Screen-Puppet

Dependencies:   PCA9547 PowerControl mbed

Files at this revision

API Documentation at this revision

Comitter:
yenzo
Date:
Fri Sep 04 21:37:38 2015 +0000
Commit message:
Screen-Puppet

Changed in this revision

DefineMPU.h Show annotated file Show diff for this revision Revisions of this file
MPU9250.h Show annotated file Show diff for this revision Revisions of this file
PCA9547.lib Show annotated file Show diff for this revision Revisions of this file
PowerControl.lib Show annotated file Show diff for this revision Revisions of this file
main.cpp Show annotated file Show diff for this revision Revisions of this file
mbed.bld Show annotated file Show diff for this revision Revisions of this file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/DefineMPU.h	Fri Sep 04 21:37:38 2015 +0000
@@ -0,0 +1,169 @@
+#ifndef DEFINEMPU_H
+#define DEFINEMPU_H
+
+#include <stdint.h>
+
+#define MPU9250_ADDRESS 0x68<<1
+#define AK8963_ADDRESS 0x0C<<1
+
+#define WHO_AM_I_AK8963  0x00 // should return 0x48
+#define INFO             0x01
+#define AK8963_ST1       0x02  // data ready status bit 0
+#define AK8963_XOUT_L    0x03  // data
+#define AK8963_XOUT_H    0x04
+#define AK8963_YOUT_L    0x05
+#define AK8963_YOUT_H    0x06
+#define AK8963_ZOUT_L    0x07
+#define AK8963_ZOUT_H    0x08
+#define AK8963_ST2       0x09  // Data overflow bit 3 and data read error status bit 2
+#define AK8963_CNTL      0x0A  // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
+#define AK8963_ASTC      0x0C  // Self test control
+#define AK8963_I2CDIS    0x0F  // I2C disable
+#define AK8963_ASAX      0x10  // Fuse ROM x-axis sensitivity adjustment value
+#define AK8963_ASAY      0x11  // Fuse ROM y-axis sensitivity adjustment value
+#define AK8963_ASAZ      0x12  // Fuse ROM z-axis sensitivity adjustment value
+
+#define SELF_TEST_X_GYRO 0x00                  
+#define SELF_TEST_Y_GYRO 0x01                                                                          
+#define SELF_TEST_Z_GYRO 0x02
+
+#define SELF_TEST_X_ACCEL 0x0D
+#define SELF_TEST_Y_ACCEL 0x0E    
+#define SELF_TEST_Z_ACCEL 0x0F
+
+#define SELF_TEST_A      0x10
+
+#define XG_OFFSET_H      0x13  // User-defined trim values for gyroscope
+#define XG_OFFSET_L      0x14
+#define YG_OFFSET_H      0x15
+#define YG_OFFSET_L      0x16
+#define ZG_OFFSET_H      0x17
+#define ZG_OFFSET_L      0x18
+#define SMPLRT_DIV       0x19
+#define CONFIG           0x1A
+#define GYRO_CONFIG      0x1B
+#define ACCEL_CONFIG     0x1C
+#define ACCEL_CONFIG2    0x1D
+#define LP_ACCEL_ODR     0x1E   
+#define WOM_THR          0x1F   
+
+#define MOT_DUR          0x20  // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
+#define ZMOT_THR         0x21  // Zero-motion detection threshold bits [7:0]
+#define ZRMOT_DUR        0x22  // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
+
+#define FIFO_EN          0x23
+#define I2C_MST_CTRL     0x24   
+#define I2C_SLV0_ADDR    0x25
+#define I2C_SLV0_REG     0x26
+#define I2C_SLV0_CTRL    0x27
+#define I2C_SLV1_ADDR    0x28
+#define I2C_SLV1_REG     0x29
+#define I2C_SLV1_CTRL    0x2A
+#define I2C_SLV2_ADDR    0x2B
+#define I2C_SLV2_REG     0x2C
+#define I2C_SLV2_CTRL    0x2D
+#define I2C_SLV3_ADDR    0x2E
+#define I2C_SLV3_REG     0x2F
+#define I2C_SLV3_CTRL    0x30
+#define I2C_SLV4_ADDR    0x31
+#define I2C_SLV4_REG     0x32
+#define I2C_SLV4_DO      0x33
+#define I2C_SLV4_CTRL    0x34
+#define I2C_SLV4_DI      0x35
+#define I2C_MST_STATUS   0x36
+#define INT_PIN_CFG      0x37
+#define INT_ENABLE       0x38
+#define DMP_INT_STATUS   0x39  // Check DMP interrupt
+#define INT_STATUS       0x3A
+#define ACCEL_XOUT_H     0x3B
+#define ACCEL_XOUT_L     0x3C
+#define ACCEL_YOUT_H     0x3D
+#define ACCEL_YOUT_L     0x3E
+#define ACCEL_ZOUT_H     0x3F
+#define ACCEL_ZOUT_L     0x40
+#define TEMP_OUT_H       0x41
+#define TEMP_OUT_L       0x42
+#define GYRO_XOUT_H      0x43
+#define GYRO_XOUT_L      0x44
+#define GYRO_YOUT_H      0x45
+#define GYRO_YOUT_L      0x46
+#define GYRO_ZOUT_H      0x47
+#define GYRO_ZOUT_L      0x48
+#define EXT_SENS_DATA_00 0x49
+#define EXT_SENS_DATA_01 0x4A
+#define EXT_SENS_DATA_02 0x4B
+#define EXT_SENS_DATA_03 0x4C
+#define EXT_SENS_DATA_04 0x4D
+#define EXT_SENS_DATA_05 0x4E
+#define EXT_SENS_DATA_06 0x4F
+#define EXT_SENS_DATA_07 0x50
