mbed library sources

Fork of mbed-src by mbed official

targets/cmsis/TARGET_STM/TARGET_STM32L0/stm32l0xx_hal_irda.c

Committer:
mbed_official
Date:
2015-09-30
Revision:
636:a11c0372f0ba
Parent:
490:119543c9f674

File content as of revision 636:a11c0372f0ba:

/**
  ******************************************************************************
  * @file    stm32l0xx_hal_irda.c
  * @author  MCD Application Team
  * @version V1.2.0
  * @date    06-February-2015
  * @brief   IRDA HAL module driver.
  * 
  *          This file provides firmware functions to manage the following 
  *          functionalities of the IrDA (Infrared Data Association) Peripheral 
  *          (IRDA)
  *           + Initialization and de-initialization functions
  *           + IO operation functions
  *           + Peripheral Control functions
  *
  *           
  @verbatim       
 ===============================================================================
                        ##### How to use this driver #####
 ===============================================================================
 [..]
    The IRDA HAL driver can be used as follows:

    
    (#) Declare a IRDA_HandleTypeDef handle structure.
    (#) Initialize the IRDA low level resources by implementing the HAL_IRDA_MspInit() API:
        (##) Enable the USARTx interface clock.
        (##) IRDA pins configuration:
            (+) Enable the clock for the IRDA GPIOs.
            (+) Configure these IRDA pins as alternate function pull-up.
        (##) NVIC configuration if you need to use interrupt process (HAL_IRDA_Transmit_IT()
             and HAL_IRDA_Receive_IT() APIs):
            (+) Configure the USARTx interrupt priority.
            (+) Enable the NVIC USART IRQ handle.
        (##) DMA Configuration if you need to use DMA process (HAL_IRDA_Transmit_DMA()
             and HAL_IRDA_Receive_DMA() APIs):
            (+) Declare a DMA handle structure for the Tx/Rx channel.
            (+) Enable the DMAx interface clock.
            (+) Configure the declared DMA handle structure with the required Tx/Rx parameters.
            (+) Configure the DMA Tx/Rx channel.
            (+) Associate the initilalized DMA handle to the IRDA DMA Tx/Rx handle.
            (+) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel.

    (#) Program the Baud Rate, Word Length, Parity, IrDA Mode, Prescaler 
        and Mode(Receiver/Transmitter) in the hirda Init structure.

    (#) Initialize the IRDA registers by calling the HAL_IRDA_Init() API:
        (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
            by calling the customed HAL_IRDA_MspInit() API.
    -@@- The specific IRDA interrupts (Transmission complete interrupt, 
        RXNE interrupt and Error Interrupts) will be managed using the macros
        __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process.
        
    (#) Three operation modes are available within this driver :
             
    *** Polling mode IO operation ***
    =================================
    [..]    
      (+) Send an amount of data in blocking mode using HAL_IRDA_Transmit() 
      (+) Receive an amount of data in blocking mode using HAL_IRDA_Receive()
       
    *** Interrupt mode IO operation ***    
    ===================================
    [..]    
      (+) Send an amount of data in non blocking mode using HAL_IRDA_Transmit_IT() 
      (+) At transmission end of transfer HAL_IRDA_TxCpltCallback is executed and user can 
           add his own code by customization of function pointer HAL_IRDA_TxCpltCallback
      (+) Receive an amount of data in non blocking mode using HAL_IRDA_Receive_IT() 
      (+) At reception end of transfer HAL_IRDA_RxCpltCallback is executed and user can 
           add his own code by customization of function pointer HAL_IRDA_RxCpltCallback
      (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can 
           add his own code by customization of function pointer HAL_IRDA_ErrorCallback

    *** DMA mode IO operation ***    
    =============================
    [..]
      (+) Send an amount of data in non blocking mode (DMA) using HAL_IRDA_Transmit_DMA() 
      (+) At transmission end of transfer HAL_IRDA_TxCpltCallback is executed and user can 
           add his own code by customization of function pointer HAL_IRDA_TxCpltCallback
      (+) Receive an amount of data in non blocking mode (DMA) using HAL_IRDA_Receive_DMA() 
      (+) At reception end of transfer HAL_IRDA_RxCpltCallback is executed and user can 
           add his own code by customization of function pointer HAL_IRDA_RxCpltCallback
      (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can 
           add his own code by customization of function pointer HAL_IRDA_ErrorCallback    

    *** IRDA HAL driver macros list ***
    ===================================
    [..]
      Below the list of most used macros in IRDA HAL driver.
       
