Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-os by
arm_lms_f32.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2014 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 19. March 2015 00005 * $Revision: V.1.4.5 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_lms_f32.c 00009 * 00010 * Description: Processing function for the floating-point LMS filter. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupFilters 00045 */ 00046 00047 /** 00048 * @defgroup LMS Least Mean Square (LMS) Filters 00049 * 00050 * LMS filters are a class of adaptive filters that are able to "learn" an unknown transfer functions. 00051 * LMS filters use a gradient descent method in which the filter coefficients are updated based on the instantaneous error signal. 00052 * Adaptive filters are often used in communication systems, equalizers, and noise removal. 00053 * The CMSIS DSP Library contains LMS filter functions that operate on Q15, Q31, and floating-point data types. 00054 * The library also contains normalized LMS filters in which the filter coefficient adaptation is indepedent of the level of the input signal. 00055 * 00056 * An LMS filter consists of two components as shown below. 00057 * The first component is a standard transversal or FIR filter. 00058 * The second component is a coefficient update mechanism. 00059 * The LMS filter has two input signals. 00060 * The "input" feeds the FIR filter while the "reference input" corresponds to the desired output of the FIR filter. 00061 * That is, the FIR filter coefficients are updated so that the output of the FIR filter matches the reference input. 00062 * The filter coefficient update mechanism is based on the difference between the FIR filter output and the reference input. 00063 * This "error signal" tends towards zero as the filter adapts. 00064 * The LMS processing functions accept the input and reference input signals and generate the filter output and error signal. 00065 * \image html LMS.gif "Internal structure of the Least Mean Square filter" 00066 * 00067 * The functions operate on blocks of data and each call to the function processes 00068 * <code>blockSize</code> samples through the filter. 00069 * <code>pSrc</code> points to input signal, <code>pRef</code> points to reference signal, 00070 * <code>pOut</code> points to output signal and <code>pErr</code> points to error signal. 00071 * All arrays contain <code>blockSize</code> values. 00072 * 00073 * The functions operate on a block-by-block basis. 00074 * Internally, the filter coefficients <code>b[n]</code> are updated on a sample-by-sample basis. 00075 * The convergence of the LMS filter is slower compared to the normalized LMS algorithm. 00076 * 00077 * \par Algorithm: 00078 * The output signal <code>y[n]</code> is computed by a standard FIR filter: 00079 * <pre> 00080 * y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1] 00081 * </pre> 00082 * 00083 * \par 00084 * The error signal equals the difference between the reference signal <code>d[n]</code> and the filter output: 00085 * <pre> 00086 * e[n] = d[n] - y[n]. 00087 * </pre> 00088 * 00089 * \par 00090 * After each sample of the error signal is computed, the filter coefficients <code>b[k]</code> are updated on a sample-by-sample basis: 00091 * <pre> 00092 * b[k] = b[k] + e[n] * mu * x[n-k], for k=0, 1, ..., numTaps-1 00093 * </pre> 00094 * where <code>mu</code> is the step size and controls the rate of coefficient convergence. 00095 *\par 00096 * In the APIs, <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>. 00097 * Coefficients are stored in time reversed order. 00098 * \par 00099 * <pre> 00100 * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]} 00101 * </pre> 00102 * \par 00103 * <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>. 00104 * Samples in the state buffer are stored in the order: 00105 * \par 00106 * <pre> 00107 * {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]} 00108 * </pre> 00109 * \par 00110 * Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code> samples. 00111 * The increased state buffer length allows circular addressing, which is traditionally used in FIR filters, 00112 * to be avoided and yields a significant speed improvement. 00113 * The state variables are updated after each block of data is processed. 00114 * \par Instance Structure 00115 * The coefficients and state variables for a filter are stored together in an instance data structure. 00116 * A separate instance structure must be defined for each filter and 00117 * coefficient and state arrays cannot be shared among instances. 00118 * There are separate instance structure declarations for each of the 3 supported data types. 00119 * 00120 * \par Initialization Functions 00121 * There is also an associated initialization function for each data type. 00122 * The initialization function performs the following operations: 00123 * - Sets the values of the internal structure fields. 