Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-src by
targets/hal/TARGET_STM/TARGET_STM32F4/serial_api.c
- Committer:
- mbed_official
- Date:
- 2015-08-20
- Revision:
- 613:bc40b8d2aec4
- Parent:
- 478:9f3d4ee935ce
File content as of revision 613:bc40b8d2aec4:
/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2015, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #include "mbed_assert.h" #include "serial_api.h" #if DEVICE_SERIAL #include "cmsis.h" #include "pinmap.h" #include <string.h> #include "PeripheralPins.h" #include "mbed_error.h" #define UART_NUM (8) static uint32_t serial_irq_ids[UART_NUM] = {0, 0, 0, 0, 0, 0, 0, 0}; static uart_irq_handler irq_handler; UART_HandleTypeDef UartHandle; int stdio_uart_inited = 0; serial_t stdio_uart; static void init_uart(serial_t *obj) { UartHandle.Instance = (USART_TypeDef *)(obj->uart); UartHandle.Init.BaudRate = obj->baudrate; UartHandle.Init.WordLength = obj->databits; UartHandle.Init.StopBits = obj->stopbits; UartHandle.Init.Parity = obj->parity; UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE; if (obj->pin_rx == NC) { UartHandle.Init.Mode = UART_MODE_TX; } else if (obj->pin_tx == NC) { UartHandle.Init.Mode = UART_MODE_RX; } else { UartHandle.Init.Mode = UART_MODE_TX_RX; } if (HAL_UART_Init(&UartHandle) != HAL_OK) { error("Cannot initialize UART"); } } void serial_init(serial_t *obj, PinName tx, PinName rx) { // Determine the UART to use (UART_1, UART_2, ...) UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); // Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object obj->uart = (UARTName)pinmap_merge(uart_tx, uart_rx); MBED_ASSERT(obj->uart != (UARTName)NC); // Enable USART clock switch (obj->uart) { case UART_1: __HAL_RCC_USART1_CLK_ENABLE(); obj->index = 0; break; case UART_2: __HAL_RCC_USART2_CLK_ENABLE(); obj->index = 1; break; #if defined(USART3_BASE) case UART_3: __HAL_RCC_USART3_CLK_ENABLE(); obj->index = 2; break; #endif #if defined(UART4_BASE) case UART_4: __HAL_RCC_UART4_CLK_ENABLE(); obj->index = 3; break; #endif #if defined(UART5_BASE) case UART_5: __HAL_RCC_UART5_CLK_ENABLE(); obj->index = 4; break; #endif #if defined(USART6_BASE) case UART_6: __HAL_RCC_USART6_CLK_ENABLE(); obj->index = 5; break; #endif #if defined(UART7_BASE) case UART_7: __HAL_RCC_UART7_CLK_ENABLE(); obj->index = 6; break; #endif #if defined(UART8_BASE) case UART_8: __HAL_RCC_UART8_CLK_ENABLE(); obj->index = 7; break; #endif } // Configure the UART pins pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); if (tx != NC) { pin_mode(tx, PullUp); } if (rx != NC) { pin_mode(rx, PullUp); } // Configure UART obj->baudrate = 9600; obj->databits = UART_WORDLENGTH_8B; obj->stopbits = UART_STOPBITS_1; obj->parity = UART_PARITY_NONE; obj->pin_tx = tx; obj->pin_rx = rx; init_uart(obj); // For stdio management if (obj->uart == STDIO_UART) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } } void serial_free(serial_t *obj) { // Reset UART and disable clock switch (obj->uart) { case UART_1: __USART1_FORCE_RESET(); __USART1_RELEASE_RESET(); __USART1_CLK_DISABLE(); break; case UART_2: __USART2_FORCE_RESET(); __USART2_RELEASE_RESET(); __USART2_CLK_DISABLE(); break; #if defined(USART3_BASE) case UART_3: __USART3_FORCE_RESET(); __USART3_RELEASE_RESET(); __USART3_CLK_DISABLE(); break; #endif #if defined(UART4_BASE) case UART_4: __UART4_FORCE_RESET(); __UART4_RELEASE_RESET(); __UART4_CLK_DISABLE(); break; #endif #if defined(UART5_BASE) case UART_5: __UART5_FORCE_RESET(); __UART5_RELEASE_RESET(); __UART5_CLK_DISABLE(); break; #endif #if defined(USART6_BASE) case UART_6: __USART6_FORCE_RESET(); __USART6_RELEASE_RESET(); __USART6_CLK_DISABLE(); break; #endif #if defined(UART7_BASE) case UART_7: __UART7_FORCE_RESET(); __UART7_RELEASE_RESET(); __UART7_CLK_DISABLE(); break; #endif #if defined(UART8_BASE) case UART_8: __UART8_FORCE_RESET(); __UART8_RELEASE_RESET(); __UART8_CLK_DISABLE(); break; #endif } // Configure GPIOs pin_function(obj->pin_tx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(obj->pin_rx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); serial_irq_ids[obj->index] = 0; } void serial_baud(serial_t *obj, int baudrate) { obj->baudrate = baudrate; init_uart(obj); } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { if (data_bits == 9) { obj->databits = UART_WORDLENGTH_9B; } else { obj->databits = UART_WORDLENGTH_8B; } switch (parity) { case ParityOdd: case ParityForced0: obj->parity = UART_PARITY_ODD; break; case ParityEven: case ParityForced1: obj->parity = UART_PARITY_EVEN; break; default: // ParityNone obj->parity = UART_PARITY_NONE; break; } if (stop_bits == 2) { obj->stopbits = UART_STOPBITS_2; } else { obj->stopbits = UART_STOPBITS_1; } init_uart(obj); } /****************************************************************************** * INTERRUPTS HANDLING ******************************************************************************/ static void uart_irq(UARTName name, int id) { UartHandle.Instance = (USART_TypeDef *)name; if (serial_irq_ids[id] != 0) { if (__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_TC) != RESET) { irq_handler(serial_irq_ids[id], TxIrq); __HAL_UART_CLEAR_FLAG(&UartHandle, UART_FLAG_TC); } if (__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_RXNE) != RESET) { irq_handler(serial_irq_ids[id], RxIrq); __HAL_UART_CLEAR_FLAG(&UartHandle, UART_FLAG_RXNE); } } } static void uart1_irq(void) { uart_irq(UART_1, 0); } static void uart2_irq(void) { uart_irq(UART_2, 1); } #if defined(USART3_BASE) static void uart3_irq(void) { uart_irq(UART_3, 2); } #endif #if defined(UART4_BASE) static void uart4_irq(void) { uart_irq(UART_4, 3); } #endif #if defined(UART5_BASE) static void uart5_irq(void) { uart_irq(UART_5, 4); } #endif #if defined(USART6_BASE) static void uart6_irq(void) { uart_irq(UART_6, 5); } #endif #if defined(UART7_BASE) static void uart7_irq(void) { uart_irq(UART_7, 6); } #endif #if defined(UART8_BASE) static void uart8_irq(void) { uart_irq(UART_8, 7); } #endif void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; serial_irq_ids[obj->index] = id; } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { IRQn_Type irq_n = (IRQn_Type)0; uint32_t vector = 0; UartHandle.Instance = (USART_TypeDef *)(obj->uart); switch (obj->uart) { case UART_1: irq_n = USART1_IRQn; vector = (uint32_t)&uart1_irq; break; case UART_2: irq_n = USART2_IRQn; vector = (uint32_t)&uart2_irq; break; #if defined(USART3_BASE) case UART_3: irq_n = USART3_IRQn; vector = (uint32_t)&uart3_irq; break; #endif #if defined(UART4_BASE) case UART_4: irq_n = UART4_IRQn; vector = (uint32_t)&uart4_irq; break; #endif #if defined(UART5_BASE) case UART_5: irq_n = UART5_IRQn; vector = (uint32_t)&uart5_irq; break; #endif #if defined(USART6_BASE) case UART_6: irq_n = USART6_IRQn; vector = (uint32_t)&uart6_irq; break; #endif #if defined(UART7_BASE) case UART_7: irq_n = UART7_IRQn; vector = (uint32_t)&uart7_irq; break; #endif #if defined(UART8_BASE) case UART_8: irq_n = UART8_IRQn; vector = (uint32_t)&uart8_irq; break; #endif } if (enable) { if (irq == RxIrq) { __HAL_UART_ENABLE_IT(&UartHandle, UART_IT_RXNE); } else { // TxIrq __HAL_UART_ENABLE_IT(&UartHandle, UART_IT_TC); } NVIC_SetVector(irq_n, vector); NVIC_EnableIRQ(irq_n); } else { // disable int all_disabled = 0; if (irq == RxIrq) { __HAL_UART_DISABLE_IT(&UartHandle, UART_IT_RXNE); // Check if TxIrq is disabled too if ((UartHandle.Instance->CR1 & USART_CR1_TXEIE) == 0) all_disabled = 1; } else { // TxIrq __HAL_UART_DISABLE_IT(&UartHandle, UART_IT_TXE); // Check if RxIrq is disabled too if ((UartHandle.Instance->CR1 & USART_CR1_RXNEIE) == 0) all_disabled = 1; } if (all_disabled) NVIC_DisableIRQ(irq_n); } } /****************************************************************************** * READ/WRITE ******************************************************************************/ int serial_getc(serial_t *obj) { USART_TypeDef *uart = (USART_TypeDef *)(obj->uart); while (!serial_readable(obj)); return (int)(uart->DR & 0x1FF); } void serial_putc(serial_t *obj, int c) { USART_TypeDef *uart = (USART_TypeDef *)(obj->uart); while (!serial_writable(obj)); uart->DR = (uint32_t)(c & 0x1FF); } int serial_readable(serial_t *obj) { int status; UartHandle.Instance = (USART_TypeDef *)(obj->uart); // Check if data is received status = ((__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_RXNE) != RESET) ? 1 : 0); return status; } int serial_writable(serial_t *obj) { int status; UartHandle.Instance = (USART_TypeDef *)(obj->uart); // Check if data is transmitted status = ((__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_TXE) != RESET) ? 1 : 0); return status; } void serial_clear(serial_t *obj) { UartHandle.Instance = (USART_TypeDef *)(obj->uart); __HAL_UART_CLEAR_FLAG(&UartHandle, UART_FLAG_TXE); __HAL_UART_CLEAR_FLAG(&UartHandle, UART_FLAG_RXNE); } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } void serial_break_set(serial_t *obj) { UartHandle.Instance = (USART_TypeDef *)(obj->uart); HAL_LIN_SendBreak(&UartHandle); } void serial_break_clear(serial_t *obj) { } #endif