     (+) __HAL_IRDA_ENABLE: Enable the IRDA peripheral 
     (+) __HAL_IRDA_DISABLE: Disable the IRDA peripheral     
     (+) __HAL_IRDA_GET_FLAG : Checks whether the specified IRDA flag is set or not
     (+) __HAL_IRDA_CLEAR_FLAG : Clears the specified IRDA pending flag
     (+) __HAL_IRDA_ENABLE_IT: Enables the specified IRDA interrupt
     (+) __HAL_IRDA_DISABLE_IT: Disables the specified IRDA interrupt
      
     (@) You can refer to the IRDA HAL driver header file for more useful macros

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************  
  */ 

/* Includes ------------------------------------------------------------------*/
#include "stm32l0xx_hal.h"

/** @addtogroup STM32L0xx_HAL_Driver
  * @{
  */

/** @addtogroup IRDA
  * @brief IRDA HAL module driver
  * @{
  */
#ifdef HAL_IRDA_MODULE_ENABLED
    
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define TEACK_REACK_TIMEOUT            1000
#define HAL_IRDA_TXDMA_TIMEOUTVALUE    22000
#define IRDA_CR1_FIELDS  ((uint32_t)(USART_CR1_M | USART_CR1_PCE \
                                   | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE))
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma);
static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma);
static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma);
static void IRDA_DMAError(DMA_HandleTypeDef *hdma); 
static void IRDA_SetConfig (IRDA_HandleTypeDef *hirda);
static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda);
static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, uint32_t Timeout);
static HAL_StatusTypeDef IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda);
static HAL_StatusTypeDef IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda);
static HAL_StatusTypeDef IRDA_Receive_IT(IRDA_HandleTypeDef *hirda);
/* Private functions ---------------------------------------------------------*/

/** @addtogroup IRDA_Exported_Functions
  * @{
  */

/** @addtogroup IRDA_Exported_Functions_Group1
  *  @brief   Initialization and Configuration functions 
  *
@verbatim    
===============================================================================
            ##### Initialization and Configuration functions #####
 ===============================================================================  
    [..]
    This subsection provides a set of functions allowing to initialize the USARTx 
    in asynchronous IRDA mode.
      (+) For the asynchronous mode only these parameters can be configured: 
        (++) Baud Rate
        (++) Word Length 
        (++) Parity: If the parity is enabled, then the MSB bit of the data written
             in the data register is transmitted but is changed by the parity bit.
             Depending on the frame length defined by the M bit (8-bits or 9-bits)
             or by the M1 and M0 bits (7-bit, 8-bit or 9-bit),
             the possible IRDA frame formats are as listed in the following table:
   +---------------------------------------------------------------+
   | M1M0 bits |  PCE bit  |            IRDA frame                 |
   |-----------|-----------|---------------------------------------|
   |     00    |     0     |    | SB | 8-bit data | STB |          |
   |-----------|-----------|---------------------------------------|
   |     00    |     1     |    | SB | 7-bit data | PB | STB |     |
   |-----------|-----------|---------------------------------------|
   |     01    |     0     |    | SB | 9-bit data | STB |          |
   |-----------|-----------|---------------------------------------|
   |     01    |     1     |    | SB | 8-bit data | PB | STB |     |
   |-----------------------|---------------------------------------|
   |     10    |     0     |    | SB | 7-bit data | STB |          |
   |-----------|-----------|---------------------------------------|
   |     10    |     1     |    | SB | 6-bit data | PB | STB |     |
   +---------------------------------------------------------------+
          
        (++) Power mode
        (++) Prescaler setting       
        (++) Receiver/transmitter modes

    [..]
    The HAL_IRDA_Init() API follows the USART asynchronous configuration procedures 
    (details for the procedures are available in reference manual).

@endverbatim
  * @{
  */

/**
  * @brief Initializes the IRDA mode according to the specified
  *         parameters in the IRDA_InitTypeDef and creates the associated handle .
  * @param hirda: IRDA handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda)
{
  /* Check the IRDA handle allocation */
  if(hirda == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the USART/UART associated to the IRDA handle */
  assert_param(IS_IRDA_INSTANCE(hirda->Instance));

  if(hirda->State == HAL_IRDA_STATE_RESET)
  {
    /* Init the low level hardware : GPIO, CLOCK, CORTEX */
    HAL_IRDA_MspInit(hirda);
  }

  hirda->State = HAL_IRDA_STATE_BUSY;

  /* Disable the Peripheral to update the configuration registers */
  __HAL_IRDA_DISABLE(hirda);

  /* Set the IRDA Communication parameters */
  IRDA_SetConfig(hirda);

  /* In IRDA mode, the following bits must be kept cleared: 
  - LINEN, STOP and CLKEN bits in the USART_CR2 register,
  - SCEN and HDSEL bits in the USART_CR3 register.*/
  hirda->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP); 
  hirda->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL); 

  /* set the UART/USART in IRDA mode */
  hirda->Instance->CR3 |= USART_CR3_IREN; 

  /* Enable the Peripheral */
  __HAL_IRDA_ENABLE(hirda);

  /* TEACK and/or REACK to check before moving hirda->State to Ready */
  return (IRDA_CheckIdleState(hirda));
}

/**
  * @brief DeInitializes the IRDA peripheral 
  * @param hirda: IRDA handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda)
{
  /* Check the IRDA handle allocation */
  if(hirda == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the USART/UART associated to the IRDA handle */
  assert_param(IS_IRDA_INSTANCE(hirda->Instance));

  hirda->State = HAL_IRDA_STATE_BUSY;

  /* DeInit the low level hardware */
  HAL_IRDA_MspDeInit(hirda);
  /* Disable the Peripheral */
  __HAL_IRDA_DISABLE(hirda);

  hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  hirda->State = HAL_IRDA_STATE_RESET;

  /* Release Lock */
  __HAL_UNLOCK(hirda);

  return HAL_OK;
}

/**
  * @brief IRDA MSP Init
  * @param hirda: IRDA handle
  * @retval None
  */
 __weak void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_IRDA_MspInit could be implented in the user file
   */ 
}

/**
  * @brief IRDA MSP DeInit
  * @param hirda: IRDA handle
  * @retval None
  */
 __weak void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_IRDA_MspDeInit could be implented in the user file
   */ 
}

/**
  * @}
  */

/** @addtogroup IRDA_Exported_Functions_Group2
  *  @brief   IRDA Transmit-Receive functions  
  *
@verbatim    
===============================================================================
                      ##### IO operation functions #####
===============================================================================  
    [..]
    This subsection provides a set of functions allowing to manage the IRDA asynchronous
    data transfers.

