Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
targets/hal/TARGET_Freescale/TARGET_KPSDK_MCUS/serial_api.c
- Committer:
- mbed_official
- Date:
- 2014-11-14
- Revision:
- 405:768bdb09db12
- Parent:
- 396:16d0d69d12f5
- Child:
- 490:119543c9f674
File content as of revision 405:768bdb09db12:
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "serial_api.h"
#if DEVICE_SERIAL
// math.h required for floating point operations for baud rate calculation
#include <math.h>
#include "mbed_assert.h"
#include <string.h>
#include "cmsis.h"
#include "pinmap.h"
#include "fsl_uart_hal.h"
#include "fsl_clock_manager.h"
#include "fsl_uart_features.h"
#include "PeripheralPins.h"
/* TODO:
putchar/getchar 9 and 10 bits support
*/
#ifndef UART3_BASE
#define UART_NUM 3
#else
#define UART_NUM 5
#endif
static uint32_t serial_irq_ids[UART_NUM] = {0};
static uart_irq_handler irq_handler;
int stdio_uart_inited = 0;
serial_t stdio_uart;
void serial_init(serial_t *obj, PinName tx, PinName rx) {
uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX);
uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX);
obj->index = pinmap_merge(uart_tx, uart_rx);
MBED_ASSERT((int)obj->index != NC);
uint32_t uartSourceClock = CLOCK_SYS_GetUartFreq(obj->index);
CLOCK_SYS_EnableUartClock(obj->index);
uint32_t uart_addrs[] = UART_BASE_ADDRS;
UART_HAL_Init(uart_addrs[obj->index]);
UART_HAL_SetBaudRate(uart_addrs[obj->index], uartSourceClock, 9600);
UART_HAL_SetParityMode(uart_addrs[obj->index], kUartParityDisabled);
#if FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT
UART_HAL_SetStopBitCount(uart_addrs[obj->index], kUartOneStopBit);
#endif
UART_HAL_SetBitCountPerChar(uart_addrs[obj->index], kUart8BitsPerChar);
UART_HAL_EnableTransmitter(uart_addrs[obj->index]);
UART_HAL_EnableReceiver(uart_addrs[obj->index]);
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
if (tx != NC) {
pin_mode(tx, PullUp);
}
if (rx != NC) {
pin_mode(rx, PullUp);
}
if (obj->index == STDIO_UART) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
while(!UART_HAL_IsTxDataRegEmpty(uart_addrs[obj->index]));
}
void serial_free(serial_t *obj) {
serial_irq_ids[obj->index] = 0;
}
void serial_baud(serial_t *obj, int baudrate) {
uint32_t uart_addrs[] = UART_BASE_ADDRS;
UART_HAL_SetBaudRate(uart_addrs[obj->index], CLOCK_SYS_GetUartFreq(obj->index), (uint32_t)baudrate);
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
uint32_t uart_addrs[] = UART_BASE_ADDRS;
UART_HAL_SetBitCountPerChar(uart_addrs[obj->index], (uart_bit_count_per_char_t)data_bits);
UART_HAL_SetParityMode(uart_addrs[obj->index], (uart_parity_mode_t)parity);
#if FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT
UART_HAL_SetStopBitCount(uart_addrs[obj->index], (uart_stop_bit_count_t)stop_bits);
#endif
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
static inline void uart_irq(uint32_t transmit_empty, uint32_t receive_full, uint32_t index) {
if (serial_irq_ids[index] != 0) {
if (transmit_empty)
irq_handler(serial_irq_ids[index], TxIrq);
if (receive_full)
irq_handler(serial_irq_ids[index], RxIrq);
}
}
void uart0_irq() {
uart_irq(UART_HAL_IsTxDataRegEmpty(UART0_BASE), UART_HAL_IsRxDataRegFull(UART0_BASE), 0);
if (UART_HAL_GetStatusFlag(UART0_BASE, kUartRxOverrun))
