Lee Kai Xuan / mbed-os

Fork of mbed-os by erkin yucel

Committer:
elessair
Date:
Sun Oct 23 15:10:02 2016 +0000
Revision:
0:f269e3021894
Initial commit

Who changed what in which revision?

UserRevisionLine numberNew contents of line
elessair 0:f269e3021894 1 /* ----------------------------------------------------------------------
elessair 0:f269e3021894 2 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
elessair 0:f269e3021894 3 *
elessair 0:f269e3021894 4 * $Date: 20. October 2015
elessair 0:f269e3021894 5 * $Revision: V1.4.5 b
elessair 0:f269e3021894 6 *
elessair 0:f269e3021894 7 * Project: CMSIS DSP Library
elessair 0:f269e3021894 8 * Title: arm_math.h
elessair 0:f269e3021894 9 *
elessair 0:f269e3021894 10 * Description: Public header file for CMSIS DSP Library
elessair 0:f269e3021894 11 *
elessair 0:f269e3021894 12 * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
elessair 0:f269e3021894 13 *
elessair 0:f269e3021894 14 * Redistribution and use in source and binary forms, with or without
elessair 0:f269e3021894 15 * modification, are permitted provided that the following conditions
elessair 0:f269e3021894 16 * are met:
elessair 0:f269e3021894 17 * - Redistributions of source code must retain the above copyright
elessair 0:f269e3021894 18 * notice, this list of conditions and the following disclaimer.
elessair 0:f269e3021894 19 * - Redistributions in binary form must reproduce the above copyright
elessair 0:f269e3021894 20 * notice, this list of conditions and the following disclaimer in
elessair 0:f269e3021894 21 * the documentation and/or other materials provided with the
elessair 0:f269e3021894 22 * distribution.
elessair 0:f269e3021894 23 * - Neither the name of ARM LIMITED nor the names of its contributors
elessair 0:f269e3021894 24 * may be used to endorse or promote products derived from this
elessair 0:f269e3021894 25 * software without specific prior written permission.
elessair 0:f269e3021894 26 *
elessair 0:f269e3021894 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
elessair 0:f269e3021894 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
elessair 0:f269e3021894 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
elessair 0:f269e3021894 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
elessair 0:f269e3021894 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
elessair 0:f269e3021894 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
elessair 0:f269e3021894 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
elessair 0:f269e3021894 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
elessair 0:f269e3021894 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
elessair 0:f269e3021894 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
elessair 0:f269e3021894 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
elessair 0:f269e3021894 38 * POSSIBILITY OF SUCH DAMAGE.
elessair 0:f269e3021894 39 * -------------------------------------------------------------------- */
elessair 0:f269e3021894 40
elessair 0:f269e3021894 41 /**
elessair 0:f269e3021894 42 \mainpage CMSIS DSP Software Library
elessair 0:f269e3021894 43 *
elessair 0:f269e3021894 44 * Introduction
elessair 0:f269e3021894 45 * ------------
elessair 0:f269e3021894 46 *
elessair 0:f269e3021894 47 * This user manual describes the CMSIS DSP software library,
elessair 0:f269e3021894 48 * a suite of common signal processing functions for use on Cortex-M processor based devices.
elessair 0:f269e3021894 49 *
elessair 0:f269e3021894 50 * The library is divided into a number of functions each covering a specific category:
elessair 0:f269e3021894 51 * - Basic math functions
elessair 0:f269e3021894 52 * - Fast math functions
elessair 0:f269e3021894 53 * - Complex math functions
elessair 0:f269e3021894 54 * - Filters
elessair 0:f269e3021894 55 * - Matrix functions
elessair 0:f269e3021894 56 * - Transforms
elessair 0:f269e3021894 57 * - Motor control functions
elessair 0:f269e3021894 58 * - Statistical functions
elessair 0:f269e3021894 59 * - Support functions
elessair 0:f269e3021894 60 * - Interpolation functions
elessair 0:f269e3021894 61 *
elessair 0:f269e3021894 62 * The library has separate functions for operating on 8-bit integers, 16-bit integers,
elessair 0:f269e3021894 63 * 32-bit integer and 32-bit floating-point values.
elessair 0:f269e3021894 64 *
elessair 0:f269e3021894 65 * Using the Library
elessair 0:f269e3021894 66 * ------------
elessair 0:f269e3021894 67 *
elessair 0:f269e3021894 68 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
elessair 0:f269e3021894 69 * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
elessair 0:f269e3021894 70 * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
elessair 0:f269e3021894 71 * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
elessair 0:f269e3021894 72 * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
elessair 0:f269e3021894 73 * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
elessair 0:f269e3021894 74 * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
elessair 0:f269e3021894 75 * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
elessair 0:f269e3021894 76 * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
elessair 0:f269e3021894 77 * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
elessair 0:f269e3021894 78 * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
elessair 0:f269e3021894 79 * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
elessair 0:f269e3021894 80 * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
elessair 0:f269e3021894 81 * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
elessair 0:f269e3021894 82 * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
elessair 0:f269e3021894 83 *
elessair 0:f269e3021894 84 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
elessair 0:f269e3021894 85 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
elessair 0:f269e3021894 86 * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
elessair 0:f269e3021894 87 * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
elessair 0:f269e3021894 88 * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
elessair 0:f269e3021894 89 *
elessair 0:f269e3021894 90 * Examples
elessair 0:f269e3021894 91 * --------
elessair 0:f269e3021894 92 *
elessair 0:f269e3021894 93 * The library ships with a number of examples which demonstrate how to use the library functions.
elessair 0:f269e3021894 94 *
elessair 0:f269e3021894 95 * Toolchain Support
elessair 0:f269e3021894 96 * ------------
elessair 0:f269e3021894 97 *
elessair 0:f269e3021894 98 * The library has been developed and tested with MDK-ARM version 5.14.0.0
elessair 0:f269e3021894 99 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
elessair 0:f269e3021894 100 *
elessair 0:f269e3021894 101 * Building the Library
elessair 0:f269e3021894 102 * ------------
elessair 0:f269e3021894 103 *
elessair 0:f269e3021894 104 * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
elessair 0:f269e3021894 105 * - arm_cortexM_math.uvprojx
elessair 0:f269e3021894 106 *
elessair 0:f269e3021894 107 *
elessair 0:f269e3021894 108 * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
elessair 0:f269e3021894 109 *
elessair 0:f269e3021894 110 * Pre-processor Macros
elessair 0:f269e3021894 111 * ------------
elessair 0:f269e3021894 112 *
elessair 0:f269e3021894 113 * Each library project have differant pre-processor macros.
elessair 0:f269e3021894 114 *
elessair 0:f269e3021894 115 * - UNALIGNED_SUPPORT_DISABLE:
elessair 0:f269e3021894 116 *
elessair 0:f269e3021894 117 * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
elessair 0:f269e3021894 118 *
elessair 0:f269e3021894 119 * - ARM_MATH_BIG_ENDIAN:
elessair 0:f269e3021894 120 *
elessair 0:f269e3021894 121 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
elessair 0:f269e3021894 122 *
elessair 0:f269e3021894 123 * - ARM_MATH_MATRIX_CHECK:
elessair 0:f269e3021894 124 *
elessair 0:f269e3021894 125 * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
elessair 0:f269e3021894 126 *
elessair 0:f269e3021894 127 * - ARM_MATH_ROUNDING:
elessair 0:f269e3021894 128 *
elessair 0:f269e3021894 129 * Define macro ARM_MATH_ROUNDING for rounding on support functions
elessair 0:f269e3021894 130 *
elessair 0:f269e3021894 131 * - ARM_MATH_CMx:
elessair 0:f269e3021894 132 *
elessair 0:f269e3021894 133 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
elessair 0:f269e3021894 134 * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
elessair 0:f269e3021894 135 * ARM_MATH_CM7 for building the library on cortex-M7.
elessair 0:f269e3021894 136 *
elessair 0:f269e3021894 137 * - __FPU_PRESENT:
elessair 0:f269e3021894 138 *
elessair 0:f269e3021894 139 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
elessair 0:f269e3021894 140 *
elessair 0:f269e3021894 141 * <hr>
elessair 0:f269e3021894 142 * CMSIS-DSP in ARM::CMSIS Pack
elessair 0:f269e3021894 143 * -----------------------------
elessair 0:f269e3021894 144 *
elessair 0:f269e3021894 145 * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
elessair 0:f269e3021894 146 * |File/Folder |Content |
elessair 0:f269e3021894 147 * |------------------------------|------------------------------------------------------------------------|
elessair 0:f269e3021894 148 * |\b CMSIS\\Documentation\\DSP | This documentation |
elessair 0:f269e3021894 149 * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
elessair 0:f269e3021894 150 * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
elessair 0:f269e3021894 151 * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
elessair 0:f269e3021894 152 *
elessair 0:f269e3021894 153 * <hr>
elessair 0:f269e3021894 154 * Revision History of CMSIS-DSP
elessair 0:f269e3021894 155 * ------------
elessair 0:f269e3021894 156 * Please refer to \ref ChangeLog_pg.
elessair 0:f269e3021894 157 *
elessair 0:f269e3021894 158 * Copyright Notice
elessair 0:f269e3021894 159 * ------------
elessair 0:f269e3021894 160 *
elessair 0:f269e3021894 161 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
elessair 0:f269e3021894 162 */
elessair 0:f269e3021894 163
elessair 0:f269e3021894 164
elessair 0:f269e3021894 165 /**
elessair 0:f269e3021894 166 * @defgroup groupMath Basic Math Functions
elessair 0:f269e3021894 167 */
elessair 0:f269e3021894 168
elessair 0:f269e3021894 169 /**
elessair 0:f269e3021894 170 * @defgroup groupFastMath Fast Math Functions
elessair 0:f269e3021894 171 * This set of functions provides a fast approximation to sine, cosine, and square root.
elessair 0:f269e3021894 172 * As compared to most of the other functions in the CMSIS math library, the fast math functions
elessair 0:f269e3021894 173 * operate on individual values and not arrays.
elessair 0:f269e3021894 174 * There are separate functions for Q15, Q31, and floating-point data.
elessair 0:f269e3021894 175 *
elessair 0:f269e3021894 176 */
elessair 0:f269e3021894 177
elessair 0:f269e3021894 178 /**
elessair 0:f269e3021894 179 * @defgroup groupCmplxMath Complex Math Functions
elessair 0:f269e3021894 180 * This set of functions operates on complex data vectors.
elessair 0:f269e3021894 181 * The data in the complex arrays is stored in an interleaved fashion
elessair 0:f269e3021894 182 * (real, imag, real, imag, ...).
elessair 0:f269e3021894 183 * In the API functions, the number of samples in a complex array refers
elessair 0:f269e3021894 184 * to the number of complex values; the array contains twice this number of
elessair 0:f269e3021894 185 * real values.
elessair 0:f269e3021894 186 */
elessair 0:f269e3021894 187
elessair 0:f269e3021894 188 /**
elessair 0:f269e3021894 189 * @defgroup groupFilters Filtering Functions
elessair 0:f269e3021894 190 */
elessair 0:f269e3021894 191
elessair 0:f269e3021894 192 /**
elessair 0:f269e3021894 193 * @defgroup groupMatrix Matrix Functions
elessair 0:f269e3021894 194 *
elessair 0:f269e3021894 195 * This set of functions provides basic matrix math operations.
elessair 0:f269e3021894 196 * The functions operate on matrix data structures. For example,
elessair 0:f269e3021894 197 * the type
elessair 0:f269e3021894 198 * definition for the floating-point matrix structure is shown
elessair 0:f269e3021894 199 * below:
elessair 0:f269e3021894 200 * <pre>
elessair 0:f269e3021894 201 * typedef struct
elessair 0:f269e3021894 202 * {
elessair 0:f269e3021894 203 * uint16_t numRows; // number of rows of the matrix.
elessair 0:f269e3021894 204 * uint16_t numCols; // number of columns of the matrix.
elessair 0:f269e3021894 205 * float32_t *pData; // points to the data of the matrix.
elessair 0:f269e3021894 206 * } arm_matrix_instance_f32;
elessair 0:f269e3021894 207 * </pre>
elessair 0:f269e3021894 208 * There are similar definitions for Q15 and Q31 data types.
elessair 0:f269e3021894 209 *
elessair 0:f269e3021894 210 * The structure specifies the size of the matrix and then points to
elessair 0:f269e3021894 211 * an array of data. The array is of size <code>numRows X numCols</code>
elessair 0:f269e3021894 212 * and the values are arranged in row order. That is, the
elessair 0:f269e3021894 213 * matrix element (i, j) is stored at:
elessair 0:f269e3021894 214 * <pre>
elessair 0:f269e3021894 215 * pData[i*numCols + j]
elessair 0:f269e3021894 216 * </pre>
elessair 0:f269e3021894 217 *
elessair 0:f269e3021894 218 * \par Init Functions
elessair 0:f269e3021894 219 * There is an associated initialization function for each type of matrix
elessair 0:f269e3021894 220 * data structure.
elessair 0:f269e3021894 221 * The initialization function sets the values of the internal structure fields.
elessair 0:f269e3021894 222 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
elessair 0:f269e3021894 223 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
elessair 0:f269e3021894 224 *
elessair 0:f269e3021894 225 * \par
elessair 0:f269e3021894 226 * Use of the initialization function is optional. However, if initialization function is used
elessair 0:f269e3021894 227 * then the instance structure cannot be placed into a const data section.
elessair 0:f269e3021894 228 * To place the instance structure in a const data
elessair 0:f269e3021894 229 * section, manually initialize the data structure. For example:
elessair 0:f269e3021894 230 * <pre>
elessair 0:f269e3021894 231 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
elessair 0:f269e3021894 232 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
elessair 0:f269e3021894 233 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
elessair 0:f269e3021894 234 * </pre>
elessair 0:f269e3021894 235 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
elessair 0:f269e3021894 236 * specifies the number of columns, and <code>pData</code> points to the
elessair 0:f269e3021894 237 * data array.
elessair 0:f269e3021894 238 *
elessair 0:f269e3021894 239 * \par Size Checking
elessair 0:f269e3021894 240 * By default all of the matrix functions perform size checking on the input and
elessair 0:f269e3021894 241 * output matrices. For example, the matrix addition function verifies that the
elessair 0:f269e3021894 242 * two input matrices and the output matrix all have the same number of rows and
elessair 0:f269e3021894 243 * columns. If the size check fails the functions return:
elessair 0:f269e3021894 244 * <pre>
elessair 0:f269e3021894 245 * ARM_MATH_SIZE_MISMATCH
elessair 0:f269e3021894 246 * </pre>
elessair 0:f269e3021894 247 * Otherwise the functions return
elessair 0:f269e3021894 248 * <pre>
elessair 0:f269e3021894 249 * ARM_MATH_SUCCESS
elessair 0:f269e3021894 250 * </pre>
elessair 0:f269e3021894 251 * There is some overhead associated with this matrix size checking.
elessair 0:f269e3021894 252 * The matrix size checking is enabled via the \#define
elessair 0:f269e3021894 253 * <pre>
elessair 0:f269e3021894 254 * ARM_MATH_MATRIX_CHECK
elessair 0:f269e3021894 255 * </pre>
elessair 0:f269e3021894 256 * within the library project settings. By default this macro is defined
elessair 0:f269e3021894 257 * and size checking is enabled. By changing the project settings and
elessair 0:f269e3021894 258 * undefining this macro size checking is eliminated and the functions
elessair 0:f269e3021894 259 * run a bit faster. With size checking disabled the functions always
elessair 0:f269e3021894 260 * return <code>ARM_MATH_SUCCESS</code>.
elessair 0:f269e3021894 261 */
elessair 0:f269e3021894 262
elessair 0:f269e3021894 263 /**
elessair 0:f269e3021894 264 * @defgroup groupTransforms Transform Functions
elessair 0:f269e3021894 265 */
elessair 0:f269e3021894 266
elessair 0:f269e3021894 267 /**
elessair 0:f269e3021894 268 * @defgroup groupController Controller Functions
elessair 0:f269e3021894 269 */
elessair 0:f269e3021894 270
elessair 0:f269e3021894 271 /**
elessair 0:f269e3021894 272 * @defgroup groupStats Statistics Functions
elessair 0:f269e3021894 273 */
elessair 0:f269e3021894 274 /**
elessair 0:f269e3021894 275 * @defgroup groupSupport Support Functions
elessair 0:f269e3021894 276 */
elessair 0:f269e3021894 277
elessair 0:f269e3021894 278 /**
elessair 0:f269e3021894 279 * @defgroup groupInterpolation Interpolation Functions
elessair 0:f269e3021894 280 * These functions perform 1- and 2-dimensional interpolation of data.
elessair 0:f269e3021894 281 * Linear interpolation is used for 1-dimensional data and
elessair 0:f269e3021894 282 * bilinear interpolation is used for 2-dimensional data.
elessair 0:f269e3021894 283 */
elessair 0:f269e3021894 284
elessair 0:f269e3021894 285 /**
elessair 0:f269e3021894 286 * @defgroup groupExamples Examples
elessair 0:f269e3021894 287 */
elessair 0:f269e3021894 288 #ifndef _ARM_MATH_H
elessair 0:f269e3021894 289 #define _ARM_MATH_H
elessair 0:f269e3021894 290
elessair 0:f269e3021894 291 /* ignore some GCC warnings */
elessair 0:f269e3021894 292 #if defined ( __GNUC__ )
elessair 0:f269e3021894 293 #pragma GCC diagnostic push
elessair 0:f269e3021894 294 #pragma GCC diagnostic ignored "-Wsign-conversion"
elessair 0:f269e3021894 295 #pragma GCC diagnostic ignored "-Wconversion"
elessair 0:f269e3021894 296 #pragma GCC diagnostic ignored "-Wunused-parameter"
elessair 0:f269e3021894 297 #endif
elessair 0:f269e3021894 298
elessair 0:f269e3021894 299 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
elessair 0:f269e3021894 300
elessair 0:f269e3021894 301 #if defined(ARM_MATH_CM7)
elessair 0:f269e3021894 302 #include "core_cm7.h"
elessair 0:f269e3021894 303 #elif defined (ARM_MATH_CM4)
elessair 0:f269e3021894 304 #include "core_cm4.h"
elessair 0:f269e3021894 305 #elif defined (ARM_MATH_CM3)
elessair 0:f269e3021894 306 #include "core_cm3.h"
elessair 0:f269e3021894 307 #elif defined (ARM_MATH_CM0)
elessair 0:f269e3021894 308 #include "core_cm0.h"
elessair 0:f269e3021894 309 #define ARM_MATH_CM0_FAMILY
elessair 0:f269e3021894 310 #elif defined (ARM_MATH_CM0PLUS)
elessair 0:f269e3021894 311 #include "core_cm0plus.h"
elessair 0:f269e3021894 312 #define ARM_MATH_CM0_FAMILY
elessair 0:f269e3021894 313 #else
elessair 0:f269e3021894 314 #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
elessair 0:f269e3021894 315 #endif
elessair 0:f269e3021894 316
elessair 0:f269e3021894 317 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
elessair 0:f269e3021894 318 #include "string.h"
elessair 0:f269e3021894 319 #include "math.h"
elessair 0:f269e3021894 320
elessair 0:f269e3021894 321 #ifdef __cplusplus
elessair 0:f269e3021894 322 extern "C"
elessair 0:f269e3021894 323 {
elessair 0:f269e3021894 324 #endif
elessair 0:f269e3021894 325
elessair 0:f269e3021894 326
elessair 0:f269e3021894 327 /**
elessair 0:f269e3021894 328 * @brief Macros required for reciprocal calculation in Normalized LMS
elessair 0:f269e3021894 329 */
elessair 0:f269e3021894 330
elessair 0:f269e3021894 331 #define DELTA_Q31 (0x100)
elessair 0:f269e3021894 332 #define DELTA_Q15 0x5
elessair 0:f269e3021894 333 #define INDEX_MASK 0x0000003F
elessair 0:f269e3021894 334 #ifndef PI
elessair 0:f269e3021894 335 #define PI 3.14159265358979f
elessair 0:f269e3021894 336 #endif
elessair 0:f269e3021894 337
elessair 0:f269e3021894 338 /**
elessair 0:f269e3021894 339 * @brief Macros required for SINE and COSINE Fast math approximations
elessair 0:f269e3021894 340 */
elessair 0:f269e3021894 341
elessair 0:f269e3021894 342 #define FAST_MATH_TABLE_SIZE 512
elessair 0:f269e3021894 343 #define FAST_MATH_Q31_SHIFT (32 - 10)
elessair 0:f269e3021894 344 #define FAST_MATH_Q15_SHIFT (16 - 10)
elessair 0:f269e3021894 345 #define CONTROLLER_Q31_SHIFT (32 - 9)
elessair 0:f269e3021894 346 #define TABLE_SIZE 256
elessair 0:f269e3021894 347 #define TABLE_SPACING_Q31 0x400000
elessair 0:f269e3021894 348 #define TABLE_SPACING_Q15 0x80
elessair 0:f269e3021894 349
elessair 0:f269e3021894 350 /**
elessair 0:f269e3021894 351 * @brief Macros required for SINE and COSINE Controller functions
elessair 0:f269e3021894 352 */
elessair 0:f269e3021894 353 /* 1.31(q31) Fixed value of 2/360 */
elessair 0:f269e3021894 354 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
elessair 0:f269e3021894 355 #define INPUT_SPACING 0xB60B61
elessair 0:f269e3021894 356
elessair 0:f269e3021894 357 /**
elessair 0:f269e3021894 358 * @brief Macro for Unaligned Support
elessair 0:f269e3021894 359 */
elessair 0:f269e3021894 360 #ifndef UNALIGNED_SUPPORT_DISABLE
elessair 0:f269e3021894 361 #define ALIGN4
elessair 0:f269e3021894 362 #else
elessair 0:f269e3021894 363 #if defined (__GNUC__)
elessair 0:f269e3021894 364 #define ALIGN4 __attribute__((aligned(4)))
elessair 0:f269e3021894 365 #else
elessair 0:f269e3021894 366 #define ALIGN4 __align(4)
elessair 0:f269e3021894 367 #endif
elessair 0:f269e3021894 368 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
elessair 0:f269e3021894 369
elessair 0:f269e3021894 370 /**
elessair 0:f269e3021894 371 * @brief Error status returned by some functions in the library.
elessair 0:f269e3021894 372 */
elessair 0:f269e3021894 373
elessair 0:f269e3021894 374 typedef enum
elessair 0:f269e3021894 375 {
elessair 0:f269e3021894 376 ARM_MATH_SUCCESS = 0, /**< No error */
elessair 0:f269e3021894 377 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
elessair 0:f269e3021894 378 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
elessair 0:f269e3021894 379 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
elessair 0:f269e3021894 380 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
elessair 0:f269e3021894 381 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
elessair 0:f269e3021894 382 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
elessair 0:f269e3021894 383 } arm_status;
elessair 0:f269e3021894 384
elessair 0:f269e3021894 385 /**
elessair 0:f269e3021894 386 * @brief 8-bit fractional data type in 1.7 format.
elessair 0:f269e3021894 387 */
elessair 0:f269e3021894 388 typedef int8_t q7_t;
elessair 0:f269e3021894 389
elessair 0:f269e3021894 390 /**
elessair 0:f269e3021894 391 * @brief 16-bit fractional data type in 1.15 format.
elessair 0:f269e3021894 392 */
elessair 0:f269e3021894 393 typedef int16_t q15_t;
elessair 0:f269e3021894 394
elessair 0:f269e3021894 395 /**
elessair 0:f269e3021894 396 * @brief 32-bit fractional data type in 1.31 format.
elessair 0:f269e3021894 397 */
elessair 0:f269e3021894 398 typedef int32_t q31_t;
elessair 0:f269e3021894 399
elessair 0:f269e3021894 400 /**
elessair 0:f269e3021894 401 * @brief 64-bit fractional data type in 1.63 format.
elessair 0:f269e3021894 402 */
elessair 0:f269e3021894 403 typedef int64_t q63_t;
elessair 0:f269e3021894 404
elessair 0:f269e3021894 405 /**
elessair 0:f269e3021894 406 * @brief 32-bit floating-point type definition.
elessair 0:f269e3021894 407 */
elessair 0:f269e3021894 408 typedef float float32_t;
elessair 0:f269e3021894 409
elessair 0:f269e3021894 410 /**
elessair 0:f269e3021894 411 * @brief 64-bit floating-point type definition.
elessair 0:f269e3021894 412 */
elessair 0:f269e3021894 413 typedef double float64_t;
elessair 0:f269e3021894 414
elessair 0:f269e3021894 415 /**
elessair 0:f269e3021894 416 * @brief definition to read/write two 16 bit values.
elessair 0:f269e3021894 417 */
elessair 0:f269e3021894 418 #if defined __CC_ARM
elessair 0:f269e3021894 419 #define __SIMD32_TYPE int32_t __packed
elessair 0:f269e3021894 420 #define CMSIS_UNUSED __attribute__((unused))
elessair 0:f269e3021894 421
elessair 0:f269e3021894 422 #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
elessair 0:f269e3021894 423 #define __SIMD32_TYPE int32_t
elessair 0:f269e3021894 424 #define CMSIS_UNUSED __attribute__((unused))
elessair 0:f269e3021894 425
elessair 0:f269e3021894 426 #elif defined __GNUC__
elessair 0:f269e3021894 427 #define __SIMD32_TYPE int32_t
elessair 0:f269e3021894 428 #define CMSIS_UNUSED __attribute__((unused))
elessair 0:f269e3021894 429
elessair 0:f269e3021894 430 #elif defined __ICCARM__
elessair 0:f269e3021894 431 #define __SIMD32_TYPE int32_t __packed
elessair 0:f269e3021894 432 #define CMSIS_UNUSED
elessair 0:f269e3021894 433
elessair 0:f269e3021894 434 #elif defined __CSMC__
elessair 0:f269e3021894 435 #define __SIMD32_TYPE int32_t
elessair 0:f269e3021894 436 #define CMSIS_UNUSED
elessair 0:f269e3021894 437
elessair 0:f269e3021894 438 #elif defined __TASKING__
elessair 0:f269e3021894 439 #define __SIMD32_TYPE __unaligned int32_t
elessair 0:f269e3021894 440 #define CMSIS_UNUSED
elessair 0:f269e3021894 441
elessair 0:f269e3021894 442 #else
elessair 0:f269e3021894 443 #error Unknown compiler
elessair 0:f269e3021894 444 #endif
elessair 0:f269e3021894 445
elessair 0:f269e3021894 446 #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
elessair 0:f269e3021894 447 #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
elessair 0:f269e3021894 448 #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
elessair 0:f269e3021894 449 #define __SIMD64(addr) (*(int64_t **) & (addr))
elessair 0:f269e3021894 450
elessair 0:f269e3021894 451 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
elessair 0:f269e3021894 452 /**
elessair 0:f269e3021894 453 * @brief definition to pack two 16 bit values.