    (#) There are two modes of transfer:
       (++) Blocking mode: the communication is performed in polling mode. 
            The HAL status of all data processing is returned by the same function 
            after finishing transfer.  
       (++) No-Blocking mode: the communication is performed using Interrupts 
           or DMA, these API's return the HAL status.
           The end of the data processing will be indicated through the 
           dedicated IRDA IRQ when using Interrupt mode or the DMA IRQ when 
           using DMA mode.
           The HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxCpltCallback() user callbacks 
           will be executed respectivelly at the end of the Transmit or Receive process
           The HAL_IRDA_ErrorCallback() user callback will be executed when a communication error is detected

    (#) Blocking mode API's are :
        (++) HAL_IRDA_Transmit()
        (++) HAL_IRDA_Receive() 
        
    (#) Non-Blocking mode API's with Interrupt are :
        (++) HAL_IRDA_Transmit_IT()
        (++) HAL_IRDA_Receive_IT()
        (++) HAL_IRDA_IRQHandler()
        (++) IRDA_Transmit_IT()
        (++) IRDA_Receive_IT()

    (#) Non-Blocking mode functions with DMA are :
        (++) HAL_IRDA_Transmit_DMA()
        (++) HAL_IRDA_Receive_DMA()

    (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode:
        (++) HAL_IRDA_TxCpltCallback()
        (++) HAL_IRDA_RxCpltCallback()
        (++) HAL_IRDA_ErrorCallback()
      
@endverbatim
  * @{
  */

/**
  * @brief Send an amount of data in blocking mode 
  * @param hirda: IRDA handle
  * @param pData: pointer to data buffer
  * @param Size: amount of data to be sent
  * @param Timeout: Duration of the timeout
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
   uint16_t* tmp;
   
  if ((hirda->State == HAL_IRDA_STATE_READY) || (hirda->State == HAL_IRDA_STATE_BUSY_RX)) 
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }
    
    /* Process Locked */
    __HAL_LOCK(hirda);
    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;

    if(hirda->State == HAL_IRDA_STATE_BUSY_RX) 
    {
      hirda->State = HAL_IRDA_STATE_BUSY_TX_RX;
    }
    else
    {
      hirda->State = HAL_IRDA_STATE_BUSY_TX;
    }    
    
    hirda->TxXferSize = Size;
    hirda->TxXferCount = Size;
    while(hirda->TxXferCount > 0)
    {
      hirda->TxXferCount--;

        if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, Timeout) != HAL_OK)
        { 
          return HAL_TIMEOUT;
        }
      if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
        {
          tmp = (uint16_t*) pData;
          hirda->Instance->TDR = (*tmp & (uint16_t)0x01FF);   
          pData +=2;
        }
        else
        { 
          hirda->Instance->TDR = (*pData++ & (uint8_t)0xFF); 
        }
      } 

    if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TC, RESET, Timeout) != HAL_OK)
    { 
      return HAL_TIMEOUT;
    } 

    if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) 
    {
      hirda->State = HAL_IRDA_STATE_BUSY_RX;
    }
    else
    {
      hirda->State = HAL_IRDA_STATE_READY;
    }    
    
    /* Process Unlocked */
    __HAL_UNLOCK(hirda);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;   
  }
}

/**
  * @brief Receive an amount of data in blocking mode 
  * @param hirda: IRDA handle
  * @param pData: pointer to data buffer
  * @param Size: amount of data to be received
  * @param Timeout: Duration of the timeout
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{ 
  uint16_t* tmp;
  uint16_t uhMask;
  
  if ((hirda->State == HAL_IRDA_STATE_READY) || (hirda->State == HAL_IRDA_STATE_BUSY_TX))
  { 
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }
    
    /* Process Locked */
    __HAL_LOCK(hirda);
    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;

    if(hirda->State == HAL_IRDA_STATE_BUSY_TX) 
    {
      hirda->State = HAL_IRDA_STATE_BUSY_TX_RX;
    }
    else
    {
      hirda->State = HAL_IRDA_STATE_BUSY_RX;
    }    
    
    hirda->RxXferSize = Size; 
    hirda->RxXferCount = Size;

    /* Computation of the mask to apply to the RDR register 
       of the UART associated to the IRDA */
    IRDA_MASK_COMPUTATION(hirda);
    uhMask = hirda->Mask;

