Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-os by
arm_var_q15.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2014 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 19. March 2015 00005 * $Revision: V.1.4.5 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_var_q15.c 00009 * 00010 * Description: Variance of an array of Q15 type. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupStats 00045 */ 00046 00047 /** 00048 * @addtogroup variance 00049 * @{ 00050 */ 00051 00052 /** 00053 * @brief Variance of the elements of a Q15 vector. 00054 * @param[in] *pSrc points to the input vector 00055 * @param[in] blockSize length of the input vector 00056 * @param[out] *pResult variance value returned here 00057 * @return none. 00058 * 00059 * @details 00060 * <b>Scaling and Overflow Behavior:</b> 00061 * 00062 * \par 00063 * The function is implemented using a 64-bit internal accumulator. 00064 * The input is represented in 1.15 format. 00065 * Intermediate multiplication yields a 2.30 format, and this 00066 * result is added without saturation to a 64-bit accumulator in 34.30 format. 00067 * With 33 guard bits in the accumulator, there is no risk of overflow, and the 00068 * full precision of the intermediate multiplication is preserved. 00069 * Finally, the 34.30 result is truncated to 34.15 format by discarding the lower 00070 * 15 bits, and then saturated to yield a result in 1.15 format. 00071 * 00072 */ 00073 00074 00075 void arm_var_q15( 00076 q15_t * pSrc, 00077 uint32_t blockSize, 00078 q15_t * pResult) 00079 { 00080 00081 q31_t sum = 0; /* Accumulator */ 00082 q31_t meanOfSquares, squareOfMean; /* square of mean and mean of square */ 00083 uint32_t blkCnt; /* loop counter */ 00084 q63_t sumOfSquares = 0; /* Accumulator */ 00085 00086 #ifndef ARM_MATH_CM0_FAMILY 00087 00088 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00089 00090 q31_t in; /* input value */ 00091 q15_t in1; /* input value */ 00092 00093 if(blockSize == 1) 00094 { 00095 *pResult = 0; 00096 return; 00097 } 00098 00099 /*loop Unrolling */ 00100 blkCnt = blockSize >> 2u; 00101 00102 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00103 ** a second loop below computes the remaining 1 to 3 samples. */ 00104 while(blkCnt > 0u) 00105 { 00106 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ 00107 /* Compute Sum of squares of the input samples 00108 * and then store the result in a temporary variable, sum. */ 00109 in = *__SIMD32(pSrc)++; 00110 sum += ((in << 16) >> 16); 00111 sum += (in >> 16); 00112 sumOfSquares = __SMLALD(in, in, sumOfSquares); 00113 in = *__SIMD32(pSrc)++; 00114 sum += ((in << 16) >> 16); 00115 sum += (in >> 16); 00116 sumOfSquares = __SMLALD(in, in, sumOfSquares); 00117 00118 /* Decrement the loop counter */ 00119 blkCnt--; 00120 } 00121 00122 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00123 ** No loop unrolling is used. */ 00124 blkCnt = blockSize % 0x4u; 00125 00126 while(blkCnt > 0u) 00127 { 00128 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ 00129 /* Compute Sum of squares of the input samples 00130 * and then store the result in a temporary variable, sum. */ 00131 in1 = *pSrc++; 00132 sumOfSquares = __SMLALD(in1, in1, sumOfSquares); 00133 sum += in1; 00134 00135 /* Decrement the loop counter */ 00136 blkCnt--; 00137 } 00138 00139 /* Compute Mean of squares of the input samples 00140 * and then store the result in a temporary variable, meanOfSquares. */ 00141 meanOfSquares = (q31_t) (sumOfSquares / (q63_t)(blockSize - 1)); 00142 00143 /* Compute square of mean */ 00144 squareOfMean = (q31_t)((q63_t)sum * sum / (q63_t)(blockSize * (blockSize - 1))); 00145 00146 /* mean of the squares minus the square of the mean. */ 00147 *pResult = (meanOfSquares - squareOfMean) >> 15; 00148 00149 #else 00150 00151 /* Run the below code for Cortex-M0 */ 00152 q15_t in; /* input value */ 00153 00154 if(blockSize == 1) 00155 { 00156 *pResult = 0; 00157 return; 00158 } 00159 00160 /* Loop over blockSize number of values */ 00161 blkCnt = blockSize; 00162 00163 while(blkCnt > 0u) 00164 { 00165 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ 00166 /* Compute Sum of squares of the input samples 00167 * and then store the result in a temporary variable, sumOfSquares. */ 00168 in = *pSrc++; 00169 sumOfSquares += (in * in); 00170 00171 /* C = (A[0] + A[1] + A[2] + ... + A[blockSize-1]) */ 00172 /* Compute sum of all input values and then store the result in a temporary variable, sum. */ 00173 sum += in; 00174 00175 /* Decrement the loop counter */ 00176 blkCnt--; 00177 } 00178 00179 /* Compute Mean of squares of the input samples 00180 * and then store the result in a temporary variable, meanOfSquares. */ 00181 meanOfSquares = (q31_t) (sumOfSquares / (q63_t)(blockSize - 1)); 00182 00183 /* Compute square of mean */ 00184 squareOfMean = (q31_t)((q63_t)sum * sum / (q63_t)(blockSize * (blockSize - 1))); 00185 00186 /* mean of the squares minus the square of the mean. */ 00187 *pResult = (meanOfSquares - squareOfMean) >> 15; 00188 00189 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00190 00191 } 00192 00193 /** 00194 * @} end of variance group 00195 */
Generated on Tue Jul 12 2022 13:15:29 by