elessair 0:f269e3021894 454 */
elessair 0:f269e3021894 455 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
elessair 0:f269e3021894 456 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
elessair 0:f269e3021894 457 #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
elessair 0:f269e3021894 458 (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
elessair 0:f269e3021894 459
elessair 0:f269e3021894 460 #endif
elessair 0:f269e3021894 461
elessair 0:f269e3021894 462
elessair 0:f269e3021894 463 /**
elessair 0:f269e3021894 464 * @brief definition to pack four 8 bit values.
elessair 0:f269e3021894 465 */
elessair 0:f269e3021894 466 #ifndef ARM_MATH_BIG_ENDIAN
elessair 0:f269e3021894 467
elessair 0:f269e3021894 468 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
elessair 0:f269e3021894 469 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
elessair 0:f269e3021894 470 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
elessair 0:f269e3021894 471 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
elessair 0:f269e3021894 472 #else
elessair 0:f269e3021894 473
elessair 0:f269e3021894 474 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
elessair 0:f269e3021894 475 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
elessair 0:f269e3021894 476 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
elessair 0:f269e3021894 477 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
elessair 0:f269e3021894 478
elessair 0:f269e3021894 479 #endif
elessair 0:f269e3021894 480
elessair 0:f269e3021894 481
elessair 0:f269e3021894 482 /**
elessair 0:f269e3021894 483 * @brief Clips Q63 to Q31 values.
elessair 0:f269e3021894 484 */
elessair 0:f269e3021894 485 static __INLINE q31_t clip_q63_to_q31(
elessair 0:f269e3021894 486 q63_t x)
elessair 0:f269e3021894 487 {
elessair 0:f269e3021894 488 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
elessair 0:f269e3021894 489 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
elessair 0:f269e3021894 490 }
elessair 0:f269e3021894 491
elessair 0:f269e3021894 492 /**
elessair 0:f269e3021894 493 * @brief Clips Q63 to Q15 values.
elessair 0:f269e3021894 494 */
elessair 0:f269e3021894 495 static __INLINE q15_t clip_q63_to_q15(
elessair 0:f269e3021894 496 q63_t x)
elessair 0:f269e3021894 497 {
elessair 0:f269e3021894 498 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
elessair 0:f269e3021894 499 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
elessair 0:f269e3021894 500 }
elessair 0:f269e3021894 501
elessair 0:f269e3021894 502 /**
elessair 0:f269e3021894 503 * @brief Clips Q31 to Q7 values.
elessair 0:f269e3021894 504 */
elessair 0:f269e3021894 505 static __INLINE q7_t clip_q31_to_q7(
elessair 0:f269e3021894 506 q31_t x)
elessair 0:f269e3021894 507 {
elessair 0:f269e3021894 508 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
elessair 0:f269e3021894 509 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
elessair 0:f269e3021894 510 }
elessair 0:f269e3021894 511
elessair 0:f269e3021894 512 /**
elessair 0:f269e3021894 513 * @brief Clips Q31 to Q15 values.
elessair 0:f269e3021894 514 */
elessair 0:f269e3021894 515 static __INLINE q15_t clip_q31_to_q15(
elessair 0:f269e3021894 516 q31_t x)
elessair 0:f269e3021894 517 {
elessair 0:f269e3021894 518 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
elessair 0:f269e3021894 519 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
elessair 0:f269e3021894 520 }
elessair 0:f269e3021894 521
elessair 0:f269e3021894 522 /**
elessair 0:f269e3021894 523 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
elessair 0:f269e3021894 524 */
elessair 0:f269e3021894 525
elessair 0:f269e3021894 526 static __INLINE q63_t mult32x64(
elessair 0:f269e3021894 527 q63_t x,
elessair 0:f269e3021894 528 q31_t y)
elessair 0:f269e3021894 529 {
elessair 0:f269e3021894 530 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
elessair 0:f269e3021894 531 (((q63_t) (x >> 32) * y)));
elessair 0:f269e3021894 532 }
elessair 0:f269e3021894 533
elessair 0:f269e3021894 534 /*
elessair 0:f269e3021894 535 #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
elessair 0:f269e3021894 536 #define __CLZ __clz
elessair 0:f269e3021894 537 #endif
elessair 0:f269e3021894 538 */
elessair 0:f269e3021894 539 /* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */
elessair 0:f269e3021894 540 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
elessair 0:f269e3021894 541 static __INLINE uint32_t __CLZ(
elessair 0:f269e3021894 542 q31_t data);
elessair 0:f269e3021894 543
elessair 0:f269e3021894 544 static __INLINE uint32_t __CLZ(
elessair 0:f269e3021894 545 q31_t data)
elessair 0:f269e3021894 546 {
elessair 0:f269e3021894 547 uint32_t count = 0;
elessair 0:f269e3021894 548 uint32_t mask = 0x80000000;
elessair 0:f269e3021894 549
elessair 0:f269e3021894 550 while((data & mask) == 0)
elessair 0:f269e3021894 551 {
elessair 0:f269e3021894 552 count += 1u;
elessair 0:f269e3021894 553 mask = mask >> 1u;
elessair 0:f269e3021894 554 }
elessair 0:f269e3021894 555
elessair 0:f269e3021894 556 return (count);
elessair 0:f269e3021894 557 }
elessair 0:f269e3021894 558 #endif
elessair 0:f269e3021894 559
elessair 0:f269e3021894 560 /**
elessair 0:f269e3021894 561 * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
elessair 0:f269e3021894 562 */
elessair 0:f269e3021894 563
elessair 0:f269e3021894 564 static __INLINE uint32_t arm_recip_q31(
elessair 0:f269e3021894 565 q31_t in,
elessair 0:f269e3021894 566 q31_t * dst,
elessair 0:f269e3021894 567 q31_t * pRecipTable)
elessair 0:f269e3021894 568 {
elessair 0:f269e3021894 569 q31_t out;
elessair 0:f269e3021894 570 uint32_t tempVal;
elessair 0:f269e3021894 571 uint32_t index, i;
elessair 0:f269e3021894 572 uint32_t signBits;
elessair 0:f269e3021894 573
elessair 0:f269e3021894 574 if(in > 0)
elessair 0:f269e3021894 575 {
elessair 0:f269e3021894 576 signBits = ((uint32_t) (__CLZ( in) - 1));
elessair 0:f269e3021894 577 }
elessair 0:f269e3021894 578 else
elessair 0:f269e3021894 579 {
elessair 0:f269e3021894 580 signBits = ((uint32_t) (__CLZ(-in) - 1));
elessair 0:f269e3021894 581 }
elessair 0:f269e3021894 582
elessair 0:f269e3021894 583 /* Convert input sample to 1.31 format */
elessair 0:f269e3021894 584 in = (in << signBits);
elessair 0:f269e3021894 585
elessair 0:f269e3021894 586 /* calculation of index for initial approximated Val */
elessair 0:f269e3021894 587 index = (uint32_t)(in >> 24);
elessair 0:f269e3021894 588 index = (index & INDEX_MASK);
elessair 0:f269e3021894 589
elessair 0:f269e3021894 590 /* 1.31 with exp 1 */
elessair 0:f269e3021894 591 out = pRecipTable[index];
elessair 0:f269e3021894 592
elessair 0:f269e3021894 593 /* calculation of reciprocal value */
elessair 0:f269e3021894 594 /* running approximation for two iterations */
elessair 0:f269e3021894 595 for (i = 0u; i < 2u; i++)
elessair 0:f269e3021894 596 {
elessair 0:f269e3021894 597 tempVal = (uint32_t) (((q63_t) in * out) >> 31);
elessair 0:f269e3021894 598 tempVal = 0x7FFFFFFFu - tempVal;
elessair 0:f269e3021894 599 /* 1.31 with exp 1 */
elessair 0:f269e3021894 600 /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
elessair 0:f269e3021894 601 out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
elessair 0:f269e3021894 602 }
elessair 0:f269e3021894 603
elessair 0:f269e3021894 604 /* write output */
elessair 0:f269e3021894 605 *dst = out;
elessair 0:f269e3021894 606
elessair 0:f269e3021894 607 /* return num of signbits of out = 1/in value */
elessair 0:f269e3021894 608 return (signBits + 1u);
elessair 0:f269e3021894 609 }
elessair 0:f269e3021894 610
elessair 0:f269e3021894 611
elessair 0:f269e3021894 612 /**
elessair 0:f269e3021894 613 * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
elessair 0:f269e3021894 614 */
elessair 0:f269e3021894 615 static __INLINE uint32_t arm_recip_q15(
elessair 0:f269e3021894 616 q15_t in,
elessair 0:f269e3021894 617 q15_t * dst,
elessair 0:f269e3021894 618 q15_t * pRecipTable)
elessair 0:f269e3021894 619 {
elessair 0:f269e3021894 620 q15_t out = 0;
elessair 0:f269e3021894 621 uint32_t tempVal = 0;
elessair 0:f269e3021894 622 uint32_t index = 0, i = 0;
elessair 0:f269e3021894 623 uint32_t signBits = 0;
elessair 0:f269e3021894 624
elessair 0:f269e3021894 625 if(in > 0)
elessair 0:f269e3021894 626 {
elessair 0:f269e3021894 627 signBits = ((uint32_t)(__CLZ( in) - 17));
elessair 0:f269e3021894 628 }
elessair 0:f269e3021894 629 else
elessair 0:f269e3021894 630 {
elessair 0:f269e3021894 631 signBits = ((uint32_t)(__CLZ(-in) - 17));
elessair 0:f269e3021894 632 }
elessair 0:f269e3021894 633
elessair 0:f269e3021894 634 /* Convert input sample to 1.15 format */
elessair 0:f269e3021894 635 in = (in << signBits);
elessair 0:f269e3021894 636
elessair 0:f269e3021894 637 /* calculation of index for initial approximated Val */
elessair 0:f269e3021894 638 index = (uint32_t)(in >> 8);
elessair 0:f269e3021894 639 index = (index & INDEX_MASK);
elessair 0:f269e3021894 640
elessair 0:f269e3021894 641 /* 1.15 with exp 1 */
elessair 0:f269e3021894 642 out = pRecipTable[index];
elessair 0:f269e3021894 643
elessair 0:f269e3021894 644 /* calculation of reciprocal value */
elessair 0:f269e3021894 645 /* running approximation for two iterations */
elessair 0:f269e3021894 646 for (i = 0u; i < 2u; i++)
elessair 0:f269e3021894 647 {
elessair 0:f269e3021894 648 tempVal = (uint32_t) (((q31_t) in * out) >> 15);
elessair 0:f269e3021894 649 tempVal = 0x7FFFu - tempVal;
elessair 0:f269e3021894 650 /* 1.15 with exp 1 */
elessair 0:f269e3021894 651 out = (q15_t) (((q31_t) out * tempVal) >> 14);
elessair 0:f269e3021894 652 /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
elessair 0:f269e3021894 653 }
elessair 0:f269e3021894 654
elessair 0:f269e3021894 655 /* write output */
elessair 0:f269e3021894 656 *dst = out;
elessair 0:f269e3021894 657
elessair 0:f269e3021894 658 /* return num of signbits of out = 1/in value */
elessair 0:f269e3021894 659 return (signBits + 1);
elessair 0:f269e3021894 660 }
elessair 0:f269e3021894 661
elessair 0:f269e3021894 662
elessair 0:f269e3021894 663 /*
elessair 0:f269e3021894 664 * @brief C custom defined intrinisic function for only M0 processors
elessair 0:f269e3021894 665 */
elessair 0:f269e3021894 666 #if defined(ARM_MATH_CM0_FAMILY)
elessair 0:f269e3021894 667 static __INLINE q31_t __SSAT(
elessair 0:f269e3021894 668 q31_t x,
elessair 0:f269e3021894 669 uint32_t y)
elessair 0:f269e3021894 670 {
elessair 0:f269e3021894 671 int32_t posMax, negMin;
elessair 0:f269e3021894 672 uint32_t i;
elessair 0:f269e3021894 673
elessair 0:f269e3021894 674 posMax = 1;
elessair 0:f269e3021894 675 for (i = 0; i < (y - 1); i++)
elessair 0:f269e3021894 676 {
elessair 0:f269e3021894 677 posMax = posMax * 2;
elessair 0:f269e3021894 678 }
elessair 0:f269e3021894 679
elessair 0:f269e3021894 680 if(x > 0)
elessair 0:f269e3021894 681 {
elessair 0:f269e3021894 682 posMax = (posMax - 1);
elessair 0:f269e3021894 683
elessair 0:f269e3021894 684 if(x > posMax)
elessair 0:f269e3021894 685 {
elessair 0:f269e3021894 686 x = posMax;
elessair 0:f269e3021894 687 }
elessair 0:f269e3021894 688 }
elessair 0:f269e3021894 689 else
elessair 0:f269e3021894 690 {
elessair 0:f269e3021894 691 negMin = -posMax;
elessair 0:f269e3021894 692
elessair 0:f269e3021894 693 if(x < negMin)
elessair 0:f269e3021894 694 {
elessair 0:f269e3021894 695 x = negMin;
elessair 0:f269e3021894 696 }
elessair 0:f269e3021894 697 }
elessair 0:f269e3021894 698 return (x);
elessair 0:f269e3021894 699 }
elessair 0:f269e3021894 700 #endif /* end of ARM_MATH_CM0_FAMILY */
elessair 0:f269e3021894 701
elessair 0:f269e3021894 702
elessair 0:f269e3021894 703 /*
elessair 0:f269e3021894 704 * @brief C custom defined intrinsic function for M3 and M0 processors
elessair 0:f269e3021894 705 */
elessair 0:f269e3021894 706 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
elessair 0:f269e3021894 707
elessair 0:f269e3021894 708 /*
elessair 0:f269e3021894 709 * @brief C custom defined QADD8 for M3 and M0 processors
elessair 0:f269e3021894 710 */
elessair 0:f269e3021894 711 static __INLINE uint32_t __QADD8(
elessair 0:f269e3021894 712 uint32_t x,
elessair 0:f269e3021894 713 uint32_t y)
elessair 0:f269e3021894 714 {
elessair 0:f269e3021894 715 q31_t r, s, t, u;
elessair 0:f269e3021894 716
elessair 0:f269e3021894 717 r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
elessair 0:f269e3021894 718 s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
elessair 0:f269e3021894 719 t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
elessair 0:f269e3021894 720 u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
elessair 0:f269e3021894 721
elessair 0:f269e3021894 722 return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
elessair 0:f269e3021894 723 }
elessair 0:f269e3021894 724
elessair 0:f269e3021894 725
elessair 0:f269e3021894 726 /*
elessair 0:f269e3021894 727 * @brief C custom defined QSUB8 for M3 and M0 processors
elessair 0:f269e3021894 728 */
elessair 0:f269e3021894 729 static __INLINE uint32_t __QSUB8(
elessair 0:f269e3021894 730 uint32_t x,
elessair 0:f269e3021894 731 uint32_t y)
elessair 0:f269e3021894 732 {
elessair 0:f269e3021894 733 q31_t r, s, t, u;
elessair 0:f269e3021894 734
elessair 0:f269e3021894 735 r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
elessair 0:f269e3021894 736 s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
elessair 0:f269e3021894 737 t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
elessair 0:f269e3021894 738 u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
elessair 0:f269e3021894 739
elessair 0:f269e3021894 740 return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
elessair 0:f269e3021894 741 }
elessair 0:f269e3021894 742
elessair 0:f269e3021894 743
elessair 0:f269e3021894 744 /*
elessair 0:f269e3021894 745 * @brief C custom defined QADD16 for M3 and M0 processors
elessair 0:f269e3021894 746 */
elessair 0:f269e3021894 747 static __INLINE uint32_t __QADD16(
elessair 0:f269e3021894 748 uint32_t x,
elessair 0:f269e3021894 749 uint32_t y)
elessair 0:f269e3021894 750 {
elessair 0:f269e3021894 751 /* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
elessair 0:f269e3021894 752 q31_t r = 0, s = 0;
elessair 0:f269e3021894 753
elessair 0:f269e3021894 754 r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 755 s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 756
elessair 0:f269e3021894 757 return ((uint32_t)((s << 16) | (r )));
elessair 0:f269e3021894 758 }
elessair 0:f269e3021894 759
elessair 0:f269e3021894 760
elessair 0:f269e3021894 761 /*
elessair 0:f269e3021894 762 * @brief C custom defined SHADD16 for M3 and M0 processors
elessair 0:f269e3021894 763 */
elessair 0:f269e3021894 764 static __INLINE uint32_t __SHADD16(
elessair 0:f269e3021894 765 uint32_t x,
elessair 0:f269e3021894 766 uint32_t y)
elessair 0:f269e3021894 767 {
elessair 0:f269e3021894 768 q31_t r, s;
elessair 0:f269e3021894 769
elessair 0:f269e3021894 770 r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 771 s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 772
elessair 0:f269e3021894 773 return ((uint32_t)((s << 16) | (r )));
elessair 0:f269e3021894 774 }
elessair 0:f269e3021894 775
elessair 0:f269e3021894 776
elessair 0:f269e3021894 777 /*
elessair 0:f269e3021894 778 * @brief C custom defined QSUB16 for M3 and M0 processors
elessair 0:f269e3021894 779 */
elessair 0:f269e3021894 780 static __INLINE uint32_t __QSUB16(
elessair 0:f269e3021894 781 uint32_t x,
elessair 0:f269e3021894 782 uint32_t y)
elessair 0:f269e3021894 783 {
elessair 0:f269e3021894 784 q31_t r, s;
elessair 0:f269e3021894 785
elessair 0:f269e3021894 786 r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 787 s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 788
elessair 0:f269e3021894 789 return ((uint32_t)((s << 16) | (r )));
elessair 0:f269e3021894 790 }
elessair 0:f269e3021894 791
elessair 0:f269e3021894 792
elessair 0:f269e3021894 793 /*
elessair 0:f269e3021894 794 * @brief C custom defined SHSUB16 for M3 and M0 processors
elessair 0:f269e3021894 795 */
elessair 0:f269e3021894 796 static __INLINE uint32_t __SHSUB16(
elessair 0:f269e3021894 797 uint32_t x,
elessair 0:f269e3021894 798 uint32_t y)
elessair 0:f269e3021894 799 {
elessair 0:f269e3021894 800 q31_t r, s;
elessair 0:f269e3021894 801
elessair 0:f269e3021894 802 r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 803 s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 804
elessair 0:f269e3021894 805 return ((uint32_t)((s << 16) | (r )));
elessair 0:f269e3021894 806 }
elessair 0:f269e3021894 807
elessair 0:f269e3021894 808
elessair 0:f269e3021894 809 /*
elessair 0:f269e3021894 810 * @brief C custom defined QASX for M3 and M0 processors
elessair 0:f269e3021894 811 */
elessair 0:f269e3021894 812 static __INLINE uint32_t __QASX(
elessair 0:f269e3021894 813 uint32_t x,
elessair 0:f269e3021894 814 uint32_t y)
elessair 0:f269e3021894 815 {
elessair 0:f269e3021894 816 q31_t r, s;
elessair 0:f269e3021894 817
elessair 0:f269e3021894 818 r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 819 s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 820
elessair 0:f269e3021894 821 return ((uint32_t)((s << 16) | (r )));
elessair 0:f269e3021894 822 }
elessair 0:f269e3021894 823
elessair 0:f269e3021894 824
elessair 0:f269e3021894 825 /*
elessair 0:f269e3021894 826 * @brief C custom defined SHASX for M3 and M0 processors
elessair 0:f269e3021894 827 */
elessair 0:f269e3021894 828 static __INLINE uint32_t __SHASX(
elessair 0:f269e3021894 829 uint32_t x,
elessair 0:f269e3021894 830 uint32_t y)
elessair 0:f269e3021894 831 {
elessair 0:f269e3021894 832 q31_t r, s;
elessair 0:f269e3021894 833
elessair 0:f269e3021894 834 r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 835 s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 836
elessair 0:f269e3021894 837 return ((uint32_t)((s << 16) | (r )));
elessair 0:f269e3021894 838 }
elessair 0:f269e3021894 839
elessair 0:f269e3021894 840
elessair 0:f269e3021894 841 /*
elessair 0:f269e3021894 842 * @brief C custom defined QSAX for M3 and M0 processors
elessair 0:f269e3021894 843 */
elessair 0:f269e3021894 844 static __INLINE uint32_t __QSAX(
elessair 0:f269e3021894 845 uint32_t x,
elessair 0:f269e3021894 846 uint32_t y)
elessair 0:f269e3021894 847 {
elessair 0:f269e3021894 848 q31_t r, s;
elessair 0:f269e3021894 849
elessair 0:f269e3021894 850 r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 851 s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 852
elessair 0:f269e3021894 853 return ((uint32_t)((s << 16) | (r )));
elessair 0:f269e3021894 854 }
elessair 0:f269e3021894 855
elessair 0:f269e3021894 856
elessair 0:f269e3021894 857 /*
elessair 0:f269e3021894 858 * @brief C custom defined SHSAX for M3 and M0 processors
elessair 0:f269e3021894 859 */
elessair 0:f269e3021894 860 static __INLINE uint32_t __SHSAX(
elessair 0:f269e3021894 861 uint32_t x,
elessair 0:f269e3021894 862 uint32_t y)
elessair 0:f269e3021894 863 {
elessair 0:f269e3021894 864 q31_t r, s;
elessair 0:f269e3021894 865
elessair 0:f269e3021894 866 r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 867 s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
elessair 0:f269e3021894 868
elessair 0:f269e3021894 869 return ((uint32_t)((s << 16) | (r )));
elessair 0:f269e3021894 870 }
elessair 0:f269e3021894 871
elessair 0:f269e3021894 872
elessair 0:f269e3021894 873 /*
elessair 0:f269e3021894 874 * @brief C custom defined SMUSDX for M3 and M0 processors
elessair 0:f269e3021894 875 */
elessair 0:f269e3021894 876 static __INLINE uint32_t __SMUSDX(
elessair 0:f269e3021894 877 uint32_t x,
elessair 0:f269e3021894 878 uint32_t y)
elessair 0:f269e3021894 879 {
elessair 0:f269e3021894 880 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
elessair 0:f269e3021894 881 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
elessair 0:f269e3021894 882 }
elessair 0:f269e3021894 883
elessair 0:f269e3021894 884 /*
elessair 0:f269e3021894 885 * @brief C custom defined SMUADX for M3 and M0 processors
elessair 0:f269e3021894 886 */
elessair 0:f269e3021894 887 static __INLINE uint32_t __SMUADX(
elessair 0:f269e3021894 888 uint32_t x,
elessair 0:f269e3021894 889 uint32_t y)
elessair 0:f269e3021894 890 {
elessair 0:f269e3021894 891 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
elessair 0:f269e3021894 892 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
elessair 0:f269e3021894 893 }
elessair 0:f269e3021894 894
elessair 0:f269e3021894 895
elessair 0:f269e3021894 896 /*
elessair 0:f269e3021894 897 * @brief C custom defined QADD for M3 and M0 processors
elessair 0:f269e3021894 898 */
elessair 0:f269e3021894 899 static __INLINE int32_t __QADD(
elessair 0:f269e3021894 900 int32_t x,
elessair 0:f269e3021894 901 int32_t y)
elessair 0:f269e3021894 902 {
elessair 0:f269e3021894 903 return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
elessair 0:f269e3021894 904 }
elessair 0:f269e3021894 905
elessair 0:f269e3021894 906
elessair 0:f269e3021894 907 /*
elessair 0:f269e3021894 908 * @brief C custom defined QSUB for M3 and M0 processors
elessair 0:f269e3021894 909 */
elessair 0:f269e3021894 910 static __INLINE int32_t __QSUB(
elessair 0:f269e3021894 911 int32_t x,
elessair 0:f269e3021894 912 int32_t y)
elessair 0:f269e3021894 913 {
elessair 0:f269e3021894 914 return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
elessair 0:f269e3021894 915 }
elessair 0:f269e3021894 916
elessair 0:f269e3021894 917
elessair 0:f269e3021894 918 /*
elessair 0:f269e3021894 919 * @brief C custom defined SMLAD for M3 and M0 processors
elessair 0:f269e3021894 920 */
elessair 0:f269e3021894 921 static __INLINE uint32_t __SMLAD(
elessair 0:f269e3021894 922 uint32_t x,
elessair 0:f269e3021894 923 uint32_t y,
elessair 0:f269e3021894 924 uint32_t sum)
elessair 0:f269e3021894 925 {
elessair 0:f269e3021894 926 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
elessair 0:f269e3021894 927 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
elessair 0:f269e3021894 928 ( ((q31_t)sum ) ) ));
elessair 0:f269e3021894 929 }
elessair 0:f269e3021894 930
elessair 0:f269e3021894 931
elessair 0:f269e3021894 932 /*
elessair 0:f269e3021894 933 * @brief C custom defined SMLADX for M3 and M0 processors
elessair 0:f269e3021894 934 */
elessair 0:f269e3021894 935 static __INLINE uint32_t __SMLADX(
elessair 0:f269e3021894 936 uint32_t x,
elessair 0:f269e3021894 937 uint32_t y,
elessair 0:f269e3021894 938 uint32_t sum)
elessair 0:f269e3021894 939 {
elessair 0:f269e3021894 940 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
elessair 0:f269e3021894 941 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
elessair 0:f269e3021894 942 ( ((q31_t)sum ) ) ));
elessair 0:f269e3021894 943 }
elessair 0:f269e3021894 944
elessair 0:f269e3021894 945
elessair 0:f269e3021894 946 /*
elessair 0:f269e3021894 947 * @brief C custom defined SMLSDX for M3 and M0 processors
elessair 0:f269e3021894 948 */
elessair 0:f269e3021894 949 static __INLINE uint32_t __SMLSDX(
elessair 0:f269e3021894 950 uint32_t x,
elessair 0:f269e3021894 951 uint32_t y,
elessair 0:f269e3021894 952 uint32_t sum)
elessair 0:f269e3021894 953 {
elessair 0:f269e3021894 954 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
elessair 0:f269e3021894 955 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
elessair 0:f269e3021894 956 ( ((q31_t)sum ) ) ));
elessair 0:f269e3021894 957 }
elessair 0:f269e3021894 958
elessair 0:f269e3021894 959
elessair 0:f269e3021894 960 /*
elessair 0:f269e3021894 961 * @brief C custom defined SMLALD for M3 and M0 processors
elessair 0:f269e3021894 962 */
elessair 0:f269e3021894 963 static __INLINE uint64_t __SMLALD(
elessair 0:f269e3021894 964 uint32_t x,
elessair 0:f269e3021894 965 uint32_t y,
elessair 0:f269e3021894 966 uint64_t sum)
elessair 0:f269e3021894 967 {
elessair 0:f269e3021894 968 /* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
elessair 0:f269e3021894 969 return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
elessair 0:f269e3021894 970 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
elessair 0:f269e3021894 971 ( ((q63_t)sum ) ) ));
elessair 0:f269e3021894 972 }
elessair 0:f269e3021894 973
elessair 0:f269e3021894 974
elessair 0:f269e3021894 975 /*
elessair 0:f269e3021894 976 * @brief C custom defined SMLALDX for M3 and M0 processors
elessair 0:f269e3021894 977 */
elessair 0:f269e3021894 978 static __INLINE uint64_t __SMLALDX(
elessair 0:f269e3021894 979 uint32_t x,
elessair 0:f269e3021894 980 uint32_t y,
elessair 0:f269e3021894 981 uint64_t sum)
elessair 0:f269e3021894 982 {
elessair 0:f269e3021894 983 /* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
elessair 0:f269e3021894 984 return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
elessair 0:f269e3021894 985 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
elessair 0:f269e3021894 986 ( ((q63_t)sum ) ) ));
elessair 0:f269e3021894 987 }
elessair 0:f269e3021894 988
elessair 0:f269e3021894 989
elessair 0:f269e3021894 990 /*
elessair 0:f269e3021894 991 * @brief C custom defined SMUAD for M3 and M0 processors
elessair 0:f269e3021894 992 */
elessair 0:f269e3021894 993 static __INLINE uint32_t __SMUAD(
elessair 0:f269e3021894 994 uint32_t x,
elessair 0:f269e3021894 995 uint32_t y)
elessair 0:f269e3021894 996 {
elessair 0:f269e3021894 997 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
elessair 0:f269e3021894 998 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
elessair 0:f269e3021894 999 }
elessair 0:f269e3021894 1000
elessair 0:f269e3021894 1001
elessair 0:f269e3021894 1002 /*
elessair 0:f269e3021894 1003 * @brief C custom defined SMUSD for M3 and M0 processors
elessair 0:f269e3021894 1004 */
elessair 0:f269e3021894 1005 static __INLINE uint32_t __SMUSD(
elessair 0:f269e3021894 1006 uint32_t x,
elessair 0:f269e3021894 1007 uint32_t y)
elessair 0:f269e3021894 1008 {
elessair 0:f269e3021894 1009 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
elessair 0:f269e3021894 1010 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
elessair 0:f269e3021894 1011 }
elessair 0:f269e3021894 1012
elessair 0:f269e3021894 1013
elessair 0:f269e3021894 1014 /*
elessair 0:f269e3021894 1015 * @brief C custom defined SXTB16 for M3 and M0 processors
elessair 0:f269e3021894 1016 */
elessair 0:f269e3021894 1017 static __INLINE uint32_t __SXTB16(
elessair 0:f269e3021894 1018 uint32_t x)
elessair 0:f269e3021894 1019 {
elessair 0:f269e3021894 1020 return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
elessair 0:f269e3021894 1021 ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
elessair 0:f269e3021894 1022 }
elessair 0:f269e3021894 1023
elessair 0:f269e3021894 1024 #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
elessair 0:f269e3021894 1025
elessair 0:f269e3021894 1026
elessair 0:f269e3021894 1027 /**
elessair 0:f269e3021894 1028 * @brief Instance structure for the Q7 FIR filter.