    /* Check data remaining to be received */
    while(hirda->RxXferCount > 0)
    {
      hirda->RxXferCount--;

      if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, Timeout) != HAL_OK)
      { 
        return HAL_TIMEOUT;
      }         
      if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
      {
        tmp = (uint16_t*) pData ;
        *tmp = (uint16_t)(hirda->Instance->RDR & uhMask);
        pData +=2;
      }
      else
      {
        *pData++ = (uint8_t)(hirda->Instance->RDR & (uint8_t)uhMask); 
      }       
    } 

    if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) 
    {
      hirda->State = HAL_IRDA_STATE_BUSY_TX;
    }
    else
    {
      hirda->State = HAL_IRDA_STATE_READY;
    }
     
    /* Process Unlocked */
    __HAL_UNLOCK(hirda);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;   
  }
}

/**
  * @brief Send an amount of data in interrupt mode 
  * @param hirda: IRDA handle
  * @param pData: pointer to data buffer
  * @param Size: amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
{
  if ((hirda->State == HAL_IRDA_STATE_READY) || (hirda->State == HAL_IRDA_STATE_BUSY_RX))
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return HAL_ERROR;
    }
    
    /* Process Locked */
    __HAL_LOCK(hirda);
    
    hirda->pTxBuffPtr = pData;
    hirda->TxXferSize = Size;
    hirda->TxXferCount = Size;

    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
    if(hirda->State == HAL_IRDA_STATE_BUSY_RX) 
    {
      hirda->State = HAL_IRDA_STATE_BUSY_TX_RX;
    }
    else
    {
      hirda->State = HAL_IRDA_STATE_BUSY_TX;
    }
        
    /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_ERR);
    
    /* Process Unlocked */
    __HAL_UNLOCK(hirda);    
    
    /* Enable the IRDA Transmit Data Register Empty Interrupt */
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_TXE);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;   
  }
}

/**
  * @brief Receive an amount of data in interrupt mode 
  * @param hirda: IRDA handle
  * @param pData: pointer to data buffer
  * @param Size: amount of data to be received
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
{  
  if ((hirda->State == HAL_IRDA_STATE_READY) || (hirda->State == HAL_IRDA_STATE_BUSY_TX))
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return HAL_ERROR;
    }
    
    /* Process Locked */
  __HAL_LOCK(hirda);
  
    hirda->pRxBuffPtr = pData;
    hirda->RxXferSize = Size;
    hirda->RxXferCount = Size;
  
    /* Computation of the mask to apply to the RDR register 
       of the UART associated to the IRDA */
    IRDA_MASK_COMPUTATION(hirda);
  
    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;  
    if(hirda->State == HAL_IRDA_STATE_BUSY_TX) 
    {
      hirda->State = HAL_IRDA_STATE_BUSY_TX_RX;
    }
    else
    {
      hirda->State = HAL_IRDA_STATE_BUSY_RX;
    }
    
    /* Enable the IRDA Parity Error Interrupt */
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_PE);
    
    /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_ERR);
    
    /* Process Unlocked */
    __HAL_UNLOCK(hirda);
    
    /* Enable the IRDA Data Register not empty Interrupt */
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_RXNE);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  }
}

/**
  * @brief Send an amount of data in DMA mode 
  * @param hirda: IRDA handle
  * @param pData: pointer to data buffer
  * @param Size: amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
{
  uint32_t *tmp;
  
  if ((hirda->State == HAL_IRDA_STATE_READY) || (hirda->State == HAL_IRDA_STATE_BUSY_RX))
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return HAL_ERROR;
    }
    
    /* Process Locked */
    __HAL_LOCK(hirda);
    
    hirda->pTxBuffPtr = pData;
    hirda->TxXferSize = Size;
    hirda->TxXferCount = Size; 
    
    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
    
    if(hirda->State == HAL_IRDA_STATE_BUSY_RX) 
    {
      hirda->State = HAL_IRDA_STATE_BUSY_TX_RX;
    }
    else
    {
      hirda->State = HAL_IRDA_STATE_BUSY_TX;
    }
    
    /* Set the IRDA DMA transfer complete callback */
    hirda->hdmatx->XferCpltCallback = IRDA_DMATransmitCplt;
    
    /* Set the IRDA DMA half transfer complete callback */
    hirda->hdmatx->XferHalfCpltCallback = IRDA_DMATransmitHalfCplt;

    /* Set the DMA error callback */
    hirda->hdmatx->XferErrorCallback = IRDA_DMAError;

    /* Enable the IRDA transmit DMA channel */
    tmp = (uint32_t*)&pData;
    HAL_DMA_Start_IT(hirda->hdmatx, *(uint32_t*)tmp, (uint32_t)&hirda->Instance->TDR, Size);
    
    /* Clear the TC flag in the SR register by writing 0 to it */
    __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_FLAG_TC);

    /* Enable the DMA transfer for transmit request by setting the DMAT bit
       in the IRDA CR3 register */
    hirda->Instance->CR3 |= USART_CR3_DMAT;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hirda);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;   
  }
}

/**
  * @brief Receive an amount of data in DMA mode 
  * @param hirda: IRDA handle
  * @param pData: pointer to data buffer
  * @param Size: amount of data to be received
  * @note   When the IRDA parity is enabled (PCE = 1), the received data contain 
  *         the parity bit (MSB position)  
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
{
  uint32_t *tmp;
  
  if ((hirda->State == HAL_IRDA_STATE_READY) || (hirda->State == HAL_IRDA_STATE_BUSY_TX))
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return HAL_ERROR;
    }
    