+#define EXT_SENS_DATA_08 0x51
+#define EXT_SENS_DATA_09 0x52
+#define EXT_SENS_DATA_10 0x53
+#define EXT_SENS_DATA_11 0x54
+#define EXT_SENS_DATA_12 0x55
+#define EXT_SENS_DATA_13 0x56
+#define EXT_SENS_DATA_14 0x57
+#define EXT_SENS_DATA_15 0x58
+#define EXT_SENS_DATA_16 0x59
+#define EXT_SENS_DATA_17 0x5A
+#define EXT_SENS_DATA_18 0x5B
+#define EXT_SENS_DATA_19 0x5C
+#define EXT_SENS_DATA_20 0x5D
+#define EXT_SENS_DATA_21 0x5E
+#define EXT_SENS_DATA_22 0x5F
+#define EXT_SENS_DATA_23 0x60
+#define MOT_DETECT_STATUS 0x61
+#define I2C_SLV0_DO      0x63
+#define I2C_SLV1_DO      0x64
+#define I2C_SLV2_DO      0x65
+#define I2C_SLV3_DO      0x66
+#define I2C_MST_DELAY_CTRL 0x67
+#define SIGNAL_PATH_RESET  0x68
+#define MOT_DETECT_CTRL  0x69
+#define USER_CTRL        0x6A  // Bit 7 enable DMP, bit 3 reset DMP
+#define PWR_MGMT_1       0x6B // Device defaults to the SLEEP mode
+#define PWR_MGMT_2       0x6C
+#define DMP_BANK         0x6D  // Activates a specific bank in the DMP
+#define DMP_RW_PNT       0x6E  // Set read/write pointer to a specific start address in specified DMP bank
+#define DMP_REG          0x6F  // Register in DMP from which to read or to which to write
+#define DMP_REG_1        0x70
+#define DMP_REG_2        0x71 
+#define FIFO_COUNTH      0x72
+#define FIFO_COUNTL      0x73
+#define FIFO_R_W         0x74
+#define WHO_AM_I_MPU9250 0x75 // Should return 0x71
+#define XA_OFFSET_H      0x77
+#define XA_OFFSET_L      0x78
+#define YA_OFFSET_H      0x7A
+#define YA_OFFSET_L      0x7B
+#define ZA_OFFSET_H      0x7D
+#define ZA_OFFSET_L      0x7E
+
+enum Ascale {
+  AFS_2G = 0,
+  AFS_4G,
+  AFS_8G,
+  AFS_16G
+};
+
+enum Gscale {
+  GFS_250DPS = 0,
+  GFS_500DPS,
+  GFS_1000DPS,
+  GFS_2000DPS
+};
+
+enum Mscale {
+  MFS_14BITS = 0, // 0.6 mG per LSB
+  MFS_16BITS      // 0.15 mG per LSB
+};
+
+float PI = 3.14159265358979323846f;
+
+uint8_t Ascale = AFS_2G;     // AFS_2G, AFS_4G, AFS_8G, AFS_16G
+uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
+uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
+uint8_t Mmode = 0x06;        // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR  
+
+#endif
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MPU9250.h	Fri Sep 04 21:37:38 2015 +0000
@@ -0,0 +1,493 @@
+#include "DefineMPU.h"
+#include "mbed.h"
+#include "math.h"
+
+#define Kp 3.0f * 5.0f // 2 - 5 these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
+#define Ki 1.0f
+
+class MPU9250 {
+    public :     
+        int numero;                
+   
+    private:   
+        
+        static float Filter;
+                  
+        static float magCalibration[3]; // Factory mag calibration and mag bias
+        static float magbias[3];        // Factory mag calibration and mag bias
+        
+        static float gyroBias[3];  // Bias corrections for gyro and accelerometer
+        static float accelBias[3]; // Bias corrections for gyro and accelerometer
+        
+        int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output
+        int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
+        int16_t magCount[3];    // Stores the 16-bit signed magnetometer sensor output
+        
+        int16_t tempCount;   // Stores the real internal chip temperature in degrees Celsius
+        float temperature;
+        float SelfTest[6];
+        
+        static float GyroMeasError;   // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
+        static float beta;            // compute beta
+        static float GyroMeasDrift;   // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
+        static float zeta;  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
+    
+        float pitch, yaw, roll;
+        
+        static float q[4];        // vector to hold quaternion
+        static float eInt[3];     // vector to hold integral error for Mahony method 
+         
+        float aRes, gRes, mRes;      // scale resolutions per LSB for the sensors
+        float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values 
+                 
+    public:  
+      
+//===================================================================================================================
+//====== Set of useful function to access acceleratio, gyroscope, and temperature data