elessair 0:f269e3021894 1029 */
elessair 0:f269e3021894 1030 typedef struct
elessair 0:f269e3021894 1031 {
elessair 0:f269e3021894 1032 uint16_t numTaps; /**< number of filter coefficients in the filter. */
elessair 0:f269e3021894 1033 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
elessair 0:f269e3021894 1034 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
elessair 0:f269e3021894 1035 } arm_fir_instance_q7;
elessair 0:f269e3021894 1036
elessair 0:f269e3021894 1037 /**
elessair 0:f269e3021894 1038 * @brief Instance structure for the Q15 FIR filter.
elessair 0:f269e3021894 1039 */
elessair 0:f269e3021894 1040 typedef struct
elessair 0:f269e3021894 1041 {
elessair 0:f269e3021894 1042 uint16_t numTaps; /**< number of filter coefficients in the filter. */
elessair 0:f269e3021894 1043 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
elessair 0:f269e3021894 1044 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
elessair 0:f269e3021894 1045 } arm_fir_instance_q15;
elessair 0:f269e3021894 1046
elessair 0:f269e3021894 1047 /**
elessair 0:f269e3021894 1048 * @brief Instance structure for the Q31 FIR filter.
elessair 0:f269e3021894 1049 */
elessair 0:f269e3021894 1050 typedef struct
elessair 0:f269e3021894 1051 {
elessair 0:f269e3021894 1052 uint16_t numTaps; /**< number of filter coefficients in the filter. */
elessair 0:f269e3021894 1053 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
elessair 0:f269e3021894 1054 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
elessair 0:f269e3021894 1055 } arm_fir_instance_q31;
elessair 0:f269e3021894 1056
elessair 0:f269e3021894 1057 /**
elessair 0:f269e3021894 1058 * @brief Instance structure for the floating-point FIR filter.
elessair 0:f269e3021894 1059 */
elessair 0:f269e3021894 1060 typedef struct
elessair 0:f269e3021894 1061 {
elessair 0:f269e3021894 1062 uint16_t numTaps; /**< number of filter coefficients in the filter. */
elessair 0:f269e3021894 1063 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
elessair 0:f269e3021894 1064 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
elessair 0:f269e3021894 1065 } arm_fir_instance_f32;
elessair 0:f269e3021894 1066
elessair 0:f269e3021894 1067
elessair 0:f269e3021894 1068 /**
elessair 0:f269e3021894 1069 * @brief Processing function for the Q7 FIR filter.
elessair 0:f269e3021894 1070 * @param[in] S points to an instance of the Q7 FIR filter structure.
elessair 0:f269e3021894 1071 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 1072 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 1073 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 1074 */
elessair 0:f269e3021894 1075 void arm_fir_q7(
elessair 0:f269e3021894 1076 const arm_fir_instance_q7 * S,
elessair 0:f269e3021894 1077 q7_t * pSrc,
elessair 0:f269e3021894 1078 q7_t * pDst,
elessair 0:f269e3021894 1079 uint32_t blockSize);
elessair 0:f269e3021894 1080
elessair 0:f269e3021894 1081
elessair 0:f269e3021894 1082 /**
elessair 0:f269e3021894 1083 * @brief Initialization function for the Q7 FIR filter.
elessair 0:f269e3021894 1084 * @param[in,out] S points to an instance of the Q7 FIR structure.
elessair 0:f269e3021894 1085 * @param[in] numTaps Number of filter coefficients in the filter.
elessair 0:f269e3021894 1086 * @param[in] pCoeffs points to the filter coefficients.
elessair 0:f269e3021894 1087 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 1088 * @param[in] blockSize number of samples that are processed.
elessair 0:f269e3021894 1089 */
elessair 0:f269e3021894 1090 void arm_fir_init_q7(
elessair 0:f269e3021894 1091 arm_fir_instance_q7 * S,
elessair 0:f269e3021894 1092 uint16_t numTaps,
elessair 0:f269e3021894 1093 q7_t * pCoeffs,
elessair 0:f269e3021894 1094 q7_t * pState,
elessair 0:f269e3021894 1095 uint32_t blockSize);
elessair 0:f269e3021894 1096
elessair 0:f269e3021894 1097
elessair 0:f269e3021894 1098 /**
elessair 0:f269e3021894 1099 * @brief Processing function for the Q15 FIR filter.
elessair 0:f269e3021894 1100 * @param[in] S points to an instance of the Q15 FIR structure.
elessair 0:f269e3021894 1101 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 1102 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 1103 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 1104 */
elessair 0:f269e3021894 1105 void arm_fir_q15(
elessair 0:f269e3021894 1106 const arm_fir_instance_q15 * S,
elessair 0:f269e3021894 1107 q15_t * pSrc,
elessair 0:f269e3021894 1108 q15_t * pDst,
elessair 0:f269e3021894 1109 uint32_t blockSize);
elessair 0:f269e3021894 1110
elessair 0:f269e3021894 1111
elessair 0:f269e3021894 1112 /**
elessair 0:f269e3021894 1113 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
elessair 0:f269e3021894 1114 * @param[in] S points to an instance of the Q15 FIR filter structure.
elessair 0:f269e3021894 1115 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 1116 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 1117 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 1118 */
elessair 0:f269e3021894 1119 void arm_fir_fast_q15(
elessair 0:f269e3021894 1120 const arm_fir_instance_q15 * S,
elessair 0:f269e3021894 1121 q15_t * pSrc,
elessair 0:f269e3021894 1122 q15_t * pDst,
elessair 0:f269e3021894 1123 uint32_t blockSize);
elessair 0:f269e3021894 1124
elessair 0:f269e3021894 1125
elessair 0:f269e3021894 1126 /**
elessair 0:f269e3021894 1127 * @brief Initialization function for the Q15 FIR filter.
elessair 0:f269e3021894 1128 * @param[in,out] S points to an instance of the Q15 FIR filter structure.
elessair 0:f269e3021894 1129 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
elessair 0:f269e3021894 1130 * @param[in] pCoeffs points to the filter coefficients.
elessair 0:f269e3021894 1131 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 1132 * @param[in] blockSize number of samples that are processed at a time.
elessair 0:f269e3021894 1133 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
elessair 0:f269e3021894 1134 * <code>numTaps</code> is not a supported value.
elessair 0:f269e3021894 1135 */
elessair 0:f269e3021894 1136 arm_status arm_fir_init_q15(
elessair 0:f269e3021894 1137 arm_fir_instance_q15 * S,
elessair 0:f269e3021894 1138 uint16_t numTaps,
elessair 0:f269e3021894 1139 q15_t * pCoeffs,
elessair 0:f269e3021894 1140 q15_t * pState,
elessair 0:f269e3021894 1141 uint32_t blockSize);
elessair 0:f269e3021894 1142
elessair 0:f269e3021894 1143
elessair 0:f269e3021894 1144 /**
elessair 0:f269e3021894 1145 * @brief Processing function for the Q31 FIR filter.
elessair 0:f269e3021894 1146 * @param[in] S points to an instance of the Q31 FIR filter structure.
elessair 0:f269e3021894 1147 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 1148 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 1149 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 1150 */
elessair 0:f269e3021894 1151 void arm_fir_q31(
elessair 0:f269e3021894 1152 const arm_fir_instance_q31 * S,
elessair 0:f269e3021894 1153 q31_t * pSrc,
elessair 0:f269e3021894 1154 q31_t * pDst,
elessair 0:f269e3021894 1155 uint32_t blockSize);
elessair 0:f269e3021894 1156
elessair 0:f269e3021894 1157
elessair 0:f269e3021894 1158 /**
elessair 0:f269e3021894 1159 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
elessair 0:f269e3021894 1160 * @param[in] S points to an instance of the Q31 FIR structure.
elessair 0:f269e3021894 1161 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 1162 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 1163 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 1164 */
elessair 0:f269e3021894 1165 void arm_fir_fast_q31(
elessair 0:f269e3021894 1166 const arm_fir_instance_q31 * S,
elessair 0:f269e3021894 1167 q31_t * pSrc,
elessair 0:f269e3021894 1168 q31_t * pDst,
elessair 0:f269e3021894 1169 uint32_t blockSize);
elessair 0:f269e3021894 1170
elessair 0:f269e3021894 1171
elessair 0:f269e3021894 1172 /**
elessair 0:f269e3021894 1173 * @brief Initialization function for the Q31 FIR filter.
elessair 0:f269e3021894 1174 * @param[in,out] S points to an instance of the Q31 FIR structure.
elessair 0:f269e3021894 1175 * @param[in] numTaps Number of filter coefficients in the filter.
elessair 0:f269e3021894 1176 * @param[in] pCoeffs points to the filter coefficients.
elessair 0:f269e3021894 1177 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 1178 * @param[in] blockSize number of samples that are processed at a time.
elessair 0:f269e3021894 1179 */
elessair 0:f269e3021894 1180 void arm_fir_init_q31(
elessair 0:f269e3021894 1181 arm_fir_instance_q31 * S,
elessair 0:f269e3021894 1182 uint16_t numTaps,
elessair 0:f269e3021894 1183 q31_t * pCoeffs,
elessair 0:f269e3021894 1184 q31_t * pState,
elessair 0:f269e3021894 1185 uint32_t blockSize);
elessair 0:f269e3021894 1186
elessair 0:f269e3021894 1187
elessair 0:f269e3021894 1188 /**
elessair 0:f269e3021894 1189 * @brief Processing function for the floating-point FIR filter.
elessair 0:f269e3021894 1190 * @param[in] S points to an instance of the floating-point FIR structure.
elessair 0:f269e3021894 1191 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 1192 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 1193 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 1194 */
elessair 0:f269e3021894 1195 void arm_fir_f32(
elessair 0:f269e3021894 1196 const arm_fir_instance_f32 * S,
elessair 0:f269e3021894 1197 float32_t * pSrc,
elessair 0:f269e3021894 1198 float32_t * pDst,
elessair 0:f269e3021894 1199 uint32_t blockSize);
elessair 0:f269e3021894 1200
elessair 0:f269e3021894 1201
elessair 0:f269e3021894 1202 /**
elessair 0:f269e3021894 1203 * @brief Initialization function for the floating-point FIR filter.
elessair 0:f269e3021894 1204 * @param[in,out] S points to an instance of the floating-point FIR filter structure.
elessair 0:f269e3021894 1205 * @param[in] numTaps Number of filter coefficients in the filter.
elessair 0:f269e3021894 1206 * @param[in] pCoeffs points to the filter coefficients.
elessair 0:f269e3021894 1207 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 1208 * @param[in] blockSize number of samples that are processed at a time.
elessair 0:f269e3021894 1209 */
elessair 0:f269e3021894 1210 void arm_fir_init_f32(
elessair 0:f269e3021894 1211 arm_fir_instance_f32 * S,
elessair 0:f269e3021894 1212 uint16_t numTaps,
elessair 0:f269e3021894 1213 float32_t * pCoeffs,
elessair 0:f269e3021894 1214 float32_t * pState,
elessair 0:f269e3021894 1215 uint32_t blockSize);
elessair 0:f269e3021894 1216
elessair 0:f269e3021894 1217
elessair 0:f269e3021894 1218 /**
elessair 0:f269e3021894 1219 * @brief Instance structure for the Q15 Biquad cascade filter.
elessair 0:f269e3021894 1220 */
elessair 0:f269e3021894 1221 typedef struct
elessair 0:f269e3021894 1222 {
elessair 0:f269e3021894 1223 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
elessair 0:f269e3021894 1224 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
elessair 0:f269e3021894 1225 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
elessair 0:f269e3021894 1226 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
elessair 0:f269e3021894 1227 } arm_biquad_casd_df1_inst_q15;
elessair 0:f269e3021894 1228
elessair 0:f269e3021894 1229 /**
elessair 0:f269e3021894 1230 * @brief Instance structure for the Q31 Biquad cascade filter.
elessair 0:f269e3021894 1231 */
elessair 0:f269e3021894 1232 typedef struct
elessair 0:f269e3021894 1233 {
elessair 0:f269e3021894 1234 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
elessair 0:f269e3021894 1235 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
elessair 0:f269e3021894 1236 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
elessair 0:f269e3021894 1237 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
elessair 0:f269e3021894 1238 } arm_biquad_casd_df1_inst_q31;
elessair 0:f269e3021894 1239
elessair 0:f269e3021894 1240 /**
elessair 0:f269e3021894 1241 * @brief Instance structure for the floating-point Biquad cascade filter.
elessair 0:f269e3021894 1242 */
elessair 0:f269e3021894 1243 typedef struct
elessair 0:f269e3021894 1244 {
elessair 0:f269e3021894 1245 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
elessair 0:f269e3021894 1246 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
elessair 0:f269e3021894 1247 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
elessair 0:f269e3021894 1248 } arm_biquad_casd_df1_inst_f32;
elessair 0:f269e3021894 1249
elessair 0:f269e3021894 1250
elessair 0:f269e3021894 1251 /**
elessair 0:f269e3021894 1252 * @brief Processing function for the Q15 Biquad cascade filter.
elessair 0:f269e3021894 1253 * @param[in] S points to an instance of the Q15 Biquad cascade structure.
elessair 0:f269e3021894 1254 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 1255 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 1256 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 1257 */
elessair 0:f269e3021894 1258 void arm_biquad_cascade_df1_q15(
elessair 0:f269e3021894 1259 const arm_biquad_casd_df1_inst_q15 * S,
elessair 0:f269e3021894 1260 q15_t * pSrc,
elessair 0:f269e3021894 1261 q15_t * pDst,
elessair 0:f269e3021894 1262 uint32_t blockSize);
elessair 0:f269e3021894 1263
elessair 0:f269e3021894 1264
elessair 0:f269e3021894 1265 /**
elessair 0:f269e3021894 1266 * @brief Initialization function for the Q15 Biquad cascade filter.
elessair 0:f269e3021894 1267 * @param[in,out] S points to an instance of the Q15 Biquad cascade structure.
elessair 0:f269e3021894 1268 * @param[in] numStages number of 2nd order stages in the filter.
elessair 0:f269e3021894 1269 * @param[in] pCoeffs points to the filter coefficients.
elessair 0:f269e3021894 1270 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 1271 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
elessair 0:f269e3021894 1272 */
elessair 0:f269e3021894 1273 void arm_biquad_cascade_df1_init_q15(
elessair 0:f269e3021894 1274 arm_biquad_casd_df1_inst_q15 * S,
elessair 0:f269e3021894 1275 uint8_t numStages,
elessair 0:f269e3021894 1276 q15_t * pCoeffs,
elessair 0:f269e3021894 1277 q15_t * pState,
elessair 0:f269e3021894 1278 int8_t postShift);
elessair 0:f269e3021894 1279
elessair 0:f269e3021894 1280
elessair 0:f269e3021894 1281 /**
elessair 0:f269e3021894 1282 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
elessair 0:f269e3021894 1283 * @param[in] S points to an instance of the Q15 Biquad cascade structure.
elessair 0:f269e3021894 1284 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 1285 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 1286 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 1287 */
elessair 0:f269e3021894 1288 void arm_biquad_cascade_df1_fast_q15(
elessair 0:f269e3021894 1289 const arm_biquad_casd_df1_inst_q15 * S,
elessair 0:f269e3021894 1290 q15_t * pSrc,
elessair 0:f269e3021894 1291 q15_t * pDst,
elessair 0:f269e3021894 1292 uint32_t blockSize);
elessair 0:f269e3021894 1293
elessair 0:f269e3021894 1294
elessair 0:f269e3021894 1295 /**
elessair 0:f269e3021894 1296 * @brief Processing function for the Q31 Biquad cascade filter
elessair 0:f269e3021894 1297 * @param[in] S points to an instance of the Q31 Biquad cascade structure.
elessair 0:f269e3021894 1298 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 1299 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 1300 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 1301 */
elessair 0:f269e3021894 1302 void arm_biquad_cascade_df1_q31(
elessair 0:f269e3021894 1303 const arm_biquad_casd_df1_inst_q31 * S,
elessair 0:f269e3021894 1304 q31_t * pSrc,
elessair 0:f269e3021894 1305 q31_t * pDst,
elessair 0:f269e3021894 1306 uint32_t blockSize);
elessair 0:f269e3021894 1307
elessair 0:f269e3021894 1308
elessair 0:f269e3021894 1309 /**
elessair 0:f269e3021894 1310 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
elessair 0:f269e3021894 1311 * @param[in] S points to an instance of the Q31 Biquad cascade structure.
elessair 0:f269e3021894 1312 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 1313 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 1314 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 1315 */
elessair 0:f269e3021894 1316 void arm_biquad_cascade_df1_fast_q31(
elessair 0:f269e3021894 1317 const arm_biquad_casd_df1_inst_q31 * S,
elessair 0:f269e3021894 1318 q31_t * pSrc,
elessair 0:f269e3021894 1319 q31_t * pDst,
elessair 0:f269e3021894 1320 uint32_t blockSize);
elessair 0:f269e3021894 1321
elessair 0:f269e3021894 1322
elessair 0:f269e3021894 1323 /**
elessair 0:f269e3021894 1324 * @brief Initialization function for the Q31 Biquad cascade filter.
elessair 0:f269e3021894 1325 * @param[in,out] S points to an instance of the Q31 Biquad cascade structure.
elessair 0:f269e3021894 1326 * @param[in] numStages number of 2nd order stages in the filter.
elessair 0:f269e3021894 1327 * @param[in] pCoeffs points to the filter coefficients.
elessair 0:f269e3021894 1328 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 1329 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
elessair 0:f269e3021894 1330 */
elessair 0:f269e3021894 1331 void arm_biquad_cascade_df1_init_q31(
elessair 0:f269e3021894 1332 arm_biquad_casd_df1_inst_q31 * S,
elessair 0:f269e3021894 1333 uint8_t numStages,
elessair 0:f269e3021894 1334 q31_t * pCoeffs,
elessair 0:f269e3021894 1335 q31_t * pState,
elessair 0:f269e3021894 1336 int8_t postShift);
elessair 0:f269e3021894 1337
elessair 0:f269e3021894 1338
elessair 0:f269e3021894 1339 /**
elessair 0:f269e3021894 1340 * @brief Processing function for the floating-point Biquad cascade filter.
elessair 0:f269e3021894 1341 * @param[in] S points to an instance of the floating-point Biquad cascade structure.
elessair 0:f269e3021894 1342 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 1343 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 1344 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 1345 */
elessair 0:f269e3021894 1346 void arm_biquad_cascade_df1_f32(
elessair 0:f269e3021894 1347 const arm_biquad_casd_df1_inst_f32 * S,
elessair 0:f269e3021894 1348 float32_t * pSrc,
elessair 0:f269e3021894 1349 float32_t * pDst,
elessair 0:f269e3021894 1350 uint32_t blockSize);
elessair 0:f269e3021894 1351
elessair 0:f269e3021894 1352
elessair 0:f269e3021894 1353 /**
elessair 0:f269e3021894 1354 * @brief Initialization function for the floating-point Biquad cascade filter.
elessair 0:f269e3021894 1355 * @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
elessair 0:f269e3021894 1356 * @param[in] numStages number of 2nd order stages in the filter.
elessair 0:f269e3021894 1357 * @param[in] pCoeffs points to the filter coefficients.
elessair 0:f269e3021894 1358 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 1359 */
elessair 0:f269e3021894 1360 void arm_biquad_cascade_df1_init_f32(
elessair 0:f269e3021894 1361 arm_biquad_casd_df1_inst_f32 * S,
elessair 0:f269e3021894 1362 uint8_t numStages,
elessair 0:f269e3021894 1363 float32_t * pCoeffs,
elessair 0:f269e3021894 1364 float32_t * pState);
elessair 0:f269e3021894 1365
elessair 0:f269e3021894 1366
elessair 0:f269e3021894 1367 /**
elessair 0:f269e3021894 1368 * @brief Instance structure for the floating-point matrix structure.
elessair 0:f269e3021894 1369 */
elessair 0:f269e3021894 1370 typedef struct
elessair 0:f269e3021894 1371 {
elessair 0:f269e3021894 1372 uint16_t numRows; /**< number of rows of the matrix. */
elessair 0:f269e3021894 1373 uint16_t numCols; /**< number of columns of the matrix. */
elessair 0:f269e3021894 1374 float32_t *pData; /**< points to the data of the matrix. */
elessair 0:f269e3021894 1375 } arm_matrix_instance_f32;
elessair 0:f269e3021894 1376
elessair 0:f269e3021894 1377
elessair 0:f269e3021894 1378 /**
elessair 0:f269e3021894 1379 * @brief Instance structure for the floating-point matrix structure.
elessair 0:f269e3021894 1380 */
elessair 0:f269e3021894 1381 typedef struct
elessair 0:f269e3021894 1382 {
elessair 0:f269e3021894 1383 uint16_t numRows; /**< number of rows of the matrix. */
elessair 0:f269e3021894 1384 uint16_t numCols; /**< number of columns of the matrix. */
elessair 0:f269e3021894 1385 float64_t *pData; /**< points to the data of the matrix. */
elessair 0:f269e3021894 1386 } arm_matrix_instance_f64;
elessair 0:f269e3021894 1387
elessair 0:f269e3021894 1388 /**
elessair 0:f269e3021894 1389 * @brief Instance structure for the Q15 matrix structure.
elessair 0:f269e3021894 1390 */
elessair 0:f269e3021894 1391 typedef struct
elessair 0:f269e3021894 1392 {
elessair 0:f269e3021894 1393 uint16_t numRows; /**< number of rows of the matrix. */
elessair 0:f269e3021894 1394 uint16_t numCols; /**< number of columns of the matrix. */
elessair 0:f269e3021894 1395 q15_t *pData; /**< points to the data of the matrix. */
elessair 0:f269e3021894 1396 } arm_matrix_instance_q15;
elessair 0:f269e3021894 1397
elessair 0:f269e3021894 1398 /**
elessair 0:f269e3021894 1399 * @brief Instance structure for the Q31 matrix structure.