    /* Process Locked */
    __HAL_LOCK(hirda);
    
    hirda->pRxBuffPtr = pData;
    hirda->RxXferSize = Size;

    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
    if(hirda->State == HAL_IRDA_STATE_BUSY_TX) 
    {
      hirda->State = HAL_IRDA_STATE_BUSY_TX_RX;
    }
    else
    {
      hirda->State = HAL_IRDA_STATE_BUSY_RX;
    }
    
    /* Set the IRDA DMA transfer complete callback */
    hirda->hdmarx->XferCpltCallback = IRDA_DMAReceiveCplt;
    
    /* Set the IRDA DMA half transfer complete callback */
    hirda->hdmarx->XferHalfCpltCallback = IRDA_DMAReceiveHalfCplt;
    
    /* Set the DMA error callback */
    hirda->hdmarx->XferErrorCallback = IRDA_DMAError;

    /* Enable the DMA channel */
    tmp = (uint32_t*)&pData;
    HAL_DMA_Start_IT(hirda->hdmarx, (uint32_t)&hirda->Instance->RDR, *(uint32_t*)tmp, Size);

    /* Enable the DMA transfer for the receiver request by setting the DMAR bit 
       in the IRDA CR3 register */
     hirda->Instance->CR3 |= USART_CR3_DMAR;
    
     /* Process Unlocked */
     __HAL_UNLOCK(hirda);
     
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  }
}

/**
  * @brief Pauses the DMA Transfer.
  * @param  hirda: pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_DMAPause(IRDA_HandleTypeDef *hirda)
{
  /* Process Locked */
  __HAL_LOCK(hirda);
  
  if(hirda->State == HAL_IRDA_STATE_BUSY_TX)
  {
    /* Disable the UART DMA Tx request */
    hirda->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAT);
  }
  else if(hirda->State == HAL_IRDA_STATE_BUSY_RX)
  {
    /* Disable the UART DMA Rx request */
    hirda->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAR);
  }
  else if (hirda->State == HAL_IRDA_STATE_BUSY_TX_RX)
  {
    /* Disable the UART DMA Tx & Rx requests */
    hirda->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAT);
    hirda->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAR);
  }
  
  /* Process Unlocked */
  __HAL_UNLOCK(hirda);
  
  return HAL_OK; 
}

/**
  * @brief Resumes the DMA Transfer.
  * @param  hirda: pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_DMAResume(IRDA_HandleTypeDef *hirda)
{
  /* Process Locked */
  __HAL_LOCK(hirda);
  
  if(hirda->State == HAL_IRDA_STATE_BUSY_TX)
  {
    /* Enable the UART DMA Tx request */
    hirda->Instance->CR3 |= USART_CR3_DMAT;
  }
  else if(hirda->State == HAL_IRDA_STATE_BUSY_RX)
  {
    /* Clear the Overrun flag before resumming the Rx transfer*/
    __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_OREF);

    /* Enable the UART DMA Rx request */
    hirda->Instance->CR3 |= USART_CR3_DMAR;
  }
  else if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX)
  {
    /* Clear the Overrun flag before resumming the Rx transfer*/
    __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_OREF);
    
    /* Enable the UART DMA Tx & Rx request */
    hirda->Instance->CR3 |= USART_CR3_DMAT;
    hirda->Instance->CR3 |= USART_CR3_DMAR;
  }
  
  /* Process Unlocked */
  __HAL_UNLOCK(hirda);
  
  return HAL_OK;
}

/**
  * @brief Stops the DMA Transfer.
  * @param  hirda: pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_DMAStop(IRDA_HandleTypeDef *hirda)
{
  /* The Lock is not implemented on this API to allow the user application
     to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback():
     when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
     and the correspond call back is executed HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback()
     */

  /* Disable the UART Tx/Rx DMA requests */
  hirda->Instance->CR3 &= ~USART_CR3_DMAT;
  hirda->Instance->CR3 &= ~USART_CR3_DMAR;
  
  /* Abort the UART DMA tx channel */
  if(hirda->hdmatx != NULL)
  {
    HAL_DMA_Abort(hirda->hdmatx);
  }
  /* Abort the UART DMA rx channel */
  if(hirda->hdmarx != NULL)
  {
    HAL_DMA_Abort(hirda->hdmarx);
  }
  
  hirda->State = HAL_IRDA_STATE_READY;

  return HAL_OK;
}

/**
  * @brief This function handles IRDA interrupt request.
  * @param hirda: IRDA handle
  * @retval None
  */
void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda)
{
  /* IRDA parity error interrupt occurred -------------------------------------*/
  if((__HAL_IRDA_GET_IT(hirda, IRDA_IT_PE) != RESET) && (__HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_PE) != RESET))
  { 
    __HAL_IRDA_CLEAR_PEFLAG(hirda);

    hirda->ErrorCode |= HAL_IRDA_ERROR_PE;
    /* Set the IRDA state ready to be able to start again the process */
    hirda->State = HAL_IRDA_STATE_READY;
  }
  