+//===================================================================================================================
+
+    MPU9250() {}
+
+    MPU9250(int n){ numero = n; }
+    
+    int GetPitch (void){ return (int)pitch; }
+    int GetRoll (void){ return (int)roll; }      
+    int GetYaw (void){ return (int)yaw; }     
+       
+    void writeByte(uint8_t address, uint8_t subAddress, uint8_t data){
+       char data_write[2];
+       data_write[0] = subAddress;
+       data_write[1] = data;       
+       i2c.write(address, data_write, 2, 0);
+   }
+
+    char readByte(uint8_t address, uint8_t subAddress){
+        char data[1]; 
+        char data_write[1];
+        data_write[0] = subAddress;
+        i2c.write(address, data_write, 1, 1); 
+        i2c.read(address, data, 1, 0); 
+        return data[0]; 
+    }
+
+    void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest){     
+        char data[14];
+        char data_write[1];
+        data_write[0] = subAddress;
+        i2c.write(address, data_write, 1, 1); 
+        i2c.read(address, data, count, 0); 
+        for(int ii = 0; ii < count; ii++) {
+            dest[ii] = data[ii];
+        }
+    } 
+ 
+    void getMres() {
+        switch (Mscale){
+            case MFS_14BITS: mRes = 10.0*4219.0/8190.0; break;
+            case MFS_16BITS: mRes = 10.0*4219.0/32760.0; break;
+        }
+    }
+
+    void getGres() {
+        switch (Gscale){
+            case GFS_250DPS: gRes = 250.0/32768.0; break;
+            case GFS_500DPS: gRes = 500.0/32768.0; break;
+            case GFS_1000DPS: gRes = 1000.0/32768.0; break;
+            case GFS_2000DPS: gRes = 2000.0/32768.0; break;
+        }
+    }
+
+    void getAres() {
+        switch (Ascale){
+            case AFS_2G: aRes = 2.0/32768.0; break;
+            case AFS_4G: aRes = 4.0/32768.0; break;
+            case AFS_8G: aRes = 8.0/32768.0; break;
+            case AFS_16G: aRes = 16.0/32768.0; break;
+        }
+    }
+
+    void readAccelData(int16_t * destination){
+        uint8_t rawData[6];  // x/y/z accel register data stored here
+        readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
+        destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
+        destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
+        destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
+    }
+    
+    void readGyroData(int16_t * destination){
+        uint8_t rawData[6];  // x/y/z gyro register data stored here
+        readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
+        destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
+        destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
+        destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
+    }
+
+    void readMagData(int16_t * destination){
+        uint8_t rawData[7];  // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
+        if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
+        readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]);  // Read the six raw data and ST2 registers sequentially into data array
+        uint8_t c = rawData[6]; // End data read by reading ST2 register
+        if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
+            destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]);  // Turn the MSB and LSB into a signed 16-bit value
+            destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ;  // Data stored as little Endian
+            destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ; 
+            }
+        }
+    }    
+    
+    void resetMPU9250() { // reset device
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+        wait(0.1);
+    }
+      
+    void initAK8963(float * destination){ // First extract the factory calibration for each magnetometer axis
+        uint8_t rawData[3];  // x/y/z gyro calibration data stored here
+        writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
+        wait(0.01);
+        writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
+        wait(0.01);
+        readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]);  // Read the x-, y-, and z-axis calibration values
+        destination[0] =  (float)(rawData[0] - 128)/256.0f + 1.0f;   // Return x-axis sensitivity adjustment values, etc.