elessair 0:f269e3021894 1400 */
elessair 0:f269e3021894 1401 typedef struct
elessair 0:f269e3021894 1402 {
elessair 0:f269e3021894 1403 uint16_t numRows; /**< number of rows of the matrix. */
elessair 0:f269e3021894 1404 uint16_t numCols; /**< number of columns of the matrix. */
elessair 0:f269e3021894 1405 q31_t *pData; /**< points to the data of the matrix. */
elessair 0:f269e3021894 1406 } arm_matrix_instance_q31;
elessair 0:f269e3021894 1407
elessair 0:f269e3021894 1408
elessair 0:f269e3021894 1409 /**
elessair 0:f269e3021894 1410 * @brief Floating-point matrix addition.
elessair 0:f269e3021894 1411 * @param[in] pSrcA points to the first input matrix structure
elessair 0:f269e3021894 1412 * @param[in] pSrcB points to the second input matrix structure
elessair 0:f269e3021894 1413 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1414 * @return The function returns either
elessair 0:f269e3021894 1415 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1416 */
elessair 0:f269e3021894 1417 arm_status arm_mat_add_f32(
elessair 0:f269e3021894 1418 const arm_matrix_instance_f32 * pSrcA,
elessair 0:f269e3021894 1419 const arm_matrix_instance_f32 * pSrcB,
elessair 0:f269e3021894 1420 arm_matrix_instance_f32 * pDst);
elessair 0:f269e3021894 1421
elessair 0:f269e3021894 1422
elessair 0:f269e3021894 1423 /**
elessair 0:f269e3021894 1424 * @brief Q15 matrix addition.
elessair 0:f269e3021894 1425 * @param[in] pSrcA points to the first input matrix structure
elessair 0:f269e3021894 1426 * @param[in] pSrcB points to the second input matrix structure
elessair 0:f269e3021894 1427 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1428 * @return The function returns either
elessair 0:f269e3021894 1429 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1430 */
elessair 0:f269e3021894 1431 arm_status arm_mat_add_q15(
elessair 0:f269e3021894 1432 const arm_matrix_instance_q15 * pSrcA,
elessair 0:f269e3021894 1433 const arm_matrix_instance_q15 * pSrcB,
elessair 0:f269e3021894 1434 arm_matrix_instance_q15 * pDst);
elessair 0:f269e3021894 1435
elessair 0:f269e3021894 1436
elessair 0:f269e3021894 1437 /**
elessair 0:f269e3021894 1438 * @brief Q31 matrix addition.
elessair 0:f269e3021894 1439 * @param[in] pSrcA points to the first input matrix structure
elessair 0:f269e3021894 1440 * @param[in] pSrcB points to the second input matrix structure
elessair 0:f269e3021894 1441 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1442 * @return The function returns either
elessair 0:f269e3021894 1443 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1444 */
elessair 0:f269e3021894 1445 arm_status arm_mat_add_q31(
elessair 0:f269e3021894 1446 const arm_matrix_instance_q31 * pSrcA,
elessair 0:f269e3021894 1447 const arm_matrix_instance_q31 * pSrcB,
elessair 0:f269e3021894 1448 arm_matrix_instance_q31 * pDst);
elessair 0:f269e3021894 1449
elessair 0:f269e3021894 1450
elessair 0:f269e3021894 1451 /**
elessair 0:f269e3021894 1452 * @brief Floating-point, complex, matrix multiplication.
elessair 0:f269e3021894 1453 * @param[in] pSrcA points to the first input matrix structure
elessair 0:f269e3021894 1454 * @param[in] pSrcB points to the second input matrix structure
elessair 0:f269e3021894 1455 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1456 * @return The function returns either
elessair 0:f269e3021894 1457 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1458 */
elessair 0:f269e3021894 1459 arm_status arm_mat_cmplx_mult_f32(
elessair 0:f269e3021894 1460 const arm_matrix_instance_f32 * pSrcA,
elessair 0:f269e3021894 1461 const arm_matrix_instance_f32 * pSrcB,
elessair 0:f269e3021894 1462 arm_matrix_instance_f32 * pDst);
elessair 0:f269e3021894 1463
elessair 0:f269e3021894 1464
elessair 0:f269e3021894 1465 /**
elessair 0:f269e3021894 1466 * @brief Q15, complex, matrix multiplication.
elessair 0:f269e3021894 1467 * @param[in] pSrcA points to the first input matrix structure
elessair 0:f269e3021894 1468 * @param[in] pSrcB points to the second input matrix structure
elessair 0:f269e3021894 1469 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1470 * @return The function returns either
elessair 0:f269e3021894 1471 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1472 */
elessair 0:f269e3021894 1473 arm_status arm_mat_cmplx_mult_q15(
elessair 0:f269e3021894 1474 const arm_matrix_instance_q15 * pSrcA,
elessair 0:f269e3021894 1475 const arm_matrix_instance_q15 * pSrcB,
elessair 0:f269e3021894 1476 arm_matrix_instance_q15 * pDst,
elessair 0:f269e3021894 1477 q15_t * pScratch);
elessair 0:f269e3021894 1478
elessair 0:f269e3021894 1479
elessair 0:f269e3021894 1480 /**
elessair 0:f269e3021894 1481 * @brief Q31, complex, matrix multiplication.
elessair 0:f269e3021894 1482 * @param[in] pSrcA points to the first input matrix structure
elessair 0:f269e3021894 1483 * @param[in] pSrcB points to the second input matrix structure
elessair 0:f269e3021894 1484 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1485 * @return The function returns either
elessair 0:f269e3021894 1486 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1487 */
elessair 0:f269e3021894 1488 arm_status arm_mat_cmplx_mult_q31(
elessair 0:f269e3021894 1489 const arm_matrix_instance_q31 * pSrcA,
elessair 0:f269e3021894 1490 const arm_matrix_instance_q31 * pSrcB,
elessair 0:f269e3021894 1491 arm_matrix_instance_q31 * pDst);
elessair 0:f269e3021894 1492
elessair 0:f269e3021894 1493
elessair 0:f269e3021894 1494 /**
elessair 0:f269e3021894 1495 * @brief Floating-point matrix transpose.
elessair 0:f269e3021894 1496 * @param[in] pSrc points to the input matrix
elessair 0:f269e3021894 1497 * @param[out] pDst points to the output matrix
elessair 0:f269e3021894 1498 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
elessair 0:f269e3021894 1499 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1500 */
elessair 0:f269e3021894 1501 arm_status arm_mat_trans_f32(
elessair 0:f269e3021894 1502 const arm_matrix_instance_f32 * pSrc,
elessair 0:f269e3021894 1503 arm_matrix_instance_f32 * pDst);
elessair 0:f269e3021894 1504
elessair 0:f269e3021894 1505
elessair 0:f269e3021894 1506 /**
elessair 0:f269e3021894 1507 * @brief Q15 matrix transpose.
elessair 0:f269e3021894 1508 * @param[in] pSrc points to the input matrix
elessair 0:f269e3021894 1509 * @param[out] pDst points to the output matrix
elessair 0:f269e3021894 1510 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
elessair 0:f269e3021894 1511 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1512 */
elessair 0:f269e3021894 1513 arm_status arm_mat_trans_q15(
elessair 0:f269e3021894 1514 const arm_matrix_instance_q15 * pSrc,
elessair 0:f269e3021894 1515 arm_matrix_instance_q15 * pDst);
elessair 0:f269e3021894 1516
elessair 0:f269e3021894 1517
elessair 0:f269e3021894 1518 /**
elessair 0:f269e3021894 1519 * @brief Q31 matrix transpose.
elessair 0:f269e3021894 1520 * @param[in] pSrc points to the input matrix
elessair 0:f269e3021894 1521 * @param[out] pDst points to the output matrix
elessair 0:f269e3021894 1522 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
elessair 0:f269e3021894 1523 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1524 */
elessair 0:f269e3021894 1525 arm_status arm_mat_trans_q31(
elessair 0:f269e3021894 1526 const arm_matrix_instance_q31 * pSrc,
elessair 0:f269e3021894 1527 arm_matrix_instance_q31 * pDst);
elessair 0:f269e3021894 1528
elessair 0:f269e3021894 1529
elessair 0:f269e3021894 1530 /**
elessair 0:f269e3021894 1531 * @brief Floating-point matrix multiplication
elessair 0:f269e3021894 1532 * @param[in] pSrcA points to the first input matrix structure
elessair 0:f269e3021894 1533 * @param[in] pSrcB points to the second input matrix structure
elessair 0:f269e3021894 1534 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1535 * @return The function returns either
elessair 0:f269e3021894 1536 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1537 */
elessair 0:f269e3021894 1538 arm_status arm_mat_mult_f32(
elessair 0:f269e3021894 1539 const arm_matrix_instance_f32 * pSrcA,
elessair 0:f269e3021894 1540 const arm_matrix_instance_f32 * pSrcB,
elessair 0:f269e3021894 1541 arm_matrix_instance_f32 * pDst);
elessair 0:f269e3021894 1542
elessair 0:f269e3021894 1543
elessair 0:f269e3021894 1544 /**
elessair 0:f269e3021894 1545 * @brief Q15 matrix multiplication
elessair 0:f269e3021894 1546 * @param[in] pSrcA points to the first input matrix structure
elessair 0:f269e3021894 1547 * @param[in] pSrcB points to the second input matrix structure
elessair 0:f269e3021894 1548 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1549 * @param[in] pState points to the array for storing intermediate results
elessair 0:f269e3021894 1550 * @return The function returns either
elessair 0:f269e3021894 1551 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1552 */
elessair 0:f269e3021894 1553 arm_status arm_mat_mult_q15(
elessair 0:f269e3021894 1554 const arm_matrix_instance_q15 * pSrcA,
elessair 0:f269e3021894 1555 const arm_matrix_instance_q15 * pSrcB,
elessair 0:f269e3021894 1556 arm_matrix_instance_q15 * pDst,
elessair 0:f269e3021894 1557 q15_t * pState);
elessair 0:f269e3021894 1558
elessair 0:f269e3021894 1559
elessair 0:f269e3021894 1560 /**
elessair 0:f269e3021894 1561 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
elessair 0:f269e3021894 1562 * @param[in] pSrcA points to the first input matrix structure
elessair 0:f269e3021894 1563 * @param[in] pSrcB points to the second input matrix structure
elessair 0:f269e3021894 1564 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1565 * @param[in] pState points to the array for storing intermediate results
elessair 0:f269e3021894 1566 * @return The function returns either
elessair 0:f269e3021894 1567 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1568 */
elessair 0:f269e3021894 1569 arm_status arm_mat_mult_fast_q15(
elessair 0:f269e3021894 1570 const arm_matrix_instance_q15 * pSrcA,
elessair 0:f269e3021894 1571 const arm_matrix_instance_q15 * pSrcB,
elessair 0:f269e3021894 1572 arm_matrix_instance_q15 * pDst,
elessair 0:f269e3021894 1573 q15_t * pState);
elessair 0:f269e3021894 1574
elessair 0:f269e3021894 1575
elessair 0:f269e3021894 1576 /**
elessair 0:f269e3021894 1577 * @brief Q31 matrix multiplication
elessair 0:f269e3021894 1578 * @param[in] pSrcA points to the first input matrix structure
elessair 0:f269e3021894 1579 * @param[in] pSrcB points to the second input matrix structure
elessair 0:f269e3021894 1580 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1581 * @return The function returns either
elessair 0:f269e3021894 1582 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1583 */
elessair 0:f269e3021894 1584 arm_status arm_mat_mult_q31(
elessair 0:f269e3021894 1585 const arm_matrix_instance_q31 * pSrcA,
elessair 0:f269e3021894 1586 const arm_matrix_instance_q31 * pSrcB,
elessair 0:f269e3021894 1587 arm_matrix_instance_q31 * pDst);
elessair 0:f269e3021894 1588
elessair 0:f269e3021894 1589
elessair 0:f269e3021894 1590 /**
elessair 0:f269e3021894 1591 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
elessair 0:f269e3021894 1592 * @param[in] pSrcA points to the first input matrix structure
elessair 0:f269e3021894 1593 * @param[in] pSrcB points to the second input matrix structure
elessair 0:f269e3021894 1594 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1595 * @return The function returns either
elessair 0:f269e3021894 1596 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1597 */
elessair 0:f269e3021894 1598 arm_status arm_mat_mult_fast_q31(
elessair 0:f269e3021894 1599 const arm_matrix_instance_q31 * pSrcA,
elessair 0:f269e3021894 1600 const arm_matrix_instance_q31 * pSrcB,
elessair 0:f269e3021894 1601 arm_matrix_instance_q31 * pDst);
elessair 0:f269e3021894 1602
elessair 0:f269e3021894 1603
elessair 0:f269e3021894 1604 /**
elessair 0:f269e3021894 1605 * @brief Floating-point matrix subtraction
elessair 0:f269e3021894 1606 * @param[in] pSrcA points to the first input matrix structure
elessair 0:f269e3021894 1607 * @param[in] pSrcB points to the second input matrix structure
elessair 0:f269e3021894 1608 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1609 * @return The function returns either
elessair 0:f269e3021894 1610 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1611 */
elessair 0:f269e3021894 1612 arm_status arm_mat_sub_f32(
elessair 0:f269e3021894 1613 const arm_matrix_instance_f32 * pSrcA,
elessair 0:f269e3021894 1614 const arm_matrix_instance_f32 * pSrcB,
elessair 0:f269e3021894 1615 arm_matrix_instance_f32 * pDst);
elessair 0:f269e3021894 1616
elessair 0:f269e3021894 1617
elessair 0:f269e3021894 1618 /**
elessair 0:f269e3021894 1619 * @brief Q15 matrix subtraction
elessair 0:f269e3021894 1620 * @param[in] pSrcA points to the first input matrix structure
elessair 0:f269e3021894 1621 * @param[in] pSrcB points to the second input matrix structure
elessair 0:f269e3021894 1622 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1623 * @return The function returns either
elessair 0:f269e3021894 1624 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1625 */
elessair 0:f269e3021894 1626 arm_status arm_mat_sub_q15(
elessair 0:f269e3021894 1627 const arm_matrix_instance_q15 * pSrcA,
elessair 0:f269e3021894 1628 const arm_matrix_instance_q15 * pSrcB,
elessair 0:f269e3021894 1629 arm_matrix_instance_q15 * pDst);
elessair 0:f269e3021894 1630
elessair 0:f269e3021894 1631
elessair 0:f269e3021894 1632 /**
elessair 0:f269e3021894 1633 * @brief Q31 matrix subtraction
elessair 0:f269e3021894 1634 * @param[in] pSrcA points to the first input matrix structure
elessair 0:f269e3021894 1635 * @param[in] pSrcB points to the second input matrix structure
elessair 0:f269e3021894 1636 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1637 * @return The function returns either
elessair 0:f269e3021894 1638 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1639 */
elessair 0:f269e3021894 1640 arm_status arm_mat_sub_q31(
elessair 0:f269e3021894 1641 const arm_matrix_instance_q31 * pSrcA,
elessair 0:f269e3021894 1642 const arm_matrix_instance_q31 * pSrcB,
elessair 0:f269e3021894 1643 arm_matrix_instance_q31 * pDst);
elessair 0:f269e3021894 1644
elessair 0:f269e3021894 1645
elessair 0:f269e3021894 1646 /**
elessair 0:f269e3021894 1647 * @brief Floating-point matrix scaling.
elessair 0:f269e3021894 1648 * @param[in] pSrc points to the input matrix
elessair 0:f269e3021894 1649 * @param[in] scale scale factor
elessair 0:f269e3021894 1650 * @param[out] pDst points to the output matrix
elessair 0:f269e3021894 1651 * @return The function returns either
elessair 0:f269e3021894 1652 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1653 */
elessair 0:f269e3021894 1654 arm_status arm_mat_scale_f32(
elessair 0:f269e3021894 1655 const arm_matrix_instance_f32 * pSrc,
elessair 0:f269e3021894 1656 float32_t scale,
elessair 0:f269e3021894 1657 arm_matrix_instance_f32 * pDst);
elessair 0:f269e3021894 1658
elessair 0:f269e3021894 1659
elessair 0:f269e3021894 1660 /**
elessair 0:f269e3021894 1661 * @brief Q15 matrix scaling.
elessair 0:f269e3021894 1662 * @param[in] pSrc points to input matrix
elessair 0:f269e3021894 1663 * @param[in] scaleFract fractional portion of the scale factor
elessair 0:f269e3021894 1664 * @param[in] shift number of bits to shift the result by
elessair 0:f269e3021894 1665 * @param[out] pDst points to output matrix
elessair 0:f269e3021894 1666 * @return The function returns either
elessair 0:f269e3021894 1667 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1668 */
elessair 0:f269e3021894 1669 arm_status arm_mat_scale_q15(
elessair 0:f269e3021894 1670 const arm_matrix_instance_q15 * pSrc,
elessair 0:f269e3021894 1671 q15_t scaleFract,
elessair 0:f269e3021894 1672 int32_t shift,
elessair 0:f269e3021894 1673 arm_matrix_instance_q15 * pDst);
elessair 0:f269e3021894 1674
elessair 0:f269e3021894 1675
elessair 0:f269e3021894 1676 /**
elessair 0:f269e3021894 1677 * @brief Q31 matrix scaling.
elessair 0:f269e3021894 1678 * @param[in] pSrc points to input matrix
elessair 0:f269e3021894 1679 * @param[in] scaleFract fractional portion of the scale factor
elessair 0:f269e3021894 1680 * @param[in] shift number of bits to shift the result by
elessair 0:f269e3021894 1681 * @param[out] pDst points to output matrix structure
elessair 0:f269e3021894 1682 * @return The function returns either
elessair 0:f269e3021894 1683 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
elessair 0:f269e3021894 1684 */
elessair 0:f269e3021894 1685 arm_status arm_mat_scale_q31(
elessair 0:f269e3021894 1686 const arm_matrix_instance_q31 * pSrc,
elessair 0:f269e3021894 1687 q31_t scaleFract,
elessair 0:f269e3021894 1688 int32_t shift,
elessair 0:f269e3021894 1689 arm_matrix_instance_q31 * pDst);
elessair 0:f269e3021894 1690
elessair 0:f269e3021894 1691
elessair 0:f269e3021894 1692 /**
elessair 0:f269e3021894 1693 * @brief Q31 matrix initialization.
elessair 0:f269e3021894 1694 * @param[in,out] S points to an instance of the floating-point matrix structure.
elessair 0:f269e3021894 1695 * @param[in] nRows number of rows in the matrix.
elessair 0:f269e3021894 1696 * @param[in] nColumns number of columns in the matrix.
elessair 0:f269e3021894 1697 * @param[in] pData points to the matrix data array.
elessair 0:f269e3021894 1698 */
elessair 0:f269e3021894 1699 void arm_mat_init_q31(
elessair 0:f269e3021894 1700 arm_matrix_instance_q31 * S,
elessair 0:f269e3021894 1701 uint16_t nRows,
elessair 0:f269e3021894 1702 uint16_t nColumns,
elessair 0:f269e3021894 1703 q31_t * pData);
elessair 0:f269e3021894 1704
elessair 0:f269e3021894 1705
elessair 0:f269e3021894 1706 /**
elessair 0:f269e3021894 1707 * @brief Q15 matrix initialization.
elessair 0:f269e3021894 1708 * @param[in,out] S points to an instance of the floating-point matrix structure.
elessair 0:f269e3021894 1709 * @param[in] nRows number of rows in the matrix.
elessair 0:f269e3021894 1710 * @param[in] nColumns number of columns in the matrix.
elessair 0:f269e3021894 1711 * @param[in] pData points to the matrix data array.
elessair 0:f269e3021894 1712 */
elessair 0:f269e3021894 1713 void arm_mat_init_q15(
elessair 0:f269e3021894 1714 arm_matrix_instance_q15 * S,
elessair 0:f269e3021894 1715 uint16_t nRows,
elessair 0:f269e3021894 1716 uint16_t nColumns,
elessair 0:f269e3021894 1717 q15_t * pData);
elessair 0:f269e3021894 1718
elessair 0:f269e3021894 1719
elessair 0:f269e3021894 1720 /**
elessair 0:f269e3021894 1721 * @brief Floating-point matrix initialization.
elessair 0:f269e3021894 1722 * @param[in,out] S points to an instance of the floating-point matrix structure.
elessair 0:f269e3021894 1723 * @param[in] nRows number of rows in the matrix.
elessair 0:f269e3021894 1724 * @param[in] nColumns number of columns in the matrix.
elessair 0:f269e3021894 1725 * @param[in] pData points to the matrix data array.
elessair 0:f269e3021894 1726 */
elessair 0:f269e3021894 1727 void arm_mat_init_f32(
elessair 0:f269e3021894 1728 arm_matrix_instance_f32 * S,
elessair 0:f269e3021894 1729 uint16_t nRows,
elessair 0:f269e3021894 1730 uint16_t nColumns,
elessair 0:f269e3021894 1731 float32_t * pData);
elessair 0:f269e3021894 1732
elessair 0:f269e3021894 1733
elessair 0:f269e3021894 1734
elessair 0:f269e3021894 1735 /**
elessair 0:f269e3021894 1736 * @brief Instance structure for the Q15 PID Control.
elessair 0:f269e3021894 1737 */
elessair 0:f269e3021894 1738 typedef struct
elessair 0:f269e3021894 1739 {
elessair 0:f269e3021894 1740 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
elessair 0:f269e3021894 1741 #ifdef ARM_MATH_CM0_FAMILY
elessair 0:f269e3021894 1742 q15_t A1;
elessair 0:f269e3021894 1743 q15_t A2;
elessair 0:f269e3021894 1744 #else
elessair 0:f269e3021894 1745 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
elessair 0:f269e3021894 1746 #endif
elessair 0:f269e3021894 1747 q15_t state[3]; /**< The state array of length 3. */
elessair 0:f269e3021894 1748 q15_t Kp; /**< The proportional gain. */
elessair 0:f269e3021894 1749 q15_t Ki; /**< The integral gain. */
elessair 0:f269e3021894 1750 q15_t Kd; /**< The derivative gain. */
elessair 0:f269e3021894 1751 } arm_pid_instance_q15;
elessair 0:f269e3021894 1752
elessair 0:f269e3021894 1753 /**
elessair 0:f269e3021894 1754 * @brief Instance structure for the Q31 PID Control.
elessair 0:f269e3021894 1755 */
elessair 0:f269e3021894 1756 typedef struct
elessair 0:f269e3021894 1757 {
elessair 0:f269e3021894 1758 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
elessair 0:f269e3021894 1759 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
elessair 0:f269e3021894 1760 q31_t A2; /**< The derived gain, A2 = Kd . */
elessair 0:f269e3021894 1761 q31_t state[3]; /**< The state array of length 3. */
elessair 0:f269e3021894 1762 q31_t Kp; /**< The proportional gain. */
elessair 0:f269e3021894 1763 q31_t Ki; /**< The integral gain. */
elessair 0:f269e3021894 1764 q31_t Kd; /**< The derivative gain. */
elessair 0:f269e3021894 1765 } arm_pid_instance_q31;
elessair 0:f269e3021894 1766
elessair 0:f269e3021894 1767 /**
elessair 0:f269e3021894 1768 * @brief Instance structure for the floating-point PID Control.
elessair 0:f269e3021894 1769 */
elessair 0:f269e3021894 1770 typedef struct
elessair 0:f269e3021894 1771 {
elessair 0:f269e3021894 1772 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
elessair 0:f269e3021894 1773 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
elessair 0:f269e3021894 1774 float32_t A2; /**< The derived gain, A2 = Kd . */
elessair 0:f269e3021894 1775 float32_t state[3]; /**< The state array of length 3. */
elessair 0:f269e3021894 1776 float32_t Kp; /**< The proportional gain. */
elessair 0:f269e3021894 1777 float32_t Ki; /**< The integral gain. */
elessair 0:f269e3021894 1778 float32_t Kd; /**< The derivative gain. */
elessair 0:f269e3021894 1779 } arm_pid_instance_f32;
elessair 0:f269e3021894 1780
elessair 0:f269e3021894 1781
elessair 0:f269e3021894 1782
elessair 0:f269e3021894 1783 /**
elessair 0:f269e3021894 1784 * @brief Initialization function for the floating-point PID Control.
elessair 0:f269e3021894 1785 * @param[in,out] S points to an instance of the PID structure.
elessair 0:f269e3021894 1786 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
elessair 0:f269e3021894 1787 */
elessair 0:f269e3021894 1788 void arm_pid_init_f32(
elessair 0:f269e3021894 1789 arm_pid_instance_f32 * S,
elessair 0:f269e3021894 1790 int32_t resetStateFlag);
elessair 0:f269e3021894 1791
elessair 0:f269e3021894 1792
elessair 0:f269e3021894 1793 /**
elessair 0:f269e3021894 1794 * @brief Reset function for the floating-point PID Control.
elessair 0:f269e3021894 1795 * @param[in,out] S is an instance of the floating-point PID Control structure
elessair 0:f269e3021894 1796 */
elessair 0:f269e3021894 1797 void arm_pid_reset_f32(
elessair 0:f269e3021894 1798 arm_pid_instance_f32 * S);
elessair 0:f269e3021894 1799
elessair 0:f269e3021894 1800
elessair 0:f269e3021894 1801 /**
elessair 0:f269e3021894 1802 * @brief Initialization function for the Q31 PID Control.
elessair 0:f269e3021894 1803 * @param[in,out] S points to an instance of the Q15 PID structure.
elessair 0:f269e3021894 1804 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
elessair 0:f269e3021894 1805 */
elessair 0:f269e3021894 1806 void arm_pid_init_q31(
elessair 0:f269e3021894 1807 arm_pid_instance_q31 * S,
elessair 0:f269e3021894 1808 int32_t resetStateFlag);
elessair 0:f269e3021894 1809
elessair 0:f269e3021894 1810
elessair 0:f269e3021894 1811 /**
elessair 0:f269e3021894 1812 * @brief Reset function for the Q31 PID Control.