  /* IRDA frame error interrupt occured --------------------------------------*/
  if((__HAL_IRDA_GET_IT(hirda, IRDA_IT_FE) != RESET) && (__HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_ERR) != RESET))
  { 
    __HAL_IRDA_CLEAR_FEFLAG(hirda);

    hirda->ErrorCode |= HAL_IRDA_ERROR_FE;
    /* Set the IRDA state ready to be able to start again the process */
    hirda->State = HAL_IRDA_STATE_READY;
  }
  
  /* IRDA noise error interrupt occured --------------------------------------*/
  if((__HAL_IRDA_GET_IT(hirda, IRDA_IT_NE) != RESET) && (__HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_ERR) != RESET))
  { 
    __HAL_IRDA_CLEAR_NEFLAG(hirda);

    hirda->ErrorCode |= HAL_IRDA_ERROR_NE; 
    /* Set the IRDA state ready to be able to start again the process */
    hirda->State = HAL_IRDA_STATE_READY;
  }
  
  /* IRDA Over-Run interrupt occured -----------------------------------------*/
  if((__HAL_IRDA_GET_IT(hirda, IRDA_IT_ORE) != RESET) && (__HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_ERR) != RESET))
  { 
    __HAL_IRDA_CLEAR_OREFLAG(hirda);

    hirda->ErrorCode |= HAL_IRDA_ERROR_ORE; 
    /* Set the IRDA state ready to be able to start again the process */
    hirda->State = HAL_IRDA_STATE_READY;
  }
  
  /* Call IRDA Error Call back function if need be --------------------------*/
  if(hirda->ErrorCode != HAL_IRDA_ERROR_NONE)
  {
    HAL_IRDA_ErrorCallback(hirda);
  } 

  /* IRDA in mode Receiver ---------------------------------------------------*/
  if((__HAL_IRDA_GET_IT(hirda, IRDA_IT_RXNE) != RESET) && (__HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_RXNE) != RESET))
  { 
    IRDA_Receive_IT(hirda);
    /* Clear RXNE interrupt flag */
    __HAL_IRDA_SEND_REQ(hirda, IRDA_RXDATA_FLUSH_REQUEST);
  }
  
  /* IRDA in mode Transmitter ------------------------------------------------*/
 if((__HAL_IRDA_GET_IT(hirda, IRDA_IT_TXE) != RESET) &&(__HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_TXE) != RESET))
  {
    IRDA_Transmit_IT(hirda);
  } 

 /* IRDA in mode Transmitter (transmission end) -----------------------------*/
 if((__HAL_IRDA_GET_IT(hirda, IRDA_IT_TC) != RESET) &&(__HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_TC) != RESET))
  {
    IRDA_EndTransmit_IT(hirda);
  }   

}

/**
  * @brief Tx Half Transfer completed callback
  * @param hirda: irda handle
  * @retval None
  */
 __weak void HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_TxHalfCpltCallback can be implemented in the user file
   */ 
}

/**
  * @brief Tx Transfer completed callback
  * @param hirda: irda handle
  * @retval None
  */
 __weak void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_TxCpltCallback can be implemented in the user file
   */ 
}

/**
  * @brief Rx Half Transfer completed callback
  * @param hirda: irda handle
  * @retval None
  */
__weak void HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_RxHalfCpltCallback can be implemented in the user file
   */
}

/**
  * @brief Rx Transfer completed callback
  * @param hirda: irda handle
  * @retval None
  */
__weak void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_RxCpltCallback can be implemented in the user file
   */
}

/**
  * @brief IRDA error callback
  * @param hirda: IRDA handle
  * @retval None
  */
 __weak void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_ErrorCallback can be implemented in the user file
   */ 
}

/**
  * @}
  */

/** @addtogroup IRDA_Exported_Functions_Group3
  *  @brief   IRDA control functions 
  *
@verbatim   
 ===============================================================================
                      ##### Peripheral Control functions #####
 ===============================================================================  
    [..]
    This subsection provides a set of functions allowing to control the IRDA.
     (+) HAL_IRDA_GetState() API can be helpful to check in run-time the state of the IRDA peripheral. 
     (+) IRDA_SetConfig() API is used to configure the IRDA communications parameters.
@endverbatim
  * @{
  */

/**
  * @brief return the IRDA state
  * @param hirda: irda handle
  * @retval HAL state
  */
HAL_IRDA_StateTypeDef HAL_IRDA_GetState(IRDA_HandleTypeDef *hirda)
{
  return hirda->State;
}

/**
* @brief  Return the IRDA error code
* @param  hirda : pointer to a IRDA_HandleTypeDef structure that contains
  *              the configuration information for the specified IRDA.
* @retval IRDA Error Code
*/
uint32_t HAL_IRDA_GetError(IRDA_HandleTypeDef *hirda)
{
  return hirda->ErrorCode;
}

/**
  * @}
  */

/**
  * @brief Configure the IRDA peripheral 
  * @param hirda: irda handle
  * @retval None
  */
static void IRDA_SetConfig(IRDA_HandleTypeDef *hirda)
{
  uint32_t tmpreg      = 0x00000000;
  uint32_t clocksource = 0x00000000;
  