+        destination[1] =  (float)(rawData[1] - 128)/256.0f + 1.0f;  
+        destination[2] =  (float)(rawData[2] - 128)/256.0f + 1.0f; 
+        writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
+        wait(0.01);
+        writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
+        wait(0.01);
+    }
+
+    void initMPU9250(){  
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
+        wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt  
+        
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+        writeByte(MPU9250_ADDRESS, CONFIG, 0x03);  
+     
+        writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
+        
+        uint8_t c =  readByte(MPU9250_ADDRESS, GYRO_CONFIG);
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
+    
+        c =  readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer 
+    
+        c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])  
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
+    
+        writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);    
+        writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
+    }
+
+    void calibrateMPU9250(float * dest1, float * dest2){  
+        uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
+        uint16_t ii, packet_count, fifo_count;
+        int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
+
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+        wait(0.1);  
+
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); 
+        wait(0.2);
+
+        writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
+        writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
+        writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
+        writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
+        writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
+        wait(0.015);
+
+        writeByte(MPU9250_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
+        writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
+        
+        uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
+        uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
+
+        writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
+        writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
+        wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
+
+        writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
+        readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
+        fifo_count = ((uint16_t)data[0] << 8) | data[1];
+        packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
+    
+        for (ii = 0; ii < packet_count; ii++) {
+            int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
+            readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
+            accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
+            accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
+            accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
+            gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
+            gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
+            gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
+            
+            accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
+            accel_bias[1] += (int32_t) accel_temp[1];
+            accel_bias[2] += (int32_t) accel_temp[2];
+            gyro_bias[0]  += (int32_t) gyro_temp[0];
+            gyro_bias[1]  += (int32_t) gyro_temp[1];
+            gyro_bias[2]  += (int32_t) gyro_temp[2];       
+        }
+        
+        accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
+        accel_bias[1] /= (int32_t) packet_count;
+        accel_bias[2] /= (int32_t) packet_count;
+        gyro_bias[0]  /= (int32_t) packet_count;
+        gyro_bias[1]  /= (int32_t) packet_count;
+        gyro_bias[2]  /= (int32_t) packet_count;
+        
+        if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
+        else {accel_bias[2] += (int32_t) accelsensitivity;}
+     
+        data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
+        data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
+        data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