elessair 0:f269e3021894 1813 * @param[in,out] S points to an instance of the Q31 PID Control structure
elessair 0:f269e3021894 1814 */
elessair 0:f269e3021894 1815
elessair 0:f269e3021894 1816 void arm_pid_reset_q31(
elessair 0:f269e3021894 1817 arm_pid_instance_q31 * S);
elessair 0:f269e3021894 1818
elessair 0:f269e3021894 1819
elessair 0:f269e3021894 1820 /**
elessair 0:f269e3021894 1821 * @brief Initialization function for the Q15 PID Control.
elessair 0:f269e3021894 1822 * @param[in,out] S points to an instance of the Q15 PID structure.
elessair 0:f269e3021894 1823 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
elessair 0:f269e3021894 1824 */
elessair 0:f269e3021894 1825 void arm_pid_init_q15(
elessair 0:f269e3021894 1826 arm_pid_instance_q15 * S,
elessair 0:f269e3021894 1827 int32_t resetStateFlag);
elessair 0:f269e3021894 1828
elessair 0:f269e3021894 1829
elessair 0:f269e3021894 1830 /**
elessair 0:f269e3021894 1831 * @brief Reset function for the Q15 PID Control.
elessair 0:f269e3021894 1832 * @param[in,out] S points to an instance of the q15 PID Control structure
elessair 0:f269e3021894 1833 */
elessair 0:f269e3021894 1834 void arm_pid_reset_q15(
elessair 0:f269e3021894 1835 arm_pid_instance_q15 * S);
elessair 0:f269e3021894 1836
elessair 0:f269e3021894 1837
elessair 0:f269e3021894 1838 /**
elessair 0:f269e3021894 1839 * @brief Instance structure for the floating-point Linear Interpolate function.
elessair 0:f269e3021894 1840 */
elessair 0:f269e3021894 1841 typedef struct
elessair 0:f269e3021894 1842 {
elessair 0:f269e3021894 1843 uint32_t nValues; /**< nValues */
elessair 0:f269e3021894 1844 float32_t x1; /**< x1 */
elessair 0:f269e3021894 1845 float32_t xSpacing; /**< xSpacing */
elessair 0:f269e3021894 1846 float32_t *pYData; /**< pointer to the table of Y values */
elessair 0:f269e3021894 1847 } arm_linear_interp_instance_f32;
elessair 0:f269e3021894 1848
elessair 0:f269e3021894 1849 /**
elessair 0:f269e3021894 1850 * @brief Instance structure for the floating-point bilinear interpolation function.
elessair 0:f269e3021894 1851 */
elessair 0:f269e3021894 1852 typedef struct
elessair 0:f269e3021894 1853 {
elessair 0:f269e3021894 1854 uint16_t numRows; /**< number of rows in the data table. */
elessair 0:f269e3021894 1855 uint16_t numCols; /**< number of columns in the data table. */
elessair 0:f269e3021894 1856 float32_t *pData; /**< points to the data table. */
elessair 0:f269e3021894 1857 } arm_bilinear_interp_instance_f32;
elessair 0:f269e3021894 1858
elessair 0:f269e3021894 1859 /**
elessair 0:f269e3021894 1860 * @brief Instance structure for the Q31 bilinear interpolation function.
elessair 0:f269e3021894 1861 */
elessair 0:f269e3021894 1862 typedef struct
elessair 0:f269e3021894 1863 {
elessair 0:f269e3021894 1864 uint16_t numRows; /**< number of rows in the data table. */
elessair 0:f269e3021894 1865 uint16_t numCols; /**< number of columns in the data table. */
elessair 0:f269e3021894 1866 q31_t *pData; /**< points to the data table. */
elessair 0:f269e3021894 1867 } arm_bilinear_interp_instance_q31;
elessair 0:f269e3021894 1868
elessair 0:f269e3021894 1869 /**
elessair 0:f269e3021894 1870 * @brief Instance structure for the Q15 bilinear interpolation function.
elessair 0:f269e3021894 1871 */
elessair 0:f269e3021894 1872 typedef struct
elessair 0:f269e3021894 1873 {
elessair 0:f269e3021894 1874 uint16_t numRows; /**< number of rows in the data table. */
elessair 0:f269e3021894 1875 uint16_t numCols; /**< number of columns in the data table. */
elessair 0:f269e3021894 1876 q15_t *pData; /**< points to the data table. */
elessair 0:f269e3021894 1877 } arm_bilinear_interp_instance_q15;
elessair 0:f269e3021894 1878
elessair 0:f269e3021894 1879 /**
elessair 0:f269e3021894 1880 * @brief Instance structure for the Q15 bilinear interpolation function.
elessair 0:f269e3021894 1881 */
elessair 0:f269e3021894 1882 typedef struct
elessair 0:f269e3021894 1883 {
elessair 0:f269e3021894 1884 uint16_t numRows; /**< number of rows in the data table. */
elessair 0:f269e3021894 1885 uint16_t numCols; /**< number of columns in the data table. */
elessair 0:f269e3021894 1886 q7_t *pData; /**< points to the data table. */
elessair 0:f269e3021894 1887 } arm_bilinear_interp_instance_q7;
elessair 0:f269e3021894 1888
elessair 0:f269e3021894 1889
elessair 0:f269e3021894 1890 /**
elessair 0:f269e3021894 1891 * @brief Q7 vector multiplication.
elessair 0:f269e3021894 1892 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 1893 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 1894 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 1895 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 1896 */
elessair 0:f269e3021894 1897 void arm_mult_q7(
elessair 0:f269e3021894 1898 q7_t * pSrcA,
elessair 0:f269e3021894 1899 q7_t * pSrcB,
elessair 0:f269e3021894 1900 q7_t * pDst,
elessair 0:f269e3021894 1901 uint32_t blockSize);
elessair 0:f269e3021894 1902
elessair 0:f269e3021894 1903
elessair 0:f269e3021894 1904 /**
elessair 0:f269e3021894 1905 * @brief Q15 vector multiplication.
elessair 0:f269e3021894 1906 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 1907 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 1908 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 1909 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 1910 */
elessair 0:f269e3021894 1911 void arm_mult_q15(
elessair 0:f269e3021894 1912 q15_t * pSrcA,
elessair 0:f269e3021894 1913 q15_t * pSrcB,
elessair 0:f269e3021894 1914 q15_t * pDst,
elessair 0:f269e3021894 1915 uint32_t blockSize);
elessair 0:f269e3021894 1916
elessair 0:f269e3021894 1917
elessair 0:f269e3021894 1918 /**
elessair 0:f269e3021894 1919 * @brief Q31 vector multiplication.
elessair 0:f269e3021894 1920 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 1921 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 1922 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 1923 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 1924 */
elessair 0:f269e3021894 1925 void arm_mult_q31(
elessair 0:f269e3021894 1926 q31_t * pSrcA,
elessair 0:f269e3021894 1927 q31_t * pSrcB,
elessair 0:f269e3021894 1928 q31_t * pDst,
elessair 0:f269e3021894 1929 uint32_t blockSize);
elessair 0:f269e3021894 1930
elessair 0:f269e3021894 1931
elessair 0:f269e3021894 1932 /**
elessair 0:f269e3021894 1933 * @brief Floating-point vector multiplication.
elessair 0:f269e3021894 1934 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 1935 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 1936 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 1937 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 1938 */
elessair 0:f269e3021894 1939 void arm_mult_f32(
elessair 0:f269e3021894 1940 float32_t * pSrcA,
elessair 0:f269e3021894 1941 float32_t * pSrcB,
elessair 0:f269e3021894 1942 float32_t * pDst,
elessair 0:f269e3021894 1943 uint32_t blockSize);
elessair 0:f269e3021894 1944
elessair 0:f269e3021894 1945
elessair 0:f269e3021894 1946 /**
elessair 0:f269e3021894 1947 * @brief Instance structure for the Q15 CFFT/CIFFT function.
elessair 0:f269e3021894 1948 */
elessair 0:f269e3021894 1949 typedef struct
elessair 0:f269e3021894 1950 {
elessair 0:f269e3021894 1951 uint16_t fftLen; /**< length of the FFT. */
elessair 0:f269e3021894 1952 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
elessair 0:f269e3021894 1953 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
elessair 0:f269e3021894 1954 q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
elessair 0:f269e3021894 1955 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
elessair 0:f269e3021894 1956 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
elessair 0:f269e3021894 1957 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
elessair 0:f269e3021894 1958 } arm_cfft_radix2_instance_q15;
elessair 0:f269e3021894 1959
elessair 0:f269e3021894 1960 /* Deprecated */
elessair 0:f269e3021894 1961 arm_status arm_cfft_radix2_init_q15(
elessair 0:f269e3021894 1962 arm_cfft_radix2_instance_q15 * S,
elessair 0:f269e3021894 1963 uint16_t fftLen,
elessair 0:f269e3021894 1964 uint8_t ifftFlag,
elessair 0:f269e3021894 1965 uint8_t bitReverseFlag);
elessair 0:f269e3021894 1966
elessair 0:f269e3021894 1967 /* Deprecated */
elessair 0:f269e3021894 1968 void arm_cfft_radix2_q15(
elessair 0:f269e3021894 1969 const arm_cfft_radix2_instance_q15 * S,
elessair 0:f269e3021894 1970 q15_t * pSrc);
elessair 0:f269e3021894 1971
elessair 0:f269e3021894 1972
elessair 0:f269e3021894 1973 /**
elessair 0:f269e3021894 1974 * @brief Instance structure for the Q15 CFFT/CIFFT function.
elessair 0:f269e3021894 1975 */
elessair 0:f269e3021894 1976 typedef struct
elessair 0:f269e3021894 1977 {
elessair 0:f269e3021894 1978 uint16_t fftLen; /**< length of the FFT. */
elessair 0:f269e3021894 1979 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
elessair 0:f269e3021894 1980 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
elessair 0:f269e3021894 1981 q15_t *pTwiddle; /**< points to the twiddle factor table. */
elessair 0:f269e3021894 1982 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
elessair 0:f269e3021894 1983 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
elessair 0:f269e3021894 1984 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
elessair 0:f269e3021894 1985 } arm_cfft_radix4_instance_q15;
elessair 0:f269e3021894 1986
elessair 0:f269e3021894 1987 /* Deprecated */
elessair 0:f269e3021894 1988 arm_status arm_cfft_radix4_init_q15(
elessair 0:f269e3021894 1989 arm_cfft_radix4_instance_q15 * S,
elessair 0:f269e3021894 1990 uint16_t fftLen,
elessair 0:f269e3021894 1991 uint8_t ifftFlag,
elessair 0:f269e3021894 1992 uint8_t bitReverseFlag);
elessair 0:f269e3021894 1993
elessair 0:f269e3021894 1994 /* Deprecated */
elessair 0:f269e3021894 1995 void arm_cfft_radix4_q15(
elessair 0:f269e3021894 1996 const arm_cfft_radix4_instance_q15 * S,
elessair 0:f269e3021894 1997 q15_t * pSrc);
elessair 0:f269e3021894 1998
elessair 0:f269e3021894 1999 /**
elessair 0:f269e3021894 2000 * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
elessair 0:f269e3021894 2001 */
elessair 0:f269e3021894 2002 typedef struct
elessair 0:f269e3021894 2003 {
elessair 0:f269e3021894 2004 uint16_t fftLen; /**< length of the FFT. */
elessair 0:f269e3021894 2005 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
elessair 0:f269e3021894 2006 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
elessair 0:f269e3021894 2007 q31_t *pTwiddle; /**< points to the Twiddle factor table. */
elessair 0:f269e3021894 2008 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
elessair 0:f269e3021894 2009 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
elessair 0:f269e3021894 2010 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
elessair 0:f269e3021894 2011 } arm_cfft_radix2_instance_q31;
elessair 0:f269e3021894 2012
elessair 0:f269e3021894 2013 /* Deprecated */
elessair 0:f269e3021894 2014 arm_status arm_cfft_radix2_init_q31(
elessair 0:f269e3021894 2015 arm_cfft_radix2_instance_q31 * S,
elessair 0:f269e3021894 2016 uint16_t fftLen,
elessair 0:f269e3021894 2017 uint8_t ifftFlag,
elessair 0:f269e3021894 2018 uint8_t bitReverseFlag);
elessair 0:f269e3021894 2019
elessair 0:f269e3021894 2020 /* Deprecated */
elessair 0:f269e3021894 2021 void arm_cfft_radix2_q31(
elessair 0:f269e3021894 2022 const arm_cfft_radix2_instance_q31 * S,
elessair 0:f269e3021894 2023 q31_t * pSrc);
elessair 0:f269e3021894 2024
elessair 0:f269e3021894 2025 /**
elessair 0:f269e3021894 2026 * @brief Instance structure for the Q31 CFFT/CIFFT function.
elessair 0:f269e3021894 2027 */
elessair 0:f269e3021894 2028 typedef struct
elessair 0:f269e3021894 2029 {
elessair 0:f269e3021894 2030 uint16_t fftLen; /**< length of the FFT. */
elessair 0:f269e3021894 2031 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
elessair 0:f269e3021894 2032 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
elessair 0:f269e3021894 2033 q31_t *pTwiddle; /**< points to the twiddle factor table. */
elessair 0:f269e3021894 2034 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
elessair 0:f269e3021894 2035 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
elessair 0:f269e3021894 2036 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
elessair 0:f269e3021894 2037 } arm_cfft_radix4_instance_q31;
elessair 0:f269e3021894 2038
elessair 0:f269e3021894 2039 /* Deprecated */
elessair 0:f269e3021894 2040 void arm_cfft_radix4_q31(
elessair 0:f269e3021894 2041 const arm_cfft_radix4_instance_q31 * S,
elessair 0:f269e3021894 2042 q31_t * pSrc);
elessair 0:f269e3021894 2043
elessair 0:f269e3021894 2044 /* Deprecated */
elessair 0:f269e3021894 2045 arm_status arm_cfft_radix4_init_q31(
elessair 0:f269e3021894 2046 arm_cfft_radix4_instance_q31 * S,
elessair 0:f269e3021894 2047 uint16_t fftLen,
elessair 0:f269e3021894 2048 uint8_t ifftFlag,
elessair 0:f269e3021894 2049 uint8_t bitReverseFlag);
elessair 0:f269e3021894 2050
elessair 0:f269e3021894 2051 /**
elessair 0:f269e3021894 2052 * @brief Instance structure for the floating-point CFFT/CIFFT function.
elessair 0:f269e3021894 2053 */
elessair 0:f269e3021894 2054 typedef struct
elessair 0:f269e3021894 2055 {
elessair 0:f269e3021894 2056 uint16_t fftLen; /**< length of the FFT. */
elessair 0:f269e3021894 2057 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
elessair 0:f269e3021894 2058 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
elessair 0:f269e3021894 2059 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
elessair 0:f269e3021894 2060 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
elessair 0:f269e3021894 2061 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
elessair 0:f269e3021894 2062 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
elessair 0:f269e3021894 2063 float32_t onebyfftLen; /**< value of 1/fftLen. */
elessair 0:f269e3021894 2064 } arm_cfft_radix2_instance_f32;
elessair 0:f269e3021894 2065
elessair 0:f269e3021894 2066 /* Deprecated */
elessair 0:f269e3021894 2067 arm_status arm_cfft_radix2_init_f32(
elessair 0:f269e3021894 2068 arm_cfft_radix2_instance_f32 * S,
elessair 0:f269e3021894 2069 uint16_t fftLen,
elessair 0:f269e3021894 2070 uint8_t ifftFlag,
elessair 0:f269e3021894 2071 uint8_t bitReverseFlag);
elessair 0:f269e3021894 2072
elessair 0:f269e3021894 2073 /* Deprecated */
elessair 0:f269e3021894 2074 void arm_cfft_radix2_f32(
elessair 0:f269e3021894 2075 const arm_cfft_radix2_instance_f32 * S,
elessair 0:f269e3021894 2076 float32_t * pSrc);
elessair 0:f269e3021894 2077
elessair 0:f269e3021894 2078 /**
elessair 0:f269e3021894 2079 * @brief Instance structure for the floating-point CFFT/CIFFT function.
elessair 0:f269e3021894 2080 */
elessair 0:f269e3021894 2081 typedef struct
elessair 0:f269e3021894 2082 {
elessair 0:f269e3021894 2083 uint16_t fftLen; /**< length of the FFT. */
elessair 0:f269e3021894 2084 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
elessair 0:f269e3021894 2085 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
elessair 0:f269e3021894 2086 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
elessair 0:f269e3021894 2087 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
elessair 0:f269e3021894 2088 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
elessair 0:f269e3021894 2089 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
elessair 0:f269e3021894 2090 float32_t onebyfftLen; /**< value of 1/fftLen. */
elessair 0:f269e3021894 2091 } arm_cfft_radix4_instance_f32;
elessair 0:f269e3021894 2092
elessair 0:f269e3021894 2093 /* Deprecated */
elessair 0:f269e3021894 2094 arm_status arm_cfft_radix4_init_f32(
elessair 0:f269e3021894 2095 arm_cfft_radix4_instance_f32 * S,
elessair 0:f269e3021894 2096 uint16_t fftLen,
elessair 0:f269e3021894 2097 uint8_t ifftFlag,
elessair 0:f269e3021894 2098 uint8_t bitReverseFlag);
elessair 0:f269e3021894 2099
elessair 0:f269e3021894 2100 /* Deprecated */
elessair 0:f269e3021894 2101 void arm_cfft_radix4_f32(
elessair 0:f269e3021894 2102 const arm_cfft_radix4_instance_f32 * S,
elessair 0:f269e3021894 2103 float32_t * pSrc);
elessair 0:f269e3021894 2104
elessair 0:f269e3021894 2105 /**
elessair 0:f269e3021894 2106 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
elessair 0:f269e3021894 2107 */
elessair 0:f269e3021894 2108 typedef struct
elessair 0:f269e3021894 2109 {
elessair 0:f269e3021894 2110 uint16_t fftLen; /**< length of the FFT. */
elessair 0:f269e3021894 2111 const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
elessair 0:f269e3021894 2112 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
elessair 0:f269e3021894 2113 uint16_t bitRevLength; /**< bit reversal table length. */
elessair 0:f269e3021894 2114 } arm_cfft_instance_q15;
elessair 0:f269e3021894 2115
elessair 0:f269e3021894 2116 void arm_cfft_q15(
elessair 0:f269e3021894 2117 const arm_cfft_instance_q15 * S,
elessair 0:f269e3021894 2118 q15_t * p1,
elessair 0:f269e3021894 2119 uint8_t ifftFlag,
elessair 0:f269e3021894 2120 uint8_t bitReverseFlag);
elessair 0:f269e3021894 2121
elessair 0:f269e3021894 2122 /**
elessair 0:f269e3021894 2123 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
elessair 0:f269e3021894 2124 */
elessair 0:f269e3021894 2125 typedef struct
elessair 0:f269e3021894 2126 {
elessair 0:f269e3021894 2127 uint16_t fftLen; /**< length of the FFT. */
elessair 0:f269e3021894 2128 const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
elessair 0:f269e3021894 2129 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
elessair 0:f269e3021894 2130 uint16_t bitRevLength; /**< bit reversal table length. */
elessair 0:f269e3021894 2131 } arm_cfft_instance_q31;
elessair 0:f269e3021894 2132
elessair 0:f269e3021894 2133 void arm_cfft_q31(
elessair 0:f269e3021894 2134 const arm_cfft_instance_q31 * S,
elessair 0:f269e3021894 2135 q31_t * p1,
elessair 0:f269e3021894 2136 uint8_t ifftFlag,
elessair 0:f269e3021894 2137 uint8_t bitReverseFlag);
elessair 0:f269e3021894 2138
elessair 0:f269e3021894 2139 /**
elessair 0:f269e3021894 2140 * @brief Instance structure for the floating-point CFFT/CIFFT function.
elessair 0:f269e3021894 2141 */
elessair 0:f269e3021894 2142 typedef struct
elessair 0:f269e3021894 2143 {
elessair 0:f269e3021894 2144 uint16_t fftLen; /**< length of the FFT. */
elessair 0:f269e3021894 2145 const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
elessair 0:f269e3021894 2146 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
elessair 0:f269e3021894 2147 uint16_t bitRevLength; /**< bit reversal table length. */
elessair 0:f269e3021894 2148 } arm_cfft_instance_f32;
elessair 0:f269e3021894 2149
elessair 0:f269e3021894 2150 void arm_cfft_f32(
elessair 0:f269e3021894 2151 const arm_cfft_instance_f32 * S,
elessair 0:f269e3021894 2152 float32_t * p1,
elessair 0:f269e3021894 2153 uint8_t ifftFlag,
elessair 0:f269e3021894 2154 uint8_t bitReverseFlag);
elessair 0:f269e3021894 2155
elessair 0:f269e3021894 2156 /**
elessair 0:f269e3021894 2157 * @brief Instance structure for the Q15 RFFT/RIFFT function.
elessair 0:f269e3021894 2158 */
elessair 0:f269e3021894 2159 typedef struct
elessair 0:f269e3021894 2160 {
elessair 0:f269e3021894 2161 uint32_t fftLenReal; /**< length of the real FFT. */
elessair 0:f269e3021894 2162 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
elessair 0:f269e3021894 2163 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
elessair 0:f269e3021894 2164 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
elessair 0:f269e3021894 2165 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
elessair 0:f269e3021894 2166 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
elessair 0:f269e3021894 2167 const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
elessair 0:f269e3021894 2168 } arm_rfft_instance_q15;
elessair 0:f269e3021894 2169
elessair 0:f269e3021894 2170 arm_status arm_rfft_init_q15(
elessair 0:f269e3021894 2171 arm_rfft_instance_q15 * S,
elessair 0:f269e3021894 2172 uint32_t fftLenReal,
elessair 0:f269e3021894 2173 uint32_t ifftFlagR,
elessair 0:f269e3021894 2174 uint32_t bitReverseFlag);
elessair 0:f269e3021894 2175
elessair 0:f269e3021894 2176 void arm_rfft_q15(
elessair 0:f269e3021894 2177 const arm_rfft_instance_q15 * S,
elessair 0:f269e3021894 2178 q15_t * pSrc,
elessair 0:f269e3021894 2179 q15_t * pDst);
elessair 0:f269e3021894 2180
elessair 0:f269e3021894 2181 /**
elessair 0:f269e3021894 2182 * @brief Instance structure for the Q31 RFFT/RIFFT function.
elessair 0:f269e3021894 2183 */
elessair 0:f269e3021894 2184 typedef struct
elessair 0:f269e3021894 2185 {
elessair 0:f269e3021894 2186 uint32_t fftLenReal; /**< length of the real FFT. */
elessair 0:f269e3021894 2187 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
elessair 0:f269e3021894 2188 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
elessair 0:f269e3021894 2189 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
elessair 0:f269e3021894 2190 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
elessair 0:f269e3021894 2191 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
elessair 0:f269e3021894 2192 const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
elessair 0:f269e3021894 2193 } arm_rfft_instance_q31;
elessair 0:f269e3021894 2194
elessair 0:f269e3021894 2195 arm_status arm_rfft_init_q31(
elessair 0:f269e3021894 2196 arm_rfft_instance_q31 * S,
elessair 0:f269e3021894 2197 uint32_t fftLenReal,
elessair 0:f269e3021894 2198 uint32_t ifftFlagR,
elessair 0:f269e3021894 2199 uint32_t bitReverseFlag);
elessair 0:f269e3021894 2200
elessair 0:f269e3021894 2201 void arm_rfft_q31(
elessair 0:f269e3021894 2202 const arm_rfft_instance_q31 * S,
elessair 0:f269e3021894 2203 q31_t * pSrc,
elessair 0:f269e3021894 2204 q31_t * pDst);
elessair 0:f269e3021894 2205
elessair 0:f269e3021894 2206 /**
elessair 0:f269e3021894 2207 * @brief Instance structure for the floating-point RFFT/RIFFT function.
elessair 0:f269e3021894 2208 */
elessair 0:f269e3021894 2209 typedef struct
elessair 0:f269e3021894 2210 {
elessair 0:f269e3021894 2211 uint32_t fftLenReal; /**< length of the real FFT. */
elessair 0:f269e3021894 2212 uint16_t fftLenBy2; /**< length of the complex FFT. */
elessair 0:f269e3021894 2213 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
elessair 0:f269e3021894 2214 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
elessair 0:f269e3021894 2215 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
elessair 0:f269e3021894 2216 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
elessair 0:f269e3021894 2217 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
elessair 0:f269e3021894 2218 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
elessair 0:f269e3021894 2219 } arm_rfft_instance_f32;
elessair 0:f269e3021894 2220
elessair 0:f269e3021894 2221 arm_status arm_rfft_init_f32(
elessair 0:f269e3021894 2222 arm_rfft_instance_f32 * S,
elessair 0:f269e3021894 2223 arm_cfft_radix4_instance_f32 * S_CFFT,
elessair 0:f269e3021894 2224 uint32_t fftLenReal,
elessair 0:f269e3021894 2225 uint32_t ifftFlagR,
elessair 0:f269e3021894 2226 uint32_t bitReverseFlag);
elessair 0:f269e3021894 2227
elessair 0:f269e3021894 2228 void arm_rfft_f32(
elessair 0:f269e3021894 2229 const arm_rfft_instance_f32 * S,
elessair 0:f269e3021894 2230 float32_t * pSrc,
elessair 0:f269e3021894 2231 float32_t * pDst);
elessair 0:f269e3021894 2232
elessair 0:f269e3021894 2233 /**
elessair 0:f269e3021894 2234 * @brief Instance structure for the floating-point RFFT/RIFFT function.