  /* Check the communication parameters */ 
  assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate));  
  assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength));
  assert_param(IS_IRDA_PARITY(hirda->Init.Parity));
  assert_param(IS_IRDA_TX_RX_MODE(hirda->Init.Mode));
  assert_param(IS_IRDA_PRESCALER(hirda->Init.Prescaler)); 
  assert_param(IS_IRDA_POWERMODE(hirda->Init.PowerMode)); 
  /*-------------------------- USART CR1 Configuration -----------------------*/        
  /* Configure the IRDA Word Length, Parity and transfer Mode: 
  Set the M bits according to hirda->Init.WordLength value 
  Set PCE and PS bits according to hirda->Init.Parity value
  Set TE and RE bits according to hirda->Init.Mode value */
  tmpreg = (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode ;
  
  MODIFY_REG(hirda->Instance->CR1, IRDA_CR1_FIELDS, tmpreg);
  
  /*-------------------------- USART CR3 Configuration -----------------------*/
  MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.PowerMode);
  
  /*-------------------------- USART GTPR Configuration ----------------------*/  
  MODIFY_REG(hirda->Instance->GTPR, (uint32_t)USART_GTPR_PSC, hirda->Init.Prescaler);
  
  /*-------------------------- USART BRR Configuration -----------------------*/ 
  IRDA_GETCLOCKSOURCE(hirda, clocksource);
  switch (clocksource)
  {
  case IRDA_CLOCKSOURCE_PCLK1: 
    hirda->Instance->BRR = (uint16_t)(HAL_RCC_GetPCLK1Freq() / hirda->Init.BaudRate);
    break;
  case IRDA_CLOCKSOURCE_PCLK2: 
    hirda->Instance->BRR = (uint16_t)(HAL_RCC_GetPCLK2Freq() / hirda->Init.BaudRate);
    break;
  case IRDA_CLOCKSOURCE_HSI: 
    hirda->Instance->BRR = (uint16_t)(HSI_VALUE / hirda->Init.BaudRate); 
    break; 
  case IRDA_CLOCKSOURCE_SYSCLK:  
    hirda->Instance->BRR = (uint16_t)(HAL_RCC_GetSysClockFreq() / hirda->Init.BaudRate);
    break;  
  case IRDA_CLOCKSOURCE_LSE:                
    hirda->Instance->BRR = (uint16_t)(LSE_VALUE / hirda->Init.BaudRate); 
    break;
  default:
    break;
  } 
}

/**
  * @brief Check the IRDA Idle State
  * @param hirda: IRDA handle
  * @retval HAL status
  */
static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda)
{
  /* Initialize the IRDA ErrorCode */
  hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  
  /* Check if the Transmitter is enabled */
  if((hirda->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
  {
    /* Wait until TEACK flag is set */
    if(IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_TEACK, RESET, TEACK_REACK_TIMEOUT) != HAL_OK)
    { 
      hirda->State= HAL_IRDA_STATE_TIMEOUT;
      return HAL_TIMEOUT;
    }     
  }
  /* Check if the Receiver is enabled */
  if((hirda->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
  {
    if(IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_REACK, RESET, TEACK_REACK_TIMEOUT) != HAL_OK)
    { 
      hirda->State= HAL_IRDA_STATE_TIMEOUT;
      return HAL_TIMEOUT;
    }       
  }
  /* Process Unlocked */
  __HAL_UNLOCK(hirda);
  
  /* Initialize the IRDA state*/
  hirda->State= HAL_IRDA_STATE_READY;
  
  return HAL_OK;
}

/**
  * @brief  Handle IRDA Communication Timeout.
  * @param  hirda: IRDA handle
  * @param  Flag: specifies the IRDA flag to check.
  * @param  Status: the flag status (SET or RESET). The function is locked in a while loop as long as the flag remains set to Status.
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, uint32_t Timeout)  
{
  uint32_t tickstart = 0x00;
  tickstart = HAL_GetTick();
  
  /* Wait until flag is set */
  if(Status == RESET)
  {
    while(__HAL_IRDA_GET_FLAG(hirda, Flag) == RESET)
    {
      /* Check for the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
        {
          /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_TXE);
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_RXNE);
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_PE);
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_ERR);

          hirda->State= HAL_IRDA_STATE_READY;

          /* Process Unlocked */
          __HAL_UNLOCK(hirda);

          return HAL_TIMEOUT;
        }
      }
    }
  }
  else
  {
    while(__HAL_IRDA_GET_FLAG(hirda, Flag) != RESET)
    {
      /* Check for the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
        {
          /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_TXE);
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_RXNE);
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_PE);
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_ERR);

          hirda->State= HAL_IRDA_STATE_READY;

          /* Process Unlocked */
          __HAL_UNLOCK(hirda);

          return HAL_TIMEOUT;
        }
      }
    }
  }
  return HAL_OK;      
}

/**
  * @brief Receive an amount of data in non blocking mode. 
  *         Function called under interruption only, once
  *         interruptions have been enabled by HAL_IRDA_Transmit_IT()
  * @param hirda: IRDA handle
  * @retval HAL status
  */
static HAL_StatusTypeDef IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda)
{
  uint16_t* tmp;
  
  if((hirda->State == HAL_IRDA_STATE_BUSY_TX) || (hirda->State == HAL_IRDA_STATE_BUSY_TX_RX))
  {

    if(hirda->TxXferCount == 0)
    {
      /* Disable the IRDA Transmit Data Register Empty Interrupt */
      __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_TXE);
     