+        data[3] = (-gyro_bias[1]/4)       & 0xFF;
+        data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
+        data[5] = (-gyro_bias[2]/4)       & 0xFF;
+    
+        dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
+        dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
+        dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
+    
+        int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
+        readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
+        accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+        readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
+        accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+        readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
+        accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+    
+        uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
+        uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
+    
+        for(ii = 0; ii < 3; ii++) {
+            if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
+        }
+    
+        accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
+        accel_bias_reg[1] -= (accel_bias[1]/8);
+        accel_bias_reg[2] -= (accel_bias[2]/8);
+        
+        data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
+        data[1] = (accel_bias_reg[0])      & 0xFF;
+        data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+        data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
+        data[3] = (accel_bias_reg[1])      & 0xFF;
+        data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+        data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
+        data[5] = (accel_bias_reg[2])      & 0xFF;
+        data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+    
+        dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
+        dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
+        dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
+    }   
+
+    void MadgwickQuaternionUpdate(void){
+    //void MadgwickQuaternionUpdate(float deltat){
+        
+        /*float tmp = mx;
+        mx = my;
+        my = tmp;         
+        az = -az;*/
+        
+        gx = gx*PI/180.0f;
+        gy = gy*PI/180.0f;
+        gz = gz*PI/180.0f;
+        
+        float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
+        float norm;
+        float hx, hy, _2bx, _2bz;
+        float s1, s2, s3, s4;
+        float qDot1, qDot2, qDot3, qDot4;
+
+        float _2q1mx;
+        float _2q1my;
+        float _2q1mz;
+        float _2q2mx;
+        float _4bx;
+        float _4bz;
+        float _2q1 = 2.0f * q1;
+        float _2q2 = 2.0f * q2;
+        float _2q3 = 2.0f * q3;
+        float _2q4 = 2.0f * q4;
+        float _2q1q3 = 2.0f * q1 * q3;
+        float _2q3q4 = 2.0f * q3 * q4;
+        float q1q1 = q1 * q1;
+        float q1q2 = q1 * q2;
+        float q1q3 = q1 * q3;
+        float q1q4 = q1 * q4;
+        float q2q2 = q2 * q2;
+        float q2q3 = q2 * q3;
+        float q2q4 = q2 * q4;
+        float q3q3 = q3 * q3;
+        float q3q4 = q3 * q4;
+        float q4q4 = q4 * q4;
+
+        norm = sqrt(ax * ax + ay * ay + az * az);
+        if (norm == 0.0f) return; 
+        norm = 1.0f/norm;
+        ax *= norm;
+        ay *= norm;
+        az *= norm;
+
+        norm = sqrt(mx * mx + my * my + mz * mz);
+        if (norm == 0.0f) return; 
+        norm = 1.0f/norm;
+        mx *= norm;
+        my *= norm;
+        mz *= norm;
+
+        _2q1mx = 2.0f * q1 * mx;
+        _2q1my = 2.0f * q1 * my;
+        _2q1mz = 2.0f * q1 * mz;
+        _2q2mx = 2.0f * q2 * mx;
+        
+        hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
+        hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
+        _2bx = sqrt(hx * hx + hy * hy);
+        _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
+        _4bx = 2.0f * _2bx;
+        _4bz = 2.0f * _2bz;
+
+        s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+        s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+        s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+        s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+        
+        norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    