elessair 0:f269e3021894 2235 */
elessair 0:f269e3021894 2236 typedef struct
elessair 0:f269e3021894 2237 {
elessair 0:f269e3021894 2238 arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
elessair 0:f269e3021894 2239 uint16_t fftLenRFFT; /**< length of the real sequence */
elessair 0:f269e3021894 2240 float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
elessair 0:f269e3021894 2241 } arm_rfft_fast_instance_f32 ;
elessair 0:f269e3021894 2242
elessair 0:f269e3021894 2243 arm_status arm_rfft_fast_init_f32 (
elessair 0:f269e3021894 2244 arm_rfft_fast_instance_f32 * S,
elessair 0:f269e3021894 2245 uint16_t fftLen);
elessair 0:f269e3021894 2246
elessair 0:f269e3021894 2247 void arm_rfft_fast_f32(
elessair 0:f269e3021894 2248 arm_rfft_fast_instance_f32 * S,
elessair 0:f269e3021894 2249 float32_t * p, float32_t * pOut,
elessair 0:f269e3021894 2250 uint8_t ifftFlag);
elessair 0:f269e3021894 2251
elessair 0:f269e3021894 2252 /**
elessair 0:f269e3021894 2253 * @brief Instance structure for the floating-point DCT4/IDCT4 function.
elessair 0:f269e3021894 2254 */
elessair 0:f269e3021894 2255 typedef struct
elessair 0:f269e3021894 2256 {
elessair 0:f269e3021894 2257 uint16_t N; /**< length of the DCT4. */
elessair 0:f269e3021894 2258 uint16_t Nby2; /**< half of the length of the DCT4. */
elessair 0:f269e3021894 2259 float32_t normalize; /**< normalizing factor. */
elessair 0:f269e3021894 2260 float32_t *pTwiddle; /**< points to the twiddle factor table. */
elessair 0:f269e3021894 2261 float32_t *pCosFactor; /**< points to the cosFactor table. */
elessair 0:f269e3021894 2262 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
elessair 0:f269e3021894 2263 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
elessair 0:f269e3021894 2264 } arm_dct4_instance_f32;
elessair 0:f269e3021894 2265
elessair 0:f269e3021894 2266
elessair 0:f269e3021894 2267 /**
elessair 0:f269e3021894 2268 * @brief Initialization function for the floating-point DCT4/IDCT4.
elessair 0:f269e3021894 2269 * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
elessair 0:f269e3021894 2270 * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
elessair 0:f269e3021894 2271 * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
elessair 0:f269e3021894 2272 * @param[in] N length of the DCT4.
elessair 0:f269e3021894 2273 * @param[in] Nby2 half of the length of the DCT4.
elessair 0:f269e3021894 2274 * @param[in] normalize normalizing factor.
elessair 0:f269e3021894 2275 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
elessair 0:f269e3021894 2276 */
elessair 0:f269e3021894 2277 arm_status arm_dct4_init_f32(
elessair 0:f269e3021894 2278 arm_dct4_instance_f32 * S,
elessair 0:f269e3021894 2279 arm_rfft_instance_f32 * S_RFFT,
elessair 0:f269e3021894 2280 arm_cfft_radix4_instance_f32 * S_CFFT,
elessair 0:f269e3021894 2281 uint16_t N,
elessair 0:f269e3021894 2282 uint16_t Nby2,
elessair 0:f269e3021894 2283 float32_t normalize);
elessair 0:f269e3021894 2284
elessair 0:f269e3021894 2285
elessair 0:f269e3021894 2286 /**
elessair 0:f269e3021894 2287 * @brief Processing function for the floating-point DCT4/IDCT4.
elessair 0:f269e3021894 2288 * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
elessair 0:f269e3021894 2289 * @param[in] pState points to state buffer.
elessair 0:f269e3021894 2290 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
elessair 0:f269e3021894 2291 */
elessair 0:f269e3021894 2292 void arm_dct4_f32(
elessair 0:f269e3021894 2293 const arm_dct4_instance_f32 * S,
elessair 0:f269e3021894 2294 float32_t * pState,
elessair 0:f269e3021894 2295 float32_t * pInlineBuffer);
elessair 0:f269e3021894 2296
elessair 0:f269e3021894 2297
elessair 0:f269e3021894 2298 /**
elessair 0:f269e3021894 2299 * @brief Instance structure for the Q31 DCT4/IDCT4 function.
elessair 0:f269e3021894 2300 */
elessair 0:f269e3021894 2301 typedef struct
elessair 0:f269e3021894 2302 {
elessair 0:f269e3021894 2303 uint16_t N; /**< length of the DCT4. */
elessair 0:f269e3021894 2304 uint16_t Nby2; /**< half of the length of the DCT4. */
elessair 0:f269e3021894 2305 q31_t normalize; /**< normalizing factor. */
elessair 0:f269e3021894 2306 q31_t *pTwiddle; /**< points to the twiddle factor table. */
elessair 0:f269e3021894 2307 q31_t *pCosFactor; /**< points to the cosFactor table. */
elessair 0:f269e3021894 2308 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
elessair 0:f269e3021894 2309 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
elessair 0:f269e3021894 2310 } arm_dct4_instance_q31;
elessair 0:f269e3021894 2311
elessair 0:f269e3021894 2312
elessair 0:f269e3021894 2313 /**
elessair 0:f269e3021894 2314 * @brief Initialization function for the Q31 DCT4/IDCT4.
elessair 0:f269e3021894 2315 * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
elessair 0:f269e3021894 2316 * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
elessair 0:f269e3021894 2317 * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
elessair 0:f269e3021894 2318 * @param[in] N length of the DCT4.
elessair 0:f269e3021894 2319 * @param[in] Nby2 half of the length of the DCT4.
elessair 0:f269e3021894 2320 * @param[in] normalize normalizing factor.
elessair 0:f269e3021894 2321 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
elessair 0:f269e3021894 2322 */
elessair 0:f269e3021894 2323 arm_status arm_dct4_init_q31(
elessair 0:f269e3021894 2324 arm_dct4_instance_q31 * S,
elessair 0:f269e3021894 2325 arm_rfft_instance_q31 * S_RFFT,
elessair 0:f269e3021894 2326 arm_cfft_radix4_instance_q31 * S_CFFT,
elessair 0:f269e3021894 2327 uint16_t N,
elessair 0:f269e3021894 2328 uint16_t Nby2,
elessair 0:f269e3021894 2329 q31_t normalize);
elessair 0:f269e3021894 2330
elessair 0:f269e3021894 2331
elessair 0:f269e3021894 2332 /**
elessair 0:f269e3021894 2333 * @brief Processing function for the Q31 DCT4/IDCT4.
elessair 0:f269e3021894 2334 * @param[in] S points to an instance of the Q31 DCT4 structure.
elessair 0:f269e3021894 2335 * @param[in] pState points to state buffer.
elessair 0:f269e3021894 2336 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
elessair 0:f269e3021894 2337 */
elessair 0:f269e3021894 2338 void arm_dct4_q31(
elessair 0:f269e3021894 2339 const arm_dct4_instance_q31 * S,
elessair 0:f269e3021894 2340 q31_t * pState,
elessair 0:f269e3021894 2341 q31_t * pInlineBuffer);
elessair 0:f269e3021894 2342
elessair 0:f269e3021894 2343
elessair 0:f269e3021894 2344 /**
elessair 0:f269e3021894 2345 * @brief Instance structure for the Q15 DCT4/IDCT4 function.
elessair 0:f269e3021894 2346 */
elessair 0:f269e3021894 2347 typedef struct
elessair 0:f269e3021894 2348 {
elessair 0:f269e3021894 2349 uint16_t N; /**< length of the DCT4. */
elessair 0:f269e3021894 2350 uint16_t Nby2; /**< half of the length of the DCT4. */
elessair 0:f269e3021894 2351 q15_t normalize; /**< normalizing factor. */
elessair 0:f269e3021894 2352 q15_t *pTwiddle; /**< points to the twiddle factor table. */
elessair 0:f269e3021894 2353 q15_t *pCosFactor; /**< points to the cosFactor table. */
elessair 0:f269e3021894 2354 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
elessair 0:f269e3021894 2355 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
elessair 0:f269e3021894 2356 } arm_dct4_instance_q15;
elessair 0:f269e3021894 2357
elessair 0:f269e3021894 2358
elessair 0:f269e3021894 2359 /**
elessair 0:f269e3021894 2360 * @brief Initialization function for the Q15 DCT4/IDCT4.
elessair 0:f269e3021894 2361 * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
elessair 0:f269e3021894 2362 * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
elessair 0:f269e3021894 2363 * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
elessair 0:f269e3021894 2364 * @param[in] N length of the DCT4.
elessair 0:f269e3021894 2365 * @param[in] Nby2 half of the length of the DCT4.
elessair 0:f269e3021894 2366 * @param[in] normalize normalizing factor.
elessair 0:f269e3021894 2367 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
elessair 0:f269e3021894 2368 */
elessair 0:f269e3021894 2369 arm_status arm_dct4_init_q15(
elessair 0:f269e3021894 2370 arm_dct4_instance_q15 * S,
elessair 0:f269e3021894 2371 arm_rfft_instance_q15 * S_RFFT,
elessair 0:f269e3021894 2372 arm_cfft_radix4_instance_q15 * S_CFFT,
elessair 0:f269e3021894 2373 uint16_t N,
elessair 0:f269e3021894 2374 uint16_t Nby2,
elessair 0:f269e3021894 2375 q15_t normalize);
elessair 0:f269e3021894 2376
elessair 0:f269e3021894 2377
elessair 0:f269e3021894 2378 /**
elessair 0:f269e3021894 2379 * @brief Processing function for the Q15 DCT4/IDCT4.
elessair 0:f269e3021894 2380 * @param[in] S points to an instance of the Q15 DCT4 structure.
elessair 0:f269e3021894 2381 * @param[in] pState points to state buffer.
elessair 0:f269e3021894 2382 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
elessair 0:f269e3021894 2383 */
elessair 0:f269e3021894 2384 void arm_dct4_q15(
elessair 0:f269e3021894 2385 const arm_dct4_instance_q15 * S,
elessair 0:f269e3021894 2386 q15_t * pState,
elessair 0:f269e3021894 2387 q15_t * pInlineBuffer);
elessair 0:f269e3021894 2388
elessair 0:f269e3021894 2389
elessair 0:f269e3021894 2390 /**
elessair 0:f269e3021894 2391 * @brief Floating-point vector addition.
elessair 0:f269e3021894 2392 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 2393 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 2394 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2395 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2396 */
elessair 0:f269e3021894 2397 void arm_add_f32(
elessair 0:f269e3021894 2398 float32_t * pSrcA,
elessair 0:f269e3021894 2399 float32_t * pSrcB,
elessair 0:f269e3021894 2400 float32_t * pDst,
elessair 0:f269e3021894 2401 uint32_t blockSize);
elessair 0:f269e3021894 2402
elessair 0:f269e3021894 2403
elessair 0:f269e3021894 2404 /**
elessair 0:f269e3021894 2405 * @brief Q7 vector addition.
elessair 0:f269e3021894 2406 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 2407 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 2408 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2409 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2410 */
elessair 0:f269e3021894 2411 void arm_add_q7(
elessair 0:f269e3021894 2412 q7_t * pSrcA,
elessair 0:f269e3021894 2413 q7_t * pSrcB,
elessair 0:f269e3021894 2414 q7_t * pDst,
elessair 0:f269e3021894 2415 uint32_t blockSize);
elessair 0:f269e3021894 2416
elessair 0:f269e3021894 2417
elessair 0:f269e3021894 2418 /**
elessair 0:f269e3021894 2419 * @brief Q15 vector addition.
elessair 0:f269e3021894 2420 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 2421 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 2422 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2423 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2424 */
elessair 0:f269e3021894 2425 void arm_add_q15(
elessair 0:f269e3021894 2426 q15_t * pSrcA,
elessair 0:f269e3021894 2427 q15_t * pSrcB,
elessair 0:f269e3021894 2428 q15_t * pDst,
elessair 0:f269e3021894 2429 uint32_t blockSize);
elessair 0:f269e3021894 2430
elessair 0:f269e3021894 2431
elessair 0:f269e3021894 2432 /**
elessair 0:f269e3021894 2433 * @brief Q31 vector addition.
elessair 0:f269e3021894 2434 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 2435 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 2436 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2437 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2438 */
elessair 0:f269e3021894 2439 void arm_add_q31(
elessair 0:f269e3021894 2440 q31_t * pSrcA,
elessair 0:f269e3021894 2441 q31_t * pSrcB,
elessair 0:f269e3021894 2442 q31_t * pDst,
elessair 0:f269e3021894 2443 uint32_t blockSize);
elessair 0:f269e3021894 2444
elessair 0:f269e3021894 2445
elessair 0:f269e3021894 2446 /**
elessair 0:f269e3021894 2447 * @brief Floating-point vector subtraction.
elessair 0:f269e3021894 2448 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 2449 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 2450 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2451 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2452 */
elessair 0:f269e3021894 2453 void arm_sub_f32(
elessair 0:f269e3021894 2454 float32_t * pSrcA,
elessair 0:f269e3021894 2455 float32_t * pSrcB,
elessair 0:f269e3021894 2456 float32_t * pDst,
elessair 0:f269e3021894 2457 uint32_t blockSize);
elessair 0:f269e3021894 2458
elessair 0:f269e3021894 2459
elessair 0:f269e3021894 2460 /**
elessair 0:f269e3021894 2461 * @brief Q7 vector subtraction.
elessair 0:f269e3021894 2462 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 2463 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 2464 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2465 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2466 */
elessair 0:f269e3021894 2467 void arm_sub_q7(
elessair 0:f269e3021894 2468 q7_t * pSrcA,
elessair 0:f269e3021894 2469 q7_t * pSrcB,
elessair 0:f269e3021894 2470 q7_t * pDst,
elessair 0:f269e3021894 2471 uint32_t blockSize);
elessair 0:f269e3021894 2472
elessair 0:f269e3021894 2473
elessair 0:f269e3021894 2474 /**
elessair 0:f269e3021894 2475 * @brief Q15 vector subtraction.
elessair 0:f269e3021894 2476 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 2477 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 2478 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2479 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2480 */
elessair 0:f269e3021894 2481 void arm_sub_q15(
elessair 0:f269e3021894 2482 q15_t * pSrcA,
elessair 0:f269e3021894 2483 q15_t * pSrcB,
elessair 0:f269e3021894 2484 q15_t * pDst,
elessair 0:f269e3021894 2485 uint32_t blockSize);
elessair 0:f269e3021894 2486
elessair 0:f269e3021894 2487
elessair 0:f269e3021894 2488 /**
elessair 0:f269e3021894 2489 * @brief Q31 vector subtraction.
elessair 0:f269e3021894 2490 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 2491 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 2492 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2493 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2494 */
elessair 0:f269e3021894 2495 void arm_sub_q31(
elessair 0:f269e3021894 2496 q31_t * pSrcA,
elessair 0:f269e3021894 2497 q31_t * pSrcB,
elessair 0:f269e3021894 2498 q31_t * pDst,
elessair 0:f269e3021894 2499 uint32_t blockSize);
elessair 0:f269e3021894 2500
elessair 0:f269e3021894 2501
elessair 0:f269e3021894 2502 /**
elessair 0:f269e3021894 2503 * @brief Multiplies a floating-point vector by a scalar.
elessair 0:f269e3021894 2504 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2505 * @param[in] scale scale factor to be applied
elessair 0:f269e3021894 2506 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2507 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2508 */
elessair 0:f269e3021894 2509 void arm_scale_f32(
elessair 0:f269e3021894 2510 float32_t * pSrc,
elessair 0:f269e3021894 2511 float32_t scale,
elessair 0:f269e3021894 2512 float32_t * pDst,
elessair 0:f269e3021894 2513 uint32_t blockSize);
elessair 0:f269e3021894 2514
elessair 0:f269e3021894 2515
elessair 0:f269e3021894 2516 /**
elessair 0:f269e3021894 2517 * @brief Multiplies a Q7 vector by a scalar.
elessair 0:f269e3021894 2518 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2519 * @param[in] scaleFract fractional portion of the scale value
elessair 0:f269e3021894 2520 * @param[in] shift number of bits to shift the result by
elessair 0:f269e3021894 2521 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2522 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2523 */
elessair 0:f269e3021894 2524 void arm_scale_q7(
elessair 0:f269e3021894 2525 q7_t * pSrc,
elessair 0:f269e3021894 2526 q7_t scaleFract,
elessair 0:f269e3021894 2527 int8_t shift,
elessair 0:f269e3021894 2528 q7_t * pDst,
elessair 0:f269e3021894 2529 uint32_t blockSize);
elessair 0:f269e3021894 2530
elessair 0:f269e3021894 2531
elessair 0:f269e3021894 2532 /**
elessair 0:f269e3021894 2533 * @brief Multiplies a Q15 vector by a scalar.
elessair 0:f269e3021894 2534 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2535 * @param[in] scaleFract fractional portion of the scale value
elessair 0:f269e3021894 2536 * @param[in] shift number of bits to shift the result by
elessair 0:f269e3021894 2537 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2538 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2539 */
elessair 0:f269e3021894 2540 void arm_scale_q15(
elessair 0:f269e3021894 2541 q15_t * pSrc,
elessair 0:f269e3021894 2542 q15_t scaleFract,
elessair 0:f269e3021894 2543 int8_t shift,
elessair 0:f269e3021894 2544 q15_t * pDst,
elessair 0:f269e3021894 2545 uint32_t blockSize);
elessair 0:f269e3021894 2546
elessair 0:f269e3021894 2547
elessair 0:f269e3021894 2548 /**
elessair 0:f269e3021894 2549 * @brief Multiplies a Q31 vector by a scalar.
elessair 0:f269e3021894 2550 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2551 * @param[in] scaleFract fractional portion of the scale value
elessair 0:f269e3021894 2552 * @param[in] shift number of bits to shift the result by
elessair 0:f269e3021894 2553 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2554 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2555 */
elessair 0:f269e3021894 2556 void arm_scale_q31(
elessair 0:f269e3021894 2557 q31_t * pSrc,
elessair 0:f269e3021894 2558 q31_t scaleFract,
elessair 0:f269e3021894 2559 int8_t shift,
elessair 0:f269e3021894 2560 q31_t * pDst,
elessair 0:f269e3021894 2561 uint32_t blockSize);
elessair 0:f269e3021894 2562
elessair 0:f269e3021894 2563
elessair 0:f269e3021894 2564 /**
elessair 0:f269e3021894 2565 * @brief Q7 vector absolute value.
elessair 0:f269e3021894 2566 * @param[in] pSrc points to the input buffer
elessair 0:f269e3021894 2567 * @param[out] pDst points to the output buffer
elessair 0:f269e3021894 2568 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2569 */
elessair 0:f269e3021894 2570 void arm_abs_q7(
elessair 0:f269e3021894 2571 q7_t * pSrc,
elessair 0:f269e3021894 2572 q7_t * pDst,
elessair 0:f269e3021894 2573 uint32_t blockSize);
elessair 0:f269e3021894 2574
elessair 0:f269e3021894 2575
elessair 0:f269e3021894 2576 /**
elessair 0:f269e3021894 2577 * @brief Floating-point vector absolute value.
elessair 0:f269e3021894 2578 * @param[in] pSrc points to the input buffer
elessair 0:f269e3021894 2579 * @param[out] pDst points to the output buffer
elessair 0:f269e3021894 2580 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2581 */
elessair 0:f269e3021894 2582 void arm_abs_f32(
elessair 0:f269e3021894 2583 float32_t * pSrc,
elessair 0:f269e3021894 2584 float32_t * pDst,
elessair 0:f269e3021894 2585 uint32_t blockSize);
elessair 0:f269e3021894 2586
elessair 0:f269e3021894 2587
elessair 0:f269e3021894 2588 /**
elessair 0:f269e3021894 2589 * @brief Q15 vector absolute value.
elessair 0:f269e3021894 2590 * @param[in] pSrc points to the input buffer
elessair 0:f269e3021894 2591 * @param[out] pDst points to the output buffer
elessair 0:f269e3021894 2592 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2593 */
elessair 0:f269e3021894 2594 void arm_abs_q15(
elessair 0:f269e3021894 2595 q15_t * pSrc,
elessair 0:f269e3021894 2596 q15_t * pDst,
elessair 0:f269e3021894 2597 uint32_t blockSize);
elessair 0:f269e3021894 2598
elessair 0:f269e3021894 2599
elessair 0:f269e3021894 2600 /**
elessair 0:f269e3021894 2601 * @brief Q31 vector absolute value.
elessair 0:f269e3021894 2602 * @param[in] pSrc points to the input buffer
elessair 0:f269e3021894 2603 * @param[out] pDst points to the output buffer
elessair 0:f269e3021894 2604 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2605 */
elessair 0:f269e3021894 2606 void arm_abs_q31(
elessair 0:f269e3021894 2607 q31_t * pSrc,
elessair 0:f269e3021894 2608 q31_t * pDst,
elessair 0:f269e3021894 2609 uint32_t blockSize);
elessair 0:f269e3021894 2610
elessair 0:f269e3021894 2611
elessair 0:f269e3021894 2612 /**
elessair 0:f269e3021894 2613 * @brief Dot product of floating-point vectors.
elessair 0:f269e3021894 2614 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 2615 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 2616 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2617 * @param[out] result output result returned here
elessair 0:f269e3021894 2618 */
elessair 0:f269e3021894 2619 void arm_dot_prod_f32(
elessair 0:f269e3021894 2620 float32_t * pSrcA,
elessair 0:f269e3021894 2621 float32_t * pSrcB,
elessair 0:f269e3021894 2622 uint32_t blockSize,
elessair 0:f269e3021894 2623 float32_t * result);
elessair 0:f269e3021894 2624
elessair 0:f269e3021894 2625
elessair 0:f269e3021894 2626 /**
elessair 0:f269e3021894 2627 * @brief Dot product of Q7 vectors.
elessair 0:f269e3021894 2628 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 2629 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 2630 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2631 * @param[out] result output result returned here
elessair 0:f269e3021894 2632 */
elessair 0:f269e3021894 2633 void arm_dot_prod_q7(
elessair 0:f269e3021894 2634 q7_t * pSrcA,
elessair 0:f269e3021894 2635 q7_t * pSrcB,
elessair 0:f269e3021894 2636 uint32_t blockSize,
elessair 0:f269e3021894 2637 q31_t * result);
elessair 0:f269e3021894 2638
elessair 0:f269e3021894 2639
elessair 0:f269e3021894 2640 /**
elessair 0:f269e3021894 2641 * @brief Dot product of Q15 vectors.
elessair 0:f269e3021894 2642 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 2643 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 2644 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2645 * @param[out] result output result returned here
elessair 0:f269e3021894 2646 */
elessair 0:f269e3021894 2647 void arm_dot_prod_q15(
elessair 0:f269e3021894 2648 q15_t * pSrcA,
elessair 0:f269e3021894 2649 q15_t * pSrcB,
elessair 0:f269e3021894 2650 uint32_t blockSize,
elessair 0:f269e3021894 2651 q63_t * result);
elessair 0:f269e3021894 2652
elessair 0:f269e3021894 2653
elessair 0:f269e3021894 2654 /**
elessair 0:f269e3021894 2655 * @brief Dot product of Q31 vectors.
elessair 0:f269e3021894 2656 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 2657 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 2658 * @param[in] blockSize number of samples in each vector
elessair 0:f269e3021894 2659 * @param[out] result output result returned here
elessair 0:f269e3021894 2660 */
elessair 0:f269e3021894 2661 void arm_dot_prod_q31(
elessair 0:f269e3021894 2662 q31_t * pSrcA,
elessair 0:f269e3021894 2663 q31_t * pSrcB,
elessair 0:f269e3021894 2664 uint32_t blockSize,
elessair 0:f269e3021894 2665 q63_t * result);
elessair 0:f269e3021894 2666
elessair 0:f269e3021894 2667
elessair 0:f269e3021894 2668 /**
elessair 0:f269e3021894 2669 * @brief Shifts the elements of a Q7 vector a specified number of bits.
elessair 0:f269e3021894 2670 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2671 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
elessair 0:f269e3021894 2672 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2673 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2674 */
elessair 0:f269e3021894 2675 void arm_shift_q7(
elessair 0:f269e3021894 2676 q7_t * pSrc,
elessair 0:f269e3021894 2677 int8_t shiftBits,
elessair 0:f269e3021894 2678 q7_t * pDst,
elessair 0:f269e3021894 2679 uint32_t blockSize);
elessair 0:f269e3021894 2680
elessair 0:f269e3021894 2681
elessair 0:f269e3021894 2682 /**
elessair 0:f269e3021894 2683 * @brief Shifts the elements of a Q15 vector a specified number of bits.
elessair 0:f269e3021894 2684 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2685 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
elessair 0:f269e3021894 2686 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2687 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2688 */
elessair 0:f269e3021894 2689 void arm_shift_q15(
elessair 0:f269e3021894 2690 q15_t * pSrc,
elessair 0:f269e3021894 2691 int8_t shiftBits,
elessair 0:f269e3021894 2692 q15_t * pDst,
elessair 0:f269e3021894 2693 uint32_t blockSize);
elessair 0:f269e3021894 2694
elessair 0:f269e3021894 2695
elessair 0:f269e3021894 2696 /**
elessair 0:f269e3021894 2697 * @brief Shifts the elements of a Q31 vector a specified number of bits.
elessair 0:f269e3021894 2698 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2699 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
elessair 0:f269e3021894 2700 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2701 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2702 */
elessair 0:f269e3021894 2703 void arm_shift_q31(
elessair 0:f269e3021894 2704 q31_t * pSrc,
elessair 0:f269e3021894 2705 int8_t shiftBits,
elessair 0:f269e3021894 2706 q31_t * pDst,
elessair 0:f269e3021894 2707 uint32_t blockSize);
elessair 0:f269e3021894 2708
elessair 0:f269e3021894 2709
elessair 0:f269e3021894 2710 /**
elessair 0:f269e3021894 2711 * @brief Adds a constant offset to a floating-point vector.
elessair 0:f269e3021894 2712 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2713 * @param[in] offset is the offset to be added
elessair 0:f269e3021894 2714 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2715 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2716 */
elessair 0:f269e3021894 2717 void arm_offset_f32(
elessair 0:f269e3021894 2718 float32_t * pSrc,
elessair 0:f269e3021894 2719 float32_t offset,
elessair 0:f269e3021894 2720 float32_t * pDst,
elessair 0:f269e3021894 2721 uint32_t blockSize);
elessair 0:f269e3021894 2722
elessair 0:f269e3021894 2723
elessair 0:f269e3021894 2724 /**
elessair 0:f269e3021894 2725 * @brief Adds a constant offset to a Q7 vector.