UART_HAL_ClearStatusFlag(UART0_BASE, kUartRxOverrun);
}
void uart1_irq() {
uart_irq(UART_HAL_IsTxDataRegEmpty(UART1_BASE), UART_HAL_IsRxDataRegFull(UART1_BASE), 1);
}
void uart2_irq() {
uart_irq(UART_HAL_IsTxDataRegEmpty(UART2_BASE), UART_HAL_IsRxDataRegFull(UART2_BASE), 2);
}
#if (UART_NUM > 3)
void uart3_irq() {
uart_irq(UART_HAL_IsTxDataRegEmpty(UART3_BASE), UART_HAL_IsRxDataRegFull(UART3_BASE), 3);
}
void uart4_irq() {
uart_irq(UART_HAL_IsTxDataRegEmpty(UART4_BASE), UART_HAL_IsRxDataRegFull(UART4_BASE), 4);
}
#endif
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
irq_handler = handler;
serial_irq_ids[obj->index] = id;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0;
switch (obj->index) {
case 0: irq_n=UART0_RX_TX_IRQn; vector = (uint32_t)&uart0_irq; break;
case 1: irq_n=UART1_RX_TX_IRQn; vector = (uint32_t)&uart1_irq; break;
case 2: irq_n=UART2_RX_TX_IRQn; vector = (uint32_t)&uart2_irq; break;
#if (UART_NUM > 3)
case 3: irq_n=UART3_RX_TX_IRQn; vector = (uint32_t)&uart3_irq; break;
case 4: irq_n=UART4_RX_TX_IRQn; vector = (uint32_t)&uart4_irq; break;
#endif
}
uint32_t uart_addrs[] = UART_BASE_ADDRS;
if (enable) {
switch (irq) {
case RxIrq: UART_HAL_SetRxDataRegFullIntCmd(uart_addrs[obj->index], true); break;
case TxIrq: UART_HAL_SetTxDataRegEmptyIntCmd(uart_addrs[obj->index], true); break;
}
NVIC_SetVector(irq_n, vector);
NVIC_EnableIRQ(irq_n);
} else { // disable
int all_disabled = 0;
SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq);
switch (irq) {
case RxIrq: UART_HAL_SetRxDataRegFullIntCmd(uart_addrs[obj->index], false); break;
case TxIrq: UART_HAL_SetTxDataRegEmptyIntCmd(uart_addrs[obj->index], false); break;
}
switch (other_irq) {
case RxIrq: all_disabled = UART_HAL_GetRxDataRegFullIntCmd(uart_addrs[obj->index]) == 0; break;
case TxIrq: all_disabled = UART_HAL_GetTxDataRegEmptyIntCmd(uart_addrs[obj->index]) == 0; break;
}
if (all_disabled)
NVIC_DisableIRQ(irq_n);
}
}
int serial_getc(serial_t *obj) {
while (!serial_readable(obj));
uint8_t data;
uint32_t uart_addrs[] = UART_BASE_ADDRS;
UART_HAL_Getchar(uart_addrs[obj->index], &data);
return data;
}
void serial_putc(serial_t *obj, int c) {
while (!serial_writable(obj));
uint32_t uart_addrs[] = UART_BASE_ADDRS;
UART_HAL_Putchar(uart_addrs[obj->index], (uint8_t)c);
}
int serial_readable(serial_t *obj) {
uint32_t uart_address[] = UART_BASE_ADDRS;
if (UART_HAL_GetStatusFlag(uart_address[obj->index], kUartRxOverrun))
UART_HAL_ClearStatusFlag(uart_address[obj->index], kUartRxOverrun);
return UART_HAL_IsRxDataRegFull(uart_address[obj->index]);
}
int serial_writable(serial_t *obj) {
uint32_t uart_address[] = UART_BASE_ADDRS;
if (UART_HAL_GetStatusFlag(uart_address[obj->index], kUartRxOverrun))
UART_HAL_ClearStatusFlag(uart_address[obj->index], kUartRxOverrun);
return UART_HAL_IsTxDataRegEmpty(uart_address[obj->index]);
}
void serial_clear(serial_t *obj) {
}
void serial_pinout_tx(PinName tx) {
pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_set(serial_t *obj) {
uint32_t uart_address[] = UART_BASE_ADDRS;
UART_HAL_SetBreakCharCmd(uart_address[obj->index], true);
}
void serial_break_clear(serial_t *obj) {
uint32_t uart_address[] = UART_BASE_ADDRS;
UART_HAL_SetBreakCharCmd(uart_address[obj->index], false);
}
#endif