+        norm = 1.0f/norm;
+        s1 *= norm;
+        s2 *= norm;
+        s3 *= norm;
+        s4 *= norm;
+
+        qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
+        qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
+        qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
+        qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
+
+        /*q1 += qDot1 * deltat;
+        q2 += qDot2 * deltat;
+        q3 += qDot3 * deltat;
+        q4 += qDot4 * deltat;*/
+        
+        q1 += qDot1 * Filter;
+        q2 += qDot2 * Filter;
+        q3 += qDot3 * Filter;
+        q4 += qDot4 * Filter;      
+        
+        norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); 
+        norm = 1.0f/norm;
+        q[0] = q1 * norm;
+        q[1] = q2 * norm;
+        q[2] = q3 * norm;
+        q[3] = q4 * norm;
+    }
+    
+    int Float_to_Int(float numb){
+        float n = numb -(int)numb;
+        if(n >= 0 && n < 0.5) return (int)numb;
+        if(n >= 0.5 && n <= 1) return (int)numb + 1;
+        if(n <= 0 && n > -0.5) return (int)numb;
+        if(n <= -0.5 && n >= -1) return (int)numb - 1;
+        else return 0;
+    }  
+    
+    void CalibIMU(void){
+        wait(1);          
+        resetMPU9250();  
+        calibrateMPU9250(gyroBias, accelBias);   
+        wait(2);  
+        initMPU9250();    
+        initAK8963(magCalibration);  
+        wait(2);       
+    }
+
+    void BiasIMU(void){
+        getAres(); 
+        getGres(); 
+        getMres();  
+        magbias[0] = +470.;  
+        magbias[1] = +120.;  
+        magbias[2] = +125.;  
+    } 
+    
+    void GetQuaternion(void){                
+        readAccelData(accelCount);  
+        ax = (float)accelCount[0]*aRes - accelBias[0];  
+        ay = (float)accelCount[1]*aRes - accelBias[1];   
+        az = (float)accelCount[2]*aRes - accelBias[2];  
+        
+        readGyroData(gyroCount);  
+        gx = (float)gyroCount[0]*gRes - gyroBias[0]; 
+        gy = (float)gyroCount[1]*gRes - gyroBias[1];  
+        gz = (float)gyroCount[2]*gRes - gyroBias[2];   
+        
+        readMagData(magCount); 
+        mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  
+        my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];  
+        mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];                                       
+    } 
+    
+    void FinalQuaternion(void){
+        yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
+        pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+        roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+        pitch *= 180.0f / PI;
+        yaw   *= 180.0f / PI; 
+        yaw   -= 0.9f;
+        roll  *= 180.0f / PI; 
+        
+        /*if((q[0]*q[1] + q[2]*q[3]) == 0.5){    //north pole
+            pitch = atan2(2*q[1]*q[3]-2*q[0]*q[2], 1 - 2*(q[1] * q[1]) - 2*(q[2] * q[2]));
+            yaw = atan2(2*q[0]*q[3]-2*q[1]*q[2], 1 - 2*(q[0] * q[0]) - 2*(q[2] * q[2]));
+        }   
+        else{
+            pitch = 2.0 * atan2(q[0],q[4]);
+            yaw = 0;           
+        }
+        
+        if((q[0]*q[1] + q[2]*q[3]) == -0.5){   //south pole
+            pitch = atan2(2*q[1]*q[3]-2*q[0]*q[2], 1 - 2*(q[1] * q[1]) - 2*(q[2] * q[2]));
+            yaw = atan2(2*q[0]*q[3]-2*q[1]*q[2], 1 - 2*(q[0] * q[0]) - 2*(q[2] * q[2]));
+        }   
+        else {
+            pitch = -2.0 * atan2(q[0],q[4]);
+            yaw = 0;        
+        }                     
+        roll = asin(2*q[0]*q[1] + 2*q[2]*q[3]);*/ 
+
+        
+        
+        //if(roll < 180 & roll > 0) roll -= 180; 
+        //else if(roll > -180 & roll < 0) roll += 180; 
+        
+        pitch = Float_to_Int(pitch);
+        roll = Float_to_Int(roll);
+        yaw = Float_to_Int(yaw);    
+    }         
+};
+  
+//Definition des variables dans la Class MPU9250, car la definition ne peut pas être faite à l'intérieur  
+float MPU9250::gyroBias[3] = {0, 0, 0};
+float MPU9250::accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer 
+float MPU9250::magCalibration[3] = {0, 0, 0};
+float MPU9250::magbias[3] = {0, 0, 0};
+float MPU9250::GyroMeasError = PI * (60.0f / 180.0f);     // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