elessair 0:f269e3021894 2726 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2727 * @param[in] offset is the offset to be added
elessair 0:f269e3021894 2728 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2729 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2730 */
elessair 0:f269e3021894 2731 void arm_offset_q7(
elessair 0:f269e3021894 2732 q7_t * pSrc,
elessair 0:f269e3021894 2733 q7_t offset,
elessair 0:f269e3021894 2734 q7_t * pDst,
elessair 0:f269e3021894 2735 uint32_t blockSize);
elessair 0:f269e3021894 2736
elessair 0:f269e3021894 2737
elessair 0:f269e3021894 2738 /**
elessair 0:f269e3021894 2739 * @brief Adds a constant offset to a Q15 vector.
elessair 0:f269e3021894 2740 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2741 * @param[in] offset is the offset to be added
elessair 0:f269e3021894 2742 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2743 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2744 */
elessair 0:f269e3021894 2745 void arm_offset_q15(
elessair 0:f269e3021894 2746 q15_t * pSrc,
elessair 0:f269e3021894 2747 q15_t offset,
elessair 0:f269e3021894 2748 q15_t * pDst,
elessair 0:f269e3021894 2749 uint32_t blockSize);
elessair 0:f269e3021894 2750
elessair 0:f269e3021894 2751
elessair 0:f269e3021894 2752 /**
elessair 0:f269e3021894 2753 * @brief Adds a constant offset to a Q31 vector.
elessair 0:f269e3021894 2754 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2755 * @param[in] offset is the offset to be added
elessair 0:f269e3021894 2756 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2757 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2758 */
elessair 0:f269e3021894 2759 void arm_offset_q31(
elessair 0:f269e3021894 2760 q31_t * pSrc,
elessair 0:f269e3021894 2761 q31_t offset,
elessair 0:f269e3021894 2762 q31_t * pDst,
elessair 0:f269e3021894 2763 uint32_t blockSize);
elessair 0:f269e3021894 2764
elessair 0:f269e3021894 2765
elessair 0:f269e3021894 2766 /**
elessair 0:f269e3021894 2767 * @brief Negates the elements of a floating-point vector.
elessair 0:f269e3021894 2768 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2769 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2770 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2771 */
elessair 0:f269e3021894 2772 void arm_negate_f32(
elessair 0:f269e3021894 2773 float32_t * pSrc,
elessair 0:f269e3021894 2774 float32_t * pDst,
elessair 0:f269e3021894 2775 uint32_t blockSize);
elessair 0:f269e3021894 2776
elessair 0:f269e3021894 2777
elessair 0:f269e3021894 2778 /**
elessair 0:f269e3021894 2779 * @brief Negates the elements of a Q7 vector.
elessair 0:f269e3021894 2780 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2781 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2782 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2783 */
elessair 0:f269e3021894 2784 void arm_negate_q7(
elessair 0:f269e3021894 2785 q7_t * pSrc,
elessair 0:f269e3021894 2786 q7_t * pDst,
elessair 0:f269e3021894 2787 uint32_t blockSize);
elessair 0:f269e3021894 2788
elessair 0:f269e3021894 2789
elessair 0:f269e3021894 2790 /**
elessair 0:f269e3021894 2791 * @brief Negates the elements of a Q15 vector.
elessair 0:f269e3021894 2792 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2793 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2794 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2795 */
elessair 0:f269e3021894 2796 void arm_negate_q15(
elessair 0:f269e3021894 2797 q15_t * pSrc,
elessair 0:f269e3021894 2798 q15_t * pDst,
elessair 0:f269e3021894 2799 uint32_t blockSize);
elessair 0:f269e3021894 2800
elessair 0:f269e3021894 2801
elessair 0:f269e3021894 2802 /**
elessair 0:f269e3021894 2803 * @brief Negates the elements of a Q31 vector.
elessair 0:f269e3021894 2804 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 2805 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 2806 * @param[in] blockSize number of samples in the vector
elessair 0:f269e3021894 2807 */
elessair 0:f269e3021894 2808 void arm_negate_q31(
elessair 0:f269e3021894 2809 q31_t * pSrc,
elessair 0:f269e3021894 2810 q31_t * pDst,
elessair 0:f269e3021894 2811 uint32_t blockSize);
elessair 0:f269e3021894 2812
elessair 0:f269e3021894 2813
elessair 0:f269e3021894 2814 /**
elessair 0:f269e3021894 2815 * @brief Copies the elements of a floating-point vector.
elessair 0:f269e3021894 2816 * @param[in] pSrc input pointer
elessair 0:f269e3021894 2817 * @param[out] pDst output pointer
elessair 0:f269e3021894 2818 * @param[in] blockSize number of samples to process
elessair 0:f269e3021894 2819 */
elessair 0:f269e3021894 2820 void arm_copy_f32(
elessair 0:f269e3021894 2821 float32_t * pSrc,
elessair 0:f269e3021894 2822 float32_t * pDst,
elessair 0:f269e3021894 2823 uint32_t blockSize);
elessair 0:f269e3021894 2824
elessair 0:f269e3021894 2825
elessair 0:f269e3021894 2826 /**
elessair 0:f269e3021894 2827 * @brief Copies the elements of a Q7 vector.
elessair 0:f269e3021894 2828 * @param[in] pSrc input pointer
elessair 0:f269e3021894 2829 * @param[out] pDst output pointer
elessair 0:f269e3021894 2830 * @param[in] blockSize number of samples to process
elessair 0:f269e3021894 2831 */
elessair 0:f269e3021894 2832 void arm_copy_q7(
elessair 0:f269e3021894 2833 q7_t * pSrc,
elessair 0:f269e3021894 2834 q7_t * pDst,
elessair 0:f269e3021894 2835 uint32_t blockSize);
elessair 0:f269e3021894 2836
elessair 0:f269e3021894 2837
elessair 0:f269e3021894 2838 /**
elessair 0:f269e3021894 2839 * @brief Copies the elements of a Q15 vector.
elessair 0:f269e3021894 2840 * @param[in] pSrc input pointer
elessair 0:f269e3021894 2841 * @param[out] pDst output pointer
elessair 0:f269e3021894 2842 * @param[in] blockSize number of samples to process
elessair 0:f269e3021894 2843 */
elessair 0:f269e3021894 2844 void arm_copy_q15(
elessair 0:f269e3021894 2845 q15_t * pSrc,
elessair 0:f269e3021894 2846 q15_t * pDst,
elessair 0:f269e3021894 2847 uint32_t blockSize);
elessair 0:f269e3021894 2848
elessair 0:f269e3021894 2849
elessair 0:f269e3021894 2850 /**
elessair 0:f269e3021894 2851 * @brief Copies the elements of a Q31 vector.
elessair 0:f269e3021894 2852 * @param[in] pSrc input pointer
elessair 0:f269e3021894 2853 * @param[out] pDst output pointer
elessair 0:f269e3021894 2854 * @param[in] blockSize number of samples to process
elessair 0:f269e3021894 2855 */
elessair 0:f269e3021894 2856 void arm_copy_q31(
elessair 0:f269e3021894 2857 q31_t * pSrc,
elessair 0:f269e3021894 2858 q31_t * pDst,
elessair 0:f269e3021894 2859 uint32_t blockSize);
elessair 0:f269e3021894 2860
elessair 0:f269e3021894 2861
elessair 0:f269e3021894 2862 /**
elessair 0:f269e3021894 2863 * @brief Fills a constant value into a floating-point vector.
elessair 0:f269e3021894 2864 * @param[in] value input value to be filled
elessair 0:f269e3021894 2865 * @param[out] pDst output pointer
elessair 0:f269e3021894 2866 * @param[in] blockSize number of samples to process
elessair 0:f269e3021894 2867 */
elessair 0:f269e3021894 2868 void arm_fill_f32(
elessair 0:f269e3021894 2869 float32_t value,
elessair 0:f269e3021894 2870 float32_t * pDst,
elessair 0:f269e3021894 2871 uint32_t blockSize);
elessair 0:f269e3021894 2872
elessair 0:f269e3021894 2873
elessair 0:f269e3021894 2874 /**
elessair 0:f269e3021894 2875 * @brief Fills a constant value into a Q7 vector.
elessair 0:f269e3021894 2876 * @param[in] value input value to be filled
elessair 0:f269e3021894 2877 * @param[out] pDst output pointer
elessair 0:f269e3021894 2878 * @param[in] blockSize number of samples to process
elessair 0:f269e3021894 2879 */
elessair 0:f269e3021894 2880 void arm_fill_q7(
elessair 0:f269e3021894 2881 q7_t value,
elessair 0:f269e3021894 2882 q7_t * pDst,
elessair 0:f269e3021894 2883 uint32_t blockSize);
elessair 0:f269e3021894 2884
elessair 0:f269e3021894 2885
elessair 0:f269e3021894 2886 /**
elessair 0:f269e3021894 2887 * @brief Fills a constant value into a Q15 vector.
elessair 0:f269e3021894 2888 * @param[in] value input value to be filled
elessair 0:f269e3021894 2889 * @param[out] pDst output pointer
elessair 0:f269e3021894 2890 * @param[in] blockSize number of samples to process
elessair 0:f269e3021894 2891 */
elessair 0:f269e3021894 2892 void arm_fill_q15(
elessair 0:f269e3021894 2893 q15_t value,
elessair 0:f269e3021894 2894 q15_t * pDst,
elessair 0:f269e3021894 2895 uint32_t blockSize);
elessair 0:f269e3021894 2896
elessair 0:f269e3021894 2897
elessair 0:f269e3021894 2898 /**
elessair 0:f269e3021894 2899 * @brief Fills a constant value into a Q31 vector.
elessair 0:f269e3021894 2900 * @param[in] value input value to be filled
elessair 0:f269e3021894 2901 * @param[out] pDst output pointer
elessair 0:f269e3021894 2902 * @param[in] blockSize number of samples to process
elessair 0:f269e3021894 2903 */
elessair 0:f269e3021894 2904 void arm_fill_q31(
elessair 0:f269e3021894 2905 q31_t value,
elessair 0:f269e3021894 2906 q31_t * pDst,
elessair 0:f269e3021894 2907 uint32_t blockSize);
elessair 0:f269e3021894 2908
elessair 0:f269e3021894 2909
elessair 0:f269e3021894 2910 /**
elessair 0:f269e3021894 2911 * @brief Convolution of floating-point sequences.
elessair 0:f269e3021894 2912 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 2913 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 2914 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 2915 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 2916 * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
elessair 0:f269e3021894 2917 */
elessair 0:f269e3021894 2918 void arm_conv_f32(
elessair 0:f269e3021894 2919 float32_t * pSrcA,
elessair 0:f269e3021894 2920 uint32_t srcALen,
elessair 0:f269e3021894 2921 float32_t * pSrcB,
elessair 0:f269e3021894 2922 uint32_t srcBLen,
elessair 0:f269e3021894 2923 float32_t * pDst);
elessair 0:f269e3021894 2924
elessair 0:f269e3021894 2925
elessair 0:f269e3021894 2926 /**
elessair 0:f269e3021894 2927 * @brief Convolution of Q15 sequences.
elessair 0:f269e3021894 2928 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 2929 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 2930 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 2931 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 2932 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
elessair 0:f269e3021894 2933 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
elessair 0:f269e3021894 2934 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
elessair 0:f269e3021894 2935 */
elessair 0:f269e3021894 2936 void arm_conv_opt_q15(
elessair 0:f269e3021894 2937 q15_t * pSrcA,
elessair 0:f269e3021894 2938 uint32_t srcALen,
elessair 0:f269e3021894 2939 q15_t * pSrcB,
elessair 0:f269e3021894 2940 uint32_t srcBLen,
elessair 0:f269e3021894 2941 q15_t * pDst,
elessair 0:f269e3021894 2942 q15_t * pScratch1,
elessair 0:f269e3021894 2943 q15_t * pScratch2);
elessair 0:f269e3021894 2944
elessair 0:f269e3021894 2945
elessair 0:f269e3021894 2946 /**
elessair 0:f269e3021894 2947 * @brief Convolution of Q15 sequences.
elessair 0:f269e3021894 2948 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 2949 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 2950 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 2951 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 2952 * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
elessair 0:f269e3021894 2953 */
elessair 0:f269e3021894 2954 void arm_conv_q15(
elessair 0:f269e3021894 2955 q15_t * pSrcA,
elessair 0:f269e3021894 2956 uint32_t srcALen,
elessair 0:f269e3021894 2957 q15_t * pSrcB,
elessair 0:f269e3021894 2958 uint32_t srcBLen,
elessair 0:f269e3021894 2959 q15_t * pDst);
elessair 0:f269e3021894 2960
elessair 0:f269e3021894 2961
elessair 0:f269e3021894 2962 /**
elessair 0:f269e3021894 2963 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
elessair 0:f269e3021894 2964 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 2965 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 2966 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 2967 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 2968 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
elessair 0:f269e3021894 2969 */
elessair 0:f269e3021894 2970 void arm_conv_fast_q15(
elessair 0:f269e3021894 2971 q15_t * pSrcA,
elessair 0:f269e3021894 2972 uint32_t srcALen,
elessair 0:f269e3021894 2973 q15_t * pSrcB,
elessair 0:f269e3021894 2974 uint32_t srcBLen,
elessair 0:f269e3021894 2975 q15_t * pDst);
elessair 0:f269e3021894 2976
elessair 0:f269e3021894 2977
elessair 0:f269e3021894 2978 /**
elessair 0:f269e3021894 2979 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
elessair 0:f269e3021894 2980 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 2981 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 2982 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 2983 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 2984 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
elessair 0:f269e3021894 2985 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
elessair 0:f269e3021894 2986 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
elessair 0:f269e3021894 2987 */
elessair 0:f269e3021894 2988 void arm_conv_fast_opt_q15(
elessair 0:f269e3021894 2989 q15_t * pSrcA,
elessair 0:f269e3021894 2990 uint32_t srcALen,
elessair 0:f269e3021894 2991 q15_t * pSrcB,
elessair 0:f269e3021894 2992 uint32_t srcBLen,
elessair 0:f269e3021894 2993 q15_t * pDst,
elessair 0:f269e3021894 2994 q15_t * pScratch1,
elessair 0:f269e3021894 2995 q15_t * pScratch2);
elessair 0:f269e3021894 2996
elessair 0:f269e3021894 2997
elessair 0:f269e3021894 2998 /**
elessair 0:f269e3021894 2999 * @brief Convolution of Q31 sequences.
elessair 0:f269e3021894 3000 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 3001 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 3002 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 3003 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 3004 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
elessair 0:f269e3021894 3005 */
elessair 0:f269e3021894 3006 void arm_conv_q31(
elessair 0:f269e3021894 3007 q31_t * pSrcA,
elessair 0:f269e3021894 3008 uint32_t srcALen,
elessair 0:f269e3021894 3009 q31_t * pSrcB,
elessair 0:f269e3021894 3010 uint32_t srcBLen,
elessair 0:f269e3021894 3011 q31_t * pDst);
elessair 0:f269e3021894 3012
elessair 0:f269e3021894 3013
elessair 0:f269e3021894 3014 /**
elessair 0:f269e3021894 3015 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
elessair 0:f269e3021894 3016 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 3017 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 3018 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 3019 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 3020 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
elessair 0:f269e3021894 3021 */
elessair 0:f269e3021894 3022 void arm_conv_fast_q31(
elessair 0:f269e3021894 3023 q31_t * pSrcA,
elessair 0:f269e3021894 3024 uint32_t srcALen,
elessair 0:f269e3021894 3025 q31_t * pSrcB,
elessair 0:f269e3021894 3026 uint32_t srcBLen,
elessair 0:f269e3021894 3027 q31_t * pDst);
elessair 0:f269e3021894 3028
elessair 0:f269e3021894 3029
elessair 0:f269e3021894 3030 /**
elessair 0:f269e3021894 3031 * @brief Convolution of Q7 sequences.
elessair 0:f269e3021894 3032 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 3033 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 3034 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 3035 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 3036 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
elessair 0:f269e3021894 3037 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
elessair 0:f269e3021894 3038 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
elessair 0:f269e3021894 3039 */
elessair 0:f269e3021894 3040 void arm_conv_opt_q7(
elessair 0:f269e3021894 3041 q7_t * pSrcA,
elessair 0:f269e3021894 3042 uint32_t srcALen,
elessair 0:f269e3021894 3043 q7_t * pSrcB,
elessair 0:f269e3021894 3044 uint32_t srcBLen,
elessair 0:f269e3021894 3045 q7_t * pDst,
elessair 0:f269e3021894 3046 q15_t * pScratch1,
elessair 0:f269e3021894 3047 q15_t * pScratch2);
elessair 0:f269e3021894 3048
elessair 0:f269e3021894 3049
elessair 0:f269e3021894 3050 /**
elessair 0:f269e3021894 3051 * @brief Convolution of Q7 sequences.
elessair 0:f269e3021894 3052 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 3053 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 3054 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 3055 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 3056 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
elessair 0:f269e3021894 3057 */
elessair 0:f269e3021894 3058 void arm_conv_q7(
elessair 0:f269e3021894 3059 q7_t * pSrcA,
elessair 0:f269e3021894 3060 uint32_t srcALen,
elessair 0:f269e3021894 3061 q7_t * pSrcB,
elessair 0:f269e3021894 3062 uint32_t srcBLen,
elessair 0:f269e3021894 3063 q7_t * pDst);
elessair 0:f269e3021894 3064
elessair 0:f269e3021894 3065
elessair 0:f269e3021894 3066 /**
elessair 0:f269e3021894 3067 * @brief Partial convolution of floating-point sequences.
elessair 0:f269e3021894 3068 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 3069 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 3070 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 3071 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 3072 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3073 * @param[in] firstIndex is the first output sample to start with.
elessair 0:f269e3021894 3074 * @param[in] numPoints is the number of output points to be computed.
elessair 0:f269e3021894 3075 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
elessair 0:f269e3021894 3076 */
elessair 0:f269e3021894 3077 arm_status arm_conv_partial_f32(
elessair 0:f269e3021894 3078 float32_t * pSrcA,
elessair 0:f269e3021894 3079 uint32_t srcALen,
elessair 0:f269e3021894 3080 float32_t * pSrcB,
elessair 0:f269e3021894 3081 uint32_t srcBLen,
elessair 0:f269e3021894 3082 float32_t * pDst,
elessair 0:f269e3021894 3083 uint32_t firstIndex,
elessair 0:f269e3021894 3084 uint32_t numPoints);
elessair 0:f269e3021894 3085
elessair 0:f269e3021894 3086
elessair 0:f269e3021894 3087 /**
elessair 0:f269e3021894 3088 * @brief Partial convolution of Q15 sequences.
elessair 0:f269e3021894 3089 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 3090 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 3091 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 3092 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 3093 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3094 * @param[in] firstIndex is the first output sample to start with.
elessair 0:f269e3021894 3095 * @param[in] numPoints is the number of output points to be computed.
elessair 0:f269e3021894 3096 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
elessair 0:f269e3021894 3097 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
elessair 0:f269e3021894 3098 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
elessair 0:f269e3021894 3099 */
elessair 0:f269e3021894 3100 arm_status arm_conv_partial_opt_q15(
elessair 0:f269e3021894 3101 q15_t * pSrcA,
elessair 0:f269e3021894 3102 uint32_t srcALen,
elessair 0:f269e3021894 3103 q15_t * pSrcB,
elessair 0:f269e3021894 3104 uint32_t srcBLen,
elessair 0:f269e3021894 3105 q15_t * pDst,
elessair 0:f269e3021894 3106 uint32_t firstIndex,
elessair 0:f269e3021894 3107 uint32_t numPoints,
elessair 0:f269e3021894 3108 q15_t * pScratch1,
elessair 0:f269e3021894 3109 q15_t * pScratch2);
elessair 0:f269e3021894 3110
elessair 0:f269e3021894 3111
elessair 0:f269e3021894 3112 /**
elessair 0:f269e3021894 3113 * @brief Partial convolution of Q15 sequences.
elessair 0:f269e3021894 3114 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 3115 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 3116 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 3117 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 3118 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3119 * @param[in] firstIndex is the first output sample to start with.
elessair 0:f269e3021894 3120 * @param[in] numPoints is the number of output points to be computed.
elessair 0:f269e3021894 3121 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
elessair 0:f269e3021894 3122 */
elessair 0:f269e3021894 3123 arm_status arm_conv_partial_q15(
elessair 0:f269e3021894 3124 q15_t * pSrcA,
elessair 0:f269e3021894 3125 uint32_t srcALen,
elessair 0:f269e3021894 3126 q15_t * pSrcB,
elessair 0:f269e3021894 3127 uint32_t srcBLen,
elessair 0:f269e3021894 3128 q15_t * pDst,
elessair 0:f269e3021894 3129 uint32_t firstIndex,
elessair 0:f269e3021894 3130 uint32_t numPoints);
elessair 0:f269e3021894 3131
elessair 0:f269e3021894 3132
elessair 0:f269e3021894 3133 /**
elessair 0:f269e3021894 3134 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
elessair 0:f269e3021894 3135 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 3136 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 3137 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 3138 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 3139 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3140 * @param[in] firstIndex is the first output sample to start with.
elessair 0:f269e3021894 3141 * @param[in] numPoints is the number of output points to be computed.
elessair 0:f269e3021894 3142 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
elessair 0:f269e3021894 3143 */
elessair 0:f269e3021894 3144 arm_status arm_conv_partial_fast_q15(
elessair 0:f269e3021894 3145 q15_t * pSrcA,
elessair 0:f269e3021894 3146 uint32_t srcALen,
elessair 0:f269e3021894 3147 q15_t * pSrcB,
elessair 0:f269e3021894 3148 uint32_t srcBLen,
elessair 0:f269e3021894 3149 q15_t * pDst,
elessair 0:f269e3021894 3150 uint32_t firstIndex,
elessair 0:f269e3021894 3151 uint32_t numPoints);
elessair 0:f269e3021894 3152
elessair 0:f269e3021894 3153
elessair 0:f269e3021894 3154 /**
elessair 0:f269e3021894 3155 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
elessair 0:f269e3021894 3156 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 3157 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 3158 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 3159 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 3160 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3161 * @param[in] firstIndex is the first output sample to start with.
elessair 0:f269e3021894 3162 * @param[in] numPoints is the number of output points to be computed.
elessair 0:f269e3021894 3163 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
elessair 0:f269e3021894 3164 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
elessair 0:f269e3021894 3165 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
elessair 0:f269e3021894 3166 */
elessair 0:f269e3021894 3167 arm_status arm_conv_partial_fast_opt_q15(
elessair 0:f269e3021894 3168 q15_t * pSrcA,
elessair 0:f269e3021894 3169 uint32_t srcALen,
elessair 0:f269e3021894 3170 q15_t * pSrcB,
elessair 0:f269e3021894 3171 uint32_t srcBLen,
elessair 0:f269e3021894 3172 q15_t * pDst,
elessair 0:f269e3021894 3173 uint32_t firstIndex,
elessair 0:f269e3021894 3174 uint32_t numPoints,
elessair 0:f269e3021894 3175 q15_t * pScratch1,
elessair 0:f269e3021894 3176 q15_t * pScratch2);
elessair 0:f269e3021894 3177
elessair 0:f269e3021894 3178
elessair 0:f269e3021894 3179 /**
elessair 0:f269e3021894 3180 * @brief Partial convolution of Q31 sequences.
elessair 0:f269e3021894 3181 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 3182 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 3183 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 3184 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 3185 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3186 * @param[in] firstIndex is the first output sample to start with.
elessair 0:f269e3021894 3187 * @param[in] numPoints is the number of output points to be computed.
elessair 0:f269e3021894 3188 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
elessair 0:f269e3021894 3189 */
elessair 0:f269e3021894 3190 arm_status arm_conv_partial_q31(
elessair 0:f269e3021894 3191 q31_t * pSrcA,
elessair 0:f269e3021894 3192 uint32_t srcALen,
elessair 0:f269e3021894 3193 q31_t * pSrcB,
elessair 0:f269e3021894 3194 uint32_t srcBLen,
elessair 0:f269e3021894 3195 q31_t * pDst,
elessair 0:f269e3021894 3196 uint32_t firstIndex,
elessair 0:f269e3021894 3197 uint32_t numPoints);
elessair 0:f269e3021894 3198
elessair 0:f269e3021894 3199
elessair 0:f269e3021894 3200 /**
elessair 0:f269e3021894 3201 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
elessair 0:f269e3021894 3202 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 3203 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 3204 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 3205 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 3206 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3207 * @param[in] firstIndex is the first output sample to start with.
elessair 0:f269e3021894 3208 * @param[in] numPoints is the number of output points to be computed.
elessair 0:f269e3021894 3209 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
elessair 0:f269e3021894 3210 */
elessair 0:f269e3021894 3211 arm_status arm_conv_partial_fast_q31(
elessair 0:f269e3021894 3212 q31_t * pSrcA,
elessair 0:f269e3021894 3213 uint32_t srcALen,
elessair 0:f269e3021894 3214 q31_t * pSrcB,
elessair 0:f269e3021894 3215 uint32_t srcBLen,
elessair 0:f269e3021894 3216 q31_t * pDst,
elessair 0:f269e3021894 3217 uint32_t firstIndex,
elessair 0:f269e3021894 3218 uint32_t numPoints);
elessair 0:f269e3021894 3219
elessair 0:f269e3021894 3220
elessair 0:f269e3021894 3221 /**
elessair 0:f269e3021894 3222 * @brief Partial convolution of Q7 sequences
elessair 0:f269e3021894 3223 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 3224 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 3225 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 3226 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 3227 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3228 * @param[in] firstIndex is the first output sample to start with.
elessair 0:f269e3021894 3229 * @param[in] numPoints is the number of output points to be computed.