      /* Enable the IRDA Transmit Complete Interrupt */    
      __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_TC);     
      
      return HAL_OK;
    }
    else
    {
      if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
      {
        tmp = (uint16_t*) hirda->pTxBuffPtr;
        hirda->Instance->TDR = (*tmp & (uint16_t)0x01FF);
        hirda->pTxBuffPtr += 2;
      }
      else
      {
        hirda->Instance->TDR = (uint8_t)(*hirda->pTxBuffPtr++ & (uint8_t)0xFF); 
      }
      hirda->TxXferCount--;
      return HAL_OK;
    }
  }
  else
  {
    return HAL_BUSY;
  }
}
/**
  * @brief  Wraps up transmission in non blocking mode.
  * @param  hirda: pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval HAL status
  */
static HAL_StatusTypeDef IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda)
{
  /* Disable the IRDA Transmit Complete Interrupt */    
  __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_TC);
  
  /* Check if a receive process is ongoing or not */
  if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) 
  {
    hirda->State = HAL_IRDA_STATE_BUSY_RX;
  }
  else
  {
    /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
    __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_ERR);
    
    hirda->State = HAL_IRDA_STATE_READY;
  }
  
  HAL_IRDA_TxCpltCallback(hirda);
  
  return HAL_OK;
}

/**
  * @brief Receive an amount of data in non blocking mode. 
  *         Function called under interruption only, once
  *         interruptions have been enabled by HAL_IRDA_Receive_IT()
  * @param hirda: IRDA handle
  * @retval HAL status
  */
static HAL_StatusTypeDef IRDA_Receive_IT(IRDA_HandleTypeDef *hirda)
{
  uint16_t* tmp;
  uint16_t uhMask = hirda->Mask;
  
  if ((hirda->State == HAL_IRDA_STATE_BUSY_RX) || (hirda->State == HAL_IRDA_STATE_BUSY_TX_RX))
  {
    if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
    {
      tmp = (uint16_t*) hirda->pRxBuffPtr ;
      *tmp = (uint16_t)(hirda->Instance->RDR & uhMask);
      hirda->pRxBuffPtr  +=2;
    }
    else
    {
      *hirda->pRxBuffPtr++ = (uint8_t)(hirda->Instance->RDR & (uint8_t)uhMask); 
    }
    
    if(--hirda->RxXferCount == 0)
    {
      while(HAL_IS_BIT_SET(hirda->Instance->ISR, IRDA_FLAG_RXNE))
      {
      }
      __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_RXNE);
      
      if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) 
      {
        hirda->State = HAL_IRDA_STATE_BUSY_TX;
      }
      else
      {      
        /* Disable the IRDA Parity Error Interrupt */
        __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_PE);
        
        /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
        __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_ERR);
        
        hirda->State = HAL_IRDA_STATE_READY;
      }
      
      HAL_IRDA_RxCpltCallback(hirda);
      
      return HAL_OK;
    }
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  }
}
  
/**
  * @brief DMA IRDA Tx transfer completed callback 
  * @param hdma: DMA handle
  * @retval None
  */
static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma)     
{
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  /* DMA Normal mode */
  if ( HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC) )
  {
    hirda->TxXferCount = 0;

    /* Disable the DMA transfer for transmit request by resetting the DMAT bit
       in the IRDA CR3 register */
    hirda->Instance->CR3 &= ~(USART_CR3_DMAT);

    /* Enable the IRDA Transmit Complete Interrupt */
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_TC);
  }
  /* DMA Circular mode */
  else
  {
    HAL_IRDA_TxCpltCallback(hirda);
  }
}

/**
  * @brief DMA IRDA receive process half complete callback 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  HAL_IRDA_TxHalfCpltCallback(hirda); 
}

/**
  * @brief DMA IRDA Rx Transfer completed callback 
  * @param hdma: DMA handle
  * @retval None
  */
static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma)  
{
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  /* DMA Normal mode */
  if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0)
  {
    hirda->RxXferCount = 0;
    
    /* Disable the DMA transfer for the receiver request by setting the DMAR bit 
    in the IRDA CR3 register */
    hirda->Instance->CR3 &= (uint16_t)~((uint16_t)USART_CR3_DMAR);
    
    if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) 
    {
      hirda->State = HAL_IRDA_STATE_BUSY_TX;
    }
    else
    {
      hirda->State = HAL_IRDA_STATE_READY;
    }
  }
  
  HAL_IRDA_RxCpltCallback(hirda);
}

/**
  * @brief DMA IRDA receive process half complete callback 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  HAL_IRDA_RxHalfCpltCallback(hirda); 
}

/**
  * @brief DMA IRDA communication error callback 
  * @param hdma: DMA handle
  * @retval None
  */
static void IRDA_DMAError(DMA_HandleTypeDef *hdma)   
{
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  hirda->RxXferCount = 0;
  hirda->TxXferCount = 0;
  hirda->State= HAL_IRDA_STATE_READY;
  hirda->ErrorCode |= HAL_IRDA_ERROR_DMA;
  HAL_IRDA_ErrorCallback(hirda);
}

/**
  * @}
  */

#endif /* HAL_IRDA_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/