+float MPU9250::beta = sqrt(3.0f / 4.0f) * GyroMeasError;  // compute beta
+float MPU9250::GyroMeasDrift = PI * (1.0f / 180.0f);      // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
+float MPU9250::zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
+float MPU9250::q[4] = {1.0f, 0.0f, 0.0f, 0.0f};           // vector to hold quaternion
+float MPU9250::eInt[3] = {0.0f, 0.0f, 0.0f};              // vector to hold integral error for Mahony method
+float MPU9250::Filter = 0.05;
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/PCA9547.lib	Fri Sep 04 21:37:38 2015 +0000
@@ -0,0 +1,1 @@
+https://developer.mbed.org/users/yenzo/code/PCA9547/#d0c2d2b24941
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/PowerControl.lib	Fri Sep 04 21:37:38 2015 +0000
@@ -0,0 +1,1 @@
+https://developer.mbed.org/users/yenzo/code/PowerControl/#dedd847106ba
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp	Fri Sep 04 21:37:38 2015 +0000
@@ -0,0 +1,116 @@
+#include "PCA9547/PCA9547.h"
+#include "PowerControl/PowerControl.h"
+#include "PowerControl/EthernetPowerControl.h"
+#define I2C_SDA p9 //28
+#define I2C_SCL p10 //27
+
+I2C i2c(I2C_SDA, I2C_SCL);
+
+PCA9547 mux( i2c, 0xE0 );
+int selectmux = 0;
+
+Serial pc(USBTX, USBRX); // tx, rx
+Timer t;
+int delt_t = 0, count = 0;
+int tpsend = 0;
+
+int IMU_DATA[9][3];
+int IMU_DATA_COMP[9][3];
+
+#include "MPU9250.h"
+
+MPU9250 IMU1(1), IMU2(2), IMU3(3), IMU4(4), IMU5(5), IMU6(6), IMU7(7), IMU8(8), IMU9(9);
+MPU9250 NIMU[9];
+
+void flushSerialBuffer(void) { 
+    char char1 = 0; 
+    while (pc.readable()) { 
+        char1 = pc.getc(); 
+    } 
+    return; 
+}
+
+int main() { 
+    NIMU[0] = IMU1;
+    NIMU[1] = IMU2;
+    NIMU[2] = IMU3;
+    NIMU[3] = IMU4;
+    NIMU[4] = IMU5;
+    NIMU[5] = IMU6;
+    NIMU[6] = IMU7;
+    NIMU[7] = IMU8;
+    NIMU[8] = IMU9;
+    
+    pc.baud(9600);  
+    i2c.frequency(400000);
+    PHY_PowerDown(); //Eteind le module Ethernet du Mbed afin d'économiser l'energie 
+    t.start();
+ 
+    for(int i = 0; i<8; i++){      
+        mux.select( i );
+        wait_us(5);  
+        /*i2c.stop();
+        wait_us(5); 
+        i2c.start();*/
+ 
+        uint8_t whoami_imu = 0;
+        while(whoami_imu != 0x71){
+            whoami_imu = NIMU[i].readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  
+        } 
+              
+        NIMU[i].CalibIMU();    
+        NIMU[i].BiasIMU();  
+        
+        pc.printf("Initilisation IMU numero : %d OK\n\r", i+1); 
+        pc.printf("\n\r");
+    }
+      
+    selectmux = 0;
+    mux.select( selectmux ); 
+    wait_us(10);  
+    /*i2c.stop();
+    wait_us(10); 
+    i2c.start();*/
+              
+    while(1){      
+
+        if(NIMU[selectmux].readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01){        
+            NIMU[selectmux].GetQuaternion();
+        }
+               
+        delt_t = t.read_ms() - count;
+        
+        if (delt_t > 20) {   
+            NIMU[selectmux].MadgwickQuaternionUpdate();
+            NIMU[selectmux].FinalQuaternion(); 
+            
+            IMU_DATA[selectmux][0] = NIMU[selectmux].GetPitch();
+            IMU_DATA[selectmux][1] = NIMU[selectmux].GetRoll();
+            IMU_DATA[selectmux][2] = NIMU[selectmux].GetYaw();
+             
+            selectmux++;
+            if(selectmux == 8) selectmux = 0;            
+            mux.select( selectmux );
+            wait_us(10);   
+            /*i2c.stop();
+            wait_us(10); 
+            i2c.start();*/
+            
+            tpsend+=delt_t;
+            count = t.read_ms(); 
+            
+            flushSerialBuffer();
+        }
+
+        if(tpsend > 500){                  
+            tpsend = 0;     
+
+            for(int i=0;i<8;i++){
+                //pc.printf("%d;%d;%d\n\r",IMU_DATA[i][0], IMU_DATA[i][1], IMU_DATA[i][2]);// 0 = Pitch, 1 = Roll et 2 = Yaw
+                pc.printf("IMU n%d, Pitch = %d; Roll = %d; Yaw = %d\n\r",i, IMU_DATA[i][0], IMU_DATA[i][1], IMU_DATA[i][2]);// 0 = Pitch, 1 = Roll et 2 = Yaw
+            }
+            
+            pc.printf("\n"); 
+        }       
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mbed.bld	Fri Sep 04 21:37:38 2015 +0000
@@ -0,0 +1,1 @@
+http://mbed.org/users/mbed_official/code/mbed/builds/7cff1c4259d7
\ No newline at end of file