -1.0*(atan2((double)LSY-center,(double)LSX-center))*180/Pi; sita_2=90-sita; M1=sin((sita_2-fai+0)*Pi/180)*power_f; M2=sin((sita_2-fai+240)*Pi/180)*power_l; M3=sin((sita_2-fai+120)*Pi/180)*power_r; motor_act(); } else if(LSX>=center && LSX<=255 && LSY>=0 && LSY<=center) { //第一象限 sita = -1.0*(atan2((double)LSY-center,(double)LSX-center))*180/Pi; sita_2=90-sita; M1=sin((sita_2-fai+0)*Pi/180)*power_f; M2=sin((sita_2-fai+240)*Pi/180)*power_l; M3=sin((sita_2-fai+120)*Pi/180)*power_r; motor_act(); } //真っすぐだけのプログラム(いらない) /*else if(LSX==255) { sita = 0; sita_2=90-sita; M1=sin((sita_2-fai)*Pi/180)*power_f; M2=sin((sita_2-fai+240)*Pi/180)*power_l; M3=sin((sita_2-fai+120)*Pi/180)*power_r; motor_act(); } else if(LSY==255) { sita = -90; sita_2=90-sita; M1=sin((sita_2-fai)*Pi/180)*power_f; M2=sin((sita_2-fai+240)*Pi/180)*power_l; M3=sin((sita_2-fai+120)*Pi/180)*power_r; motor_act(); } else if(LSX==0) { sita = 180; sita_2=90-sita; M1=sin((sita_2-fai)*Pi/180)*power_f; M2=sin((sita_2-fai+240)*Pi/180)*power_l; M3=sin((sita_2-fai+120)*Pi/180)*power_r; motor_act(); } else if(LSY==0) { sita = 90; sita_2=90-sita; M1=sin((sita_2-fai)*Pi/180)*power_f; M2=sin((sita_2-fai+240)*Pi/180)*power_l; M3=sin((sita_2-fai+120)*Pi/180)*power_r; motor_act(); } */ } printf("motor_f_1:%.4f\t\motor_l_1:%.4f\t\motor_r_1:%.4f\t\sita:%f\r\n",M1,M2,M3,sita); }