00124 * - Zeros out the values in the state buffer. 00125 * To do this manually without calling the init function, assign the follow subfields of the instance structure: 00126 * numTaps, pCoeffs, mu, postShift (not for f32), pState. Also set all of the values in pState to zero. 00127 * 00128 * \par 00129 * Use of the initialization function is optional. 00130 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section. 00131 * To place an instance structure into a const data section, the instance structure must be manually initialized. 00132 * Set the values in the state buffer to zeros before static initialization. 00133 * The code below statically initializes each of the 3 different data type filter instance structures 00134 * <pre> 00135 * arm_lms_instance_f32 S = {numTaps, pState, pCoeffs, mu}; 00136 * arm_lms_instance_q31 S = {numTaps, pState, pCoeffs, mu, postShift}; 00137 * arm_lms_instance_q15 S = {numTaps, pState, pCoeffs, mu, postShift}; 00138 * </pre> 00139 * where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer; 00140 * <code>pCoeffs</code> is the address of the coefficient buffer; <code>mu</code> is the step size parameter; and <code>postShift</code> is the shift applied to coefficients. 00141 * 00142 * \par Fixed-Point Behavior: 00143 * Care must be taken when using the Q15 and Q31 versions of the LMS filter. 00144 * The following issues must be considered: 00145 * - Scaling of coefficients 00146 * - Overflow and saturation 00147 * 00148 * \par Scaling of Coefficients: 00149 * Filter coefficients are represented as fractional values and 00150 * coefficients are restricted to lie in the range <code>[-1 +1)</code>. 00151 * The fixed-point functions have an additional scaling parameter <code>postShift</code>. 00152 * At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits. 00153 * This essentially scales the filter coefficients by <code>2^postShift</code> and 00154 * allows the filter coefficients to exceed the range <code>[+1 -1)</code>. 00155 * The value of <code>postShift</code> is set by the user based on the expected gain through the system being modeled. 00156 * 00157 * \par Overflow and Saturation: 00158 * Overflow and saturation behavior of the fixed-point Q15 and Q31 versions are 00159 * described separately as part of the function specific documentation below. 00160 */ 00161 00162 /** 00163 * @addtogroup LMS 00164 * @{ 00165 */ 00166 00167 /** 00168 * @details 00169 * This function operates on floating-point data types. 00170 * 00171 * @brief Processing function for floating-point LMS filter. 00172 * @param[in] *S points to an instance of the floating-point LMS filter structure. 00173 * @param[in] *pSrc points to the block of input data. 00174 * @param[in] *pRef points to the block of reference data. 00175 * @param[out] *pOut points to the block of output data. 00176 * @param[out] *pErr points to the block of error data. 00177 * @param[in] blockSize number of samples to process. 00178 * @return none. 00179 */ 00180 00181 void arm_lms_f32( 00182 const arm_lms_instance_f32 * S, 00183 float32_t * pSrc, 00184 float32_t * pRef, 00185 float32_t * pOut, 00186 float32_t * pErr, 00187 uint32_t blockSize) 00188 { 00189 float32_t *pState = S->pState; /* State pointer */ 00190 float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00191 float32_t *pStateCurnt; /* Points to the current sample of the state */ 00192 float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */ 00193 float32_t mu = S->mu; /* Adaptive factor */ 00194 uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */ 00195 uint32_t tapCnt, blkCnt; /* Loop counters */ 00196 float32_t sum, e, d; /* accumulator, error, reference data sample */ 00197 float32_t w = 0.0f; /* weight factor */ 00198 00199 e = 0.0f; 00200 d = 0.0f; 00201 00202 /* S->pState points to state array which contains previous frame (numTaps - 1) samples */ 00203 /* pStateCurnt points to the location where the new input data should be written */ 00204 pStateCurnt = &(S->pState[(numTaps - 1u)]); 00205 00206 blkCnt = blockSize; 00207 00208 00209 #ifndef ARM_MATH_CM0_FAMILY 00210 00211 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00212 00213 while(blkCnt > 0u) 00214 { 00215 /* Copy the new input sample into the state buffer */ 00216 *pStateCurnt++ = *pSrc++; 00217 00218 /* Initialize pState pointer */ 00219 px = pState; 00220 00221 /* Initialize coeff pointer */ 00222 pb = (pCoeffs); 00223 00224 /* Set the accumulator to zero */ 00225 sum = 0.0f; 00226 00227 /* Loop unrolling. Process 4 taps at a time. */ 00228 tapCnt = numTaps >> 2; 00229 00230 while(tapCnt > 0u) 00231 { 00232 /* Perform the multiply-accumulate */ 00233 sum += (*px++) * (*pb++); 00234 sum += (*px++) * (*pb++); 00235 sum += (*px++) * (*pb++); 00236 sum += (*px++) * (*pb++); 00237 00238 /* Decrement the loop counter */ 00239 tapCnt--; 00240 } 00241 00242 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00243 tapCnt = numTaps % 0x4u; 00244 00245 while(tapCnt > 0u) 00246 { 00247 /* Perform the multiply-accumulate */ 00248 sum += (*px++) * (*pb++); 00249 00250 /* Decrement the loop counter */ 00251 tapCnt--; 00252 } 00253 00254 /* The result in the accumulator, store in the destination buffer. */ 00255 *pOut++ = sum; 00256 00257 /* Compute and store error */ 00258 d = (float32_t) (*pRef++); 00259 e = d - sum; 00260 *pErr++ = e; 00261 00262 /* Calculation of Weighting factor for the updating filter coefficients */ 00263 w = e * mu; 00264 00265 /* Initialize pState pointer */ 00266 px = pState; 00267 00268 /* Initialize coeff pointer */ 00269 pb = (pCoeffs); 00270 00271 /* Loop unrolling. Process 4 taps at a time. */ 00272 tapCnt = numTaps >> 2; 00273 00274 /* Update filter coefficients */ 00275 while(tapCnt > 0u) 00276 { 00277 /* Perform the multiply-accumulate */ 00278 *pb = *pb + (w * (*px++)); 00279 pb++; 00280 00281 *pb = *pb + (w * (*px++)); 00282 pb++; 00283 00284 *pb = *pb + (w * (*px++)); 00285 pb++; 00286 00287 *pb = *pb + (w * (*px++)); 00288 pb++; 00289 00290 /* Decrement the loop counter */ 00291 tapCnt--; 00292 } 00293 00294 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00295 tapCnt = numTaps % 0x4u; 00296 00297 while(tapCnt > 0u) 00298 { 00299 /* Perform the multiply-accumulate */ 00300 *pb = *pb + (w * (*px++)); 00301 pb++; 00302 00303 /* Decrement the loop counter */ 00304 tapCnt--; 00305 } 00306 00307 /* Advance state pointer by 1 for the next sample */ 00308 pState = pState + 1; 00309 00310 /* Decrement the loop counter */ 00311 blkCnt--; 00312 } 00313 00314 00315 /* Processing is complete. Now copy the last numTaps - 1 samples to the 00316 satrt of the state buffer. This prepares the state buffer for the 00317 next function call. */ 00318 00319 /* Points to the start of the pState buffer */ 00320 pStateCurnt = S->pState; 00321 00322 /* Loop unrolling for (numTaps - 1u) samples copy */ 00323 tapCnt = (numTaps - 1u) >> 2u; 00324 00325 /* copy data */ 00326 while(tapCnt > 0u) 00327 { 00328 *pStateCurnt++ = *pState++; 00329 *pStateCurnt++ = *pState++; 00330 *pStateCurnt++ = *pState++; 00331 *pStateCurnt++ = *pState++; 00332 00333 /* Decrement the loop counter */ 00334 tapCnt--; 00335 } 00336 00337 /* Calculate remaining number of copies */ 00338 tapCnt = (numTaps - 1u) % 0x4u; 00339 00340 /* Copy the remaining q31_t data */ 00341 while(tapCnt > 0u) 00342 { 00343 *pStateCurnt++ = *pState++; 00344 00345 /* Decrement the loop counter */ 00346 tapCnt--; 00347 } 00348 00349 #else 00350 00351 /* Run the below code for Cortex-M0 */ 00352 00353 while(blkCnt > 0u) 00354 { 00355 /* Copy the new input sample into the state buffer */ 00356 *pStateCurnt++ = *pSrc++; 00357 00358 /* Initialize pState pointer */ 00359 px = pState; 00360 00361 /* Initialize pCoeffs pointer */ 00362 pb = pCoeffs; 00363 00364 /* Set the accumulator to zero */ 00365 sum = 0.0f; 00366 00367 /* Loop over numTaps number of values */ 00368 tapCnt = numTaps; 00369 00370 while(tapCnt > 0u) 00371 { 00372 /* Perform the multiply-accumulate */ 00373 sum += (*px++) * (*pb++); 00374 00375 /* Decrement the loop counter */ 00376 tapCnt--; 00377 } 00378 00379 /* The result is stored in the destination buffer. */ 00380 *pOut++ = sum; 00381 00382 /* Compute and store error */ 00383 d = (float32_t) (*pRef++); 00384 e = d - sum; 00385 *pErr++ = e; 00386 00387 /* Weighting factor for the LMS version */ 00388 w = e * mu; 00389 00390 /* Initialize pState pointer */ 00391 px = pState; 00392 00393 /* Initialize pCoeffs pointer */ 00394 pb = pCoeffs; 00395 00396 /* Loop over numTaps number of values */ 00397 tapCnt = numTaps; 00398 00399 while(tapCnt > 0u) 00400 { 00401 /* Perform the multiply-accumulate */ 00402 *pb = *pb + (w * (*px++)); 00403 pb++; 00404 00405 /* Decrement the loop counter */ 00406 tapCnt--; 00407 } 00408 00409 /* Advance state pointer by 1 for the next sample */ 00410 pState = pState + 1; 00411 00412 /* Decrement the loop counter */ 00413 blkCnt--; 00414 } 00415 00416 00417 /* Processing is complete. Now copy the last numTaps - 1 samples to the 00418 * start of the state buffer. This prepares the state buffer for the 00419 * next function call. */ 00420 00421 /* Points to the start of the pState buffer */ 00422 pStateCurnt = S->pState; 00423 00424 /* Copy (numTaps - 1u) samples */ 00425 tapCnt = (numTaps - 1u); 00426 00427 /* Copy the data */ 00428 while(tapCnt > 0u) 00429 { 00430 *pStateCurnt++ = *pState++; 00431 00432 /* Decrement the loop counter */ 00433 tapCnt--; 00434 } 00435 00436 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00437 00438 } 00439 00440 /** 00441 * @} end of LMS group 00442 */
Generated on Tue Jul 12 2022 13:15:25 by