elessair 0:f269e3021894 3230 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
elessair 0:f269e3021894 3231 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
elessair 0:f269e3021894 3232 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
elessair 0:f269e3021894 3233 */
elessair 0:f269e3021894 3234 arm_status arm_conv_partial_opt_q7(
elessair 0:f269e3021894 3235 q7_t * pSrcA,
elessair 0:f269e3021894 3236 uint32_t srcALen,
elessair 0:f269e3021894 3237 q7_t * pSrcB,
elessair 0:f269e3021894 3238 uint32_t srcBLen,
elessair 0:f269e3021894 3239 q7_t * pDst,
elessair 0:f269e3021894 3240 uint32_t firstIndex,
elessair 0:f269e3021894 3241 uint32_t numPoints,
elessair 0:f269e3021894 3242 q15_t * pScratch1,
elessair 0:f269e3021894 3243 q15_t * pScratch2);
elessair 0:f269e3021894 3244
elessair 0:f269e3021894 3245
elessair 0:f269e3021894 3246 /**
elessair 0:f269e3021894 3247 * @brief Partial convolution of Q7 sequences.
elessair 0:f269e3021894 3248 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 3249 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 3250 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 3251 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 3252 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3253 * @param[in] firstIndex is the first output sample to start with.
elessair 0:f269e3021894 3254 * @param[in] numPoints is the number of output points to be computed.
elessair 0:f269e3021894 3255 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
elessair 0:f269e3021894 3256 */
elessair 0:f269e3021894 3257 arm_status arm_conv_partial_q7(
elessair 0:f269e3021894 3258 q7_t * pSrcA,
elessair 0:f269e3021894 3259 uint32_t srcALen,
elessair 0:f269e3021894 3260 q7_t * pSrcB,
elessair 0:f269e3021894 3261 uint32_t srcBLen,
elessair 0:f269e3021894 3262 q7_t * pDst,
elessair 0:f269e3021894 3263 uint32_t firstIndex,
elessair 0:f269e3021894 3264 uint32_t numPoints);
elessair 0:f269e3021894 3265
elessair 0:f269e3021894 3266
elessair 0:f269e3021894 3267 /**
elessair 0:f269e3021894 3268 * @brief Instance structure for the Q15 FIR decimator.
elessair 0:f269e3021894 3269 */
elessair 0:f269e3021894 3270 typedef struct
elessair 0:f269e3021894 3271 {
elessair 0:f269e3021894 3272 uint8_t M; /**< decimation factor. */
elessair 0:f269e3021894 3273 uint16_t numTaps; /**< number of coefficients in the filter. */
elessair 0:f269e3021894 3274 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
elessair 0:f269e3021894 3275 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
elessair 0:f269e3021894 3276 } arm_fir_decimate_instance_q15;
elessair 0:f269e3021894 3277
elessair 0:f269e3021894 3278 /**
elessair 0:f269e3021894 3279 * @brief Instance structure for the Q31 FIR decimator.
elessair 0:f269e3021894 3280 */
elessair 0:f269e3021894 3281 typedef struct
elessair 0:f269e3021894 3282 {
elessair 0:f269e3021894 3283 uint8_t M; /**< decimation factor. */
elessair 0:f269e3021894 3284 uint16_t numTaps; /**< number of coefficients in the filter. */
elessair 0:f269e3021894 3285 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
elessair 0:f269e3021894 3286 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
elessair 0:f269e3021894 3287 } arm_fir_decimate_instance_q31;
elessair 0:f269e3021894 3288
elessair 0:f269e3021894 3289 /**
elessair 0:f269e3021894 3290 * @brief Instance structure for the floating-point FIR decimator.
elessair 0:f269e3021894 3291 */
elessair 0:f269e3021894 3292 typedef struct
elessair 0:f269e3021894 3293 {
elessair 0:f269e3021894 3294 uint8_t M; /**< decimation factor. */
elessair 0:f269e3021894 3295 uint16_t numTaps; /**< number of coefficients in the filter. */
elessair 0:f269e3021894 3296 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
elessair 0:f269e3021894 3297 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
elessair 0:f269e3021894 3298 } arm_fir_decimate_instance_f32;
elessair 0:f269e3021894 3299
elessair 0:f269e3021894 3300
elessair 0:f269e3021894 3301 /**
elessair 0:f269e3021894 3302 * @brief Processing function for the floating-point FIR decimator.
elessair 0:f269e3021894 3303 * @param[in] S points to an instance of the floating-point FIR decimator structure.
elessair 0:f269e3021894 3304 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3305 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3306 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 3307 */
elessair 0:f269e3021894 3308 void arm_fir_decimate_f32(
elessair 0:f269e3021894 3309 const arm_fir_decimate_instance_f32 * S,
elessair 0:f269e3021894 3310 float32_t * pSrc,
elessair 0:f269e3021894 3311 float32_t * pDst,
elessair 0:f269e3021894 3312 uint32_t blockSize);
elessair 0:f269e3021894 3313
elessair 0:f269e3021894 3314
elessair 0:f269e3021894 3315 /**
elessair 0:f269e3021894 3316 * @brief Initialization function for the floating-point FIR decimator.
elessair 0:f269e3021894 3317 * @param[in,out] S points to an instance of the floating-point FIR decimator structure.
elessair 0:f269e3021894 3318 * @param[in] numTaps number of coefficients in the filter.
elessair 0:f269e3021894 3319 * @param[in] M decimation factor.
elessair 0:f269e3021894 3320 * @param[in] pCoeffs points to the filter coefficients.
elessair 0:f269e3021894 3321 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 3322 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 3323 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
elessair 0:f269e3021894 3324 * <code>blockSize</code> is not a multiple of <code>M</code>.
elessair 0:f269e3021894 3325 */
elessair 0:f269e3021894 3326 arm_status arm_fir_decimate_init_f32(
elessair 0:f269e3021894 3327 arm_fir_decimate_instance_f32 * S,
elessair 0:f269e3021894 3328 uint16_t numTaps,
elessair 0:f269e3021894 3329 uint8_t M,
elessair 0:f269e3021894 3330 float32_t * pCoeffs,
elessair 0:f269e3021894 3331 float32_t * pState,
elessair 0:f269e3021894 3332 uint32_t blockSize);
elessair 0:f269e3021894 3333
elessair 0:f269e3021894 3334
elessair 0:f269e3021894 3335 /**
elessair 0:f269e3021894 3336 * @brief Processing function for the Q15 FIR decimator.
elessair 0:f269e3021894 3337 * @param[in] S points to an instance of the Q15 FIR decimator structure.
elessair 0:f269e3021894 3338 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3339 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3340 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 3341 */
elessair 0:f269e3021894 3342 void arm_fir_decimate_q15(
elessair 0:f269e3021894 3343 const arm_fir_decimate_instance_q15 * S,
elessair 0:f269e3021894 3344 q15_t * pSrc,
elessair 0:f269e3021894 3345 q15_t * pDst,
elessair 0:f269e3021894 3346 uint32_t blockSize);
elessair 0:f269e3021894 3347
elessair 0:f269e3021894 3348
elessair 0:f269e3021894 3349 /**
elessair 0:f269e3021894 3350 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
elessair 0:f269e3021894 3351 * @param[in] S points to an instance of the Q15 FIR decimator structure.
elessair 0:f269e3021894 3352 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3353 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3354 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 3355 */
elessair 0:f269e3021894 3356 void arm_fir_decimate_fast_q15(
elessair 0:f269e3021894 3357 const arm_fir_decimate_instance_q15 * S,
elessair 0:f269e3021894 3358 q15_t * pSrc,
elessair 0:f269e3021894 3359 q15_t * pDst,
elessair 0:f269e3021894 3360 uint32_t blockSize);
elessair 0:f269e3021894 3361
elessair 0:f269e3021894 3362
elessair 0:f269e3021894 3363 /**
elessair 0:f269e3021894 3364 * @brief Initialization function for the Q15 FIR decimator.
elessair 0:f269e3021894 3365 * @param[in,out] S points to an instance of the Q15 FIR decimator structure.
elessair 0:f269e3021894 3366 * @param[in] numTaps number of coefficients in the filter.
elessair 0:f269e3021894 3367 * @param[in] M decimation factor.
elessair 0:f269e3021894 3368 * @param[in] pCoeffs points to the filter coefficients.
elessair 0:f269e3021894 3369 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 3370 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 3371 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
elessair 0:f269e3021894 3372 * <code>blockSize</code> is not a multiple of <code>M</code>.
elessair 0:f269e3021894 3373 */
elessair 0:f269e3021894 3374 arm_status arm_fir_decimate_init_q15(
elessair 0:f269e3021894 3375 arm_fir_decimate_instance_q15 * S,
elessair 0:f269e3021894 3376 uint16_t numTaps,
elessair 0:f269e3021894 3377 uint8_t M,
elessair 0:f269e3021894 3378 q15_t * pCoeffs,
elessair 0:f269e3021894 3379 q15_t * pState,
elessair 0:f269e3021894 3380 uint32_t blockSize);
elessair 0:f269e3021894 3381
elessair 0:f269e3021894 3382
elessair 0:f269e3021894 3383 /**
elessair 0:f269e3021894 3384 * @brief Processing function for the Q31 FIR decimator.
elessair 0:f269e3021894 3385 * @param[in] S points to an instance of the Q31 FIR decimator structure.
elessair 0:f269e3021894 3386 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3387 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3388 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 3389 */
elessair 0:f269e3021894 3390 void arm_fir_decimate_q31(
elessair 0:f269e3021894 3391 const arm_fir_decimate_instance_q31 * S,
elessair 0:f269e3021894 3392 q31_t * pSrc,
elessair 0:f269e3021894 3393 q31_t * pDst,
elessair 0:f269e3021894 3394 uint32_t blockSize);
elessair 0:f269e3021894 3395
elessair 0:f269e3021894 3396 /**
elessair 0:f269e3021894 3397 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
elessair 0:f269e3021894 3398 * @param[in] S points to an instance of the Q31 FIR decimator structure.
elessair 0:f269e3021894 3399 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3400 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3401 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 3402 */
elessair 0:f269e3021894 3403 void arm_fir_decimate_fast_q31(
elessair 0:f269e3021894 3404 arm_fir_decimate_instance_q31 * S,
elessair 0:f269e3021894 3405 q31_t * pSrc,
elessair 0:f269e3021894 3406 q31_t * pDst,
elessair 0:f269e3021894 3407 uint32_t blockSize);
elessair 0:f269e3021894 3408
elessair 0:f269e3021894 3409
elessair 0:f269e3021894 3410 /**
elessair 0:f269e3021894 3411 * @brief Initialization function for the Q31 FIR decimator.
elessair 0:f269e3021894 3412 * @param[in,out] S points to an instance of the Q31 FIR decimator structure.
elessair 0:f269e3021894 3413 * @param[in] numTaps number of coefficients in the filter.
elessair 0:f269e3021894 3414 * @param[in] M decimation factor.
elessair 0:f269e3021894 3415 * @param[in] pCoeffs points to the filter coefficients.
elessair 0:f269e3021894 3416 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 3417 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 3418 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
elessair 0:f269e3021894 3419 * <code>blockSize</code> is not a multiple of <code>M</code>.
elessair 0:f269e3021894 3420 */
elessair 0:f269e3021894 3421 arm_status arm_fir_decimate_init_q31(
elessair 0:f269e3021894 3422 arm_fir_decimate_instance_q31 * S,
elessair 0:f269e3021894 3423 uint16_t numTaps,
elessair 0:f269e3021894 3424 uint8_t M,
elessair 0:f269e3021894 3425 q31_t * pCoeffs,
elessair 0:f269e3021894 3426 q31_t * pState,
elessair 0:f269e3021894 3427 uint32_t blockSize);
elessair 0:f269e3021894 3428
elessair 0:f269e3021894 3429
elessair 0:f269e3021894 3430 /**
elessair 0:f269e3021894 3431 * @brief Instance structure for the Q15 FIR interpolator.
elessair 0:f269e3021894 3432 */
elessair 0:f269e3021894 3433 typedef struct
elessair 0:f269e3021894 3434 {
elessair 0:f269e3021894 3435 uint8_t L; /**< upsample factor. */
elessair 0:f269e3021894 3436 uint16_t phaseLength; /**< length of each polyphase filter component. */
elessair 0:f269e3021894 3437 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
elessair 0:f269e3021894 3438 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
elessair 0:f269e3021894 3439 } arm_fir_interpolate_instance_q15;
elessair 0:f269e3021894 3440
elessair 0:f269e3021894 3441 /**
elessair 0:f269e3021894 3442 * @brief Instance structure for the Q31 FIR interpolator.
elessair 0:f269e3021894 3443 */
elessair 0:f269e3021894 3444 typedef struct
elessair 0:f269e3021894 3445 {
elessair 0:f269e3021894 3446 uint8_t L; /**< upsample factor. */
elessair 0:f269e3021894 3447 uint16_t phaseLength; /**< length of each polyphase filter component. */
elessair 0:f269e3021894 3448 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
elessair 0:f269e3021894 3449 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
elessair 0:f269e3021894 3450 } arm_fir_interpolate_instance_q31;
elessair 0:f269e3021894 3451
elessair 0:f269e3021894 3452 /**
elessair 0:f269e3021894 3453 * @brief Instance structure for the floating-point FIR interpolator.
elessair 0:f269e3021894 3454 */
elessair 0:f269e3021894 3455 typedef struct
elessair 0:f269e3021894 3456 {
elessair 0:f269e3021894 3457 uint8_t L; /**< upsample factor. */
elessair 0:f269e3021894 3458 uint16_t phaseLength; /**< length of each polyphase filter component. */
elessair 0:f269e3021894 3459 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
elessair 0:f269e3021894 3460 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
elessair 0:f269e3021894 3461 } arm_fir_interpolate_instance_f32;
elessair 0:f269e3021894 3462
elessair 0:f269e3021894 3463
elessair 0:f269e3021894 3464 /**
elessair 0:f269e3021894 3465 * @brief Processing function for the Q15 FIR interpolator.
elessair 0:f269e3021894 3466 * @param[in] S points to an instance of the Q15 FIR interpolator structure.
elessair 0:f269e3021894 3467 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3468 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 3469 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 3470 */
elessair 0:f269e3021894 3471 void arm_fir_interpolate_q15(
elessair 0:f269e3021894 3472 const arm_fir_interpolate_instance_q15 * S,
elessair 0:f269e3021894 3473 q15_t * pSrc,
elessair 0:f269e3021894 3474 q15_t * pDst,
elessair 0:f269e3021894 3475 uint32_t blockSize);
elessair 0:f269e3021894 3476
elessair 0:f269e3021894 3477
elessair 0:f269e3021894 3478 /**
elessair 0:f269e3021894 3479 * @brief Initialization function for the Q15 FIR interpolator.
elessair 0:f269e3021894 3480 * @param[in,out] S points to an instance of the Q15 FIR interpolator structure.
elessair 0:f269e3021894 3481 * @param[in] L upsample factor.
elessair 0:f269e3021894 3482 * @param[in] numTaps number of filter coefficients in the filter.
elessair 0:f269e3021894 3483 * @param[in] pCoeffs points to the filter coefficient buffer.
elessair 0:f269e3021894 3484 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 3485 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 3486 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
elessair 0:f269e3021894 3487 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
elessair 0:f269e3021894 3488 */
elessair 0:f269e3021894 3489 arm_status arm_fir_interpolate_init_q15(
elessair 0:f269e3021894 3490 arm_fir_interpolate_instance_q15 * S,
elessair 0:f269e3021894 3491 uint8_t L,
elessair 0:f269e3021894 3492 uint16_t numTaps,
elessair 0:f269e3021894 3493 q15_t * pCoeffs,
elessair 0:f269e3021894 3494 q15_t * pState,
elessair 0:f269e3021894 3495 uint32_t blockSize);
elessair 0:f269e3021894 3496
elessair 0:f269e3021894 3497
elessair 0:f269e3021894 3498 /**
elessair 0:f269e3021894 3499 * @brief Processing function for the Q31 FIR interpolator.
elessair 0:f269e3021894 3500 * @param[in] S points to an instance of the Q15 FIR interpolator structure.
elessair 0:f269e3021894 3501 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3502 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 3503 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 3504 */
elessair 0:f269e3021894 3505 void arm_fir_interpolate_q31(
elessair 0:f269e3021894 3506 const arm_fir_interpolate_instance_q31 * S,
elessair 0:f269e3021894 3507 q31_t * pSrc,
elessair 0:f269e3021894 3508 q31_t * pDst,
elessair 0:f269e3021894 3509 uint32_t blockSize);
elessair 0:f269e3021894 3510
elessair 0:f269e3021894 3511
elessair 0:f269e3021894 3512 /**
elessair 0:f269e3021894 3513 * @brief Initialization function for the Q31 FIR interpolator.
elessair 0:f269e3021894 3514 * @param[in,out] S points to an instance of the Q31 FIR interpolator structure.
elessair 0:f269e3021894 3515 * @param[in] L upsample factor.
elessair 0:f269e3021894 3516 * @param[in] numTaps number of filter coefficients in the filter.
elessair 0:f269e3021894 3517 * @param[in] pCoeffs points to the filter coefficient buffer.
elessair 0:f269e3021894 3518 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 3519 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 3520 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
elessair 0:f269e3021894 3521 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
elessair 0:f269e3021894 3522 */
elessair 0:f269e3021894 3523 arm_status arm_fir_interpolate_init_q31(
elessair 0:f269e3021894 3524 arm_fir_interpolate_instance_q31 * S,
elessair 0:f269e3021894 3525 uint8_t L,
elessair 0:f269e3021894 3526 uint16_t numTaps,
elessair 0:f269e3021894 3527 q31_t * pCoeffs,
elessair 0:f269e3021894 3528 q31_t * pState,
elessair 0:f269e3021894 3529 uint32_t blockSize);
elessair 0:f269e3021894 3530
elessair 0:f269e3021894 3531
elessair 0:f269e3021894 3532 /**
elessair 0:f269e3021894 3533 * @brief Processing function for the floating-point FIR interpolator.
elessair 0:f269e3021894 3534 * @param[in] S points to an instance of the floating-point FIR interpolator structure.
elessair 0:f269e3021894 3535 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3536 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 3537 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 3538 */
elessair 0:f269e3021894 3539 void arm_fir_interpolate_f32(
elessair 0:f269e3021894 3540 const arm_fir_interpolate_instance_f32 * S,
elessair 0:f269e3021894 3541 float32_t * pSrc,
elessair 0:f269e3021894 3542 float32_t * pDst,
elessair 0:f269e3021894 3543 uint32_t blockSize);
elessair 0:f269e3021894 3544
elessair 0:f269e3021894 3545
elessair 0:f269e3021894 3546 /**
elessair 0:f269e3021894 3547 * @brief Initialization function for the floating-point FIR interpolator.
elessair 0:f269e3021894 3548 * @param[in,out] S points to an instance of the floating-point FIR interpolator structure.
elessair 0:f269e3021894 3549 * @param[in] L upsample factor.
elessair 0:f269e3021894 3550 * @param[in] numTaps number of filter coefficients in the filter.
elessair 0:f269e3021894 3551 * @param[in] pCoeffs points to the filter coefficient buffer.
elessair 0:f269e3021894 3552 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 3553 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 3554 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
elessair 0:f269e3021894 3555 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
elessair 0:f269e3021894 3556 */
elessair 0:f269e3021894 3557 arm_status arm_fir_interpolate_init_f32(
elessair 0:f269e3021894 3558 arm_fir_interpolate_instance_f32 * S,
elessair 0:f269e3021894 3559 uint8_t L,
elessair 0:f269e3021894 3560 uint16_t numTaps,
elessair 0:f269e3021894 3561 float32_t * pCoeffs,
elessair 0:f269e3021894 3562 float32_t * pState,
elessair 0:f269e3021894 3563 uint32_t blockSize);
elessair 0:f269e3021894 3564
elessair 0:f269e3021894 3565
elessair 0:f269e3021894 3566 /**
elessair 0:f269e3021894 3567 * @brief Instance structure for the high precision Q31 Biquad cascade filter.
elessair 0:f269e3021894 3568 */
elessair 0:f269e3021894 3569 typedef struct
elessair 0:f269e3021894 3570 {
elessair 0:f269e3021894 3571 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
elessair 0:f269e3021894 3572 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
elessair 0:f269e3021894 3573 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
elessair 0:f269e3021894 3574 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
elessair 0:f269e3021894 3575 } arm_biquad_cas_df1_32x64_ins_q31;
elessair 0:f269e3021894 3576
elessair 0:f269e3021894 3577
elessair 0:f269e3021894 3578 /**
elessair 0:f269e3021894 3579 * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.
elessair 0:f269e3021894 3580 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3581 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3582 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 3583 */
elessair 0:f269e3021894 3584 void arm_biquad_cas_df1_32x64_q31(
elessair 0:f269e3021894 3585 const arm_biquad_cas_df1_32x64_ins_q31 * S,
elessair 0:f269e3021894 3586 q31_t * pSrc,
elessair 0:f269e3021894 3587 q31_t * pDst,
elessair 0:f269e3021894 3588 uint32_t blockSize);
elessair 0:f269e3021894 3589
elessair 0:f269e3021894 3590
elessair 0:f269e3021894 3591 /**
elessair 0:f269e3021894 3592 * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.
elessair 0:f269e3021894 3593 * @param[in] numStages number of 2nd order stages in the filter.
elessair 0:f269e3021894 3594 * @param[in] pCoeffs points to the filter coefficients.
elessair 0:f269e3021894 3595 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 3596 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
elessair 0:f269e3021894 3597 */
elessair 0:f269e3021894 3598 void arm_biquad_cas_df1_32x64_init_q31(
elessair 0:f269e3021894 3599 arm_biquad_cas_df1_32x64_ins_q31 * S,
elessair 0:f269e3021894 3600 uint8_t numStages,
elessair 0:f269e3021894 3601 q31_t * pCoeffs,
elessair 0:f269e3021894 3602 q63_t * pState,
elessair 0:f269e3021894 3603 uint8_t postShift);
elessair 0:f269e3021894 3604
elessair 0:f269e3021894 3605
elessair 0:f269e3021894 3606 /**
elessair 0:f269e3021894 3607 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
elessair 0:f269e3021894 3608 */
elessair 0:f269e3021894 3609 typedef struct
elessair 0:f269e3021894 3610 {
elessair 0:f269e3021894 3611 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
elessair 0:f269e3021894 3612 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
elessair 0:f269e3021894 3613 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
elessair 0:f269e3021894 3614 } arm_biquad_cascade_df2T_instance_f32;
elessair 0:f269e3021894 3615
elessair 0:f269e3021894 3616 /**
elessair 0:f269e3021894 3617 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
elessair 0:f269e3021894 3618 */
elessair 0:f269e3021894 3619 typedef struct
elessair 0:f269e3021894 3620 {
elessair 0:f269e3021894 3621 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
elessair 0:f269e3021894 3622 float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
elessair 0:f269e3021894 3623 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
elessair 0:f269e3021894 3624 } arm_biquad_cascade_stereo_df2T_instance_f32;
elessair 0:f269e3021894 3625
elessair 0:f269e3021894 3626 /**
elessair 0:f269e3021894 3627 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
elessair 0:f269e3021894 3628 */
elessair 0:f269e3021894 3629 typedef struct
elessair 0:f269e3021894 3630 {
elessair 0:f269e3021894 3631 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
elessair 0:f269e3021894 3632 float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
elessair 0:f269e3021894 3633 float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
elessair 0:f269e3021894 3634 } arm_biquad_cascade_df2T_instance_f64;
elessair 0:f269e3021894 3635
elessair 0:f269e3021894 3636
elessair 0:f269e3021894 3637 /**
elessair 0:f269e3021894 3638 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
elessair 0:f269e3021894 3639 * @param[in] S points to an instance of the filter data structure.
elessair 0:f269e3021894 3640 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3641 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3642 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 3643 */
elessair 0:f269e3021894 3644 void arm_biquad_cascade_df2T_f32(
elessair 0:f269e3021894 3645 const arm_biquad_cascade_df2T_instance_f32 * S,
elessair 0:f269e3021894 3646 float32_t * pSrc,
elessair 0:f269e3021894 3647 float32_t * pDst,
elessair 0:f269e3021894 3648 uint32_t blockSize);
elessair 0:f269e3021894 3649
elessair 0:f269e3021894 3650
elessair 0:f269e3021894 3651 /**
elessair 0:f269e3021894 3652 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
elessair 0:f269e3021894 3653 * @param[in] S points to an instance of the filter data structure.
elessair 0:f269e3021894 3654 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3655 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3656 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 3657 */
elessair 0:f269e3021894 3658 void arm_biquad_cascade_stereo_df2T_f32(
elessair 0:f269e3021894 3659 const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
elessair 0:f269e3021894 3660 float32_t * pSrc,
elessair 0:f269e3021894 3661 float32_t * pDst,
elessair 0:f269e3021894 3662 uint32_t blockSize);
elessair 0:f269e3021894 3663
elessair 0:f269e3021894 3664
elessair 0:f269e3021894 3665 /**
elessair 0:f269e3021894 3666 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
elessair 0:f269e3021894 3667 * @param[in] S points to an instance of the filter data structure.
elessair 0:f269e3021894 3668 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3669 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3670 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 3671 */
elessair 0:f269e3021894 3672 void arm_biquad_cascade_df2T_f64(
elessair 0:f269e3021894 3673 const arm_biquad_cascade_df2T_instance_f64 * S,
elessair 0:f269e3021894 3674 float64_t * pSrc,
elessair 0:f269e3021894 3675 float64_t * pDst,
elessair 0:f269e3021894 3676 uint32_t blockSize);
elessair 0:f269e3021894 3677
elessair 0:f269e3021894 3678
elessair 0:f269e3021894 3679 /**
elessair 0:f269e3021894 3680 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
elessair 0:f269e3021894 3681 * @param[in,out] S points to an instance of the filter data structure.
elessair 0:f269e3021894 3682 * @param[in] numStages number of 2nd order stages in the filter.
elessair 0:f269e3021894 3683 * @param[in] pCoeffs points to the filter coefficients.
elessair 0:f269e3021894 3684 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 3685 */
elessair 0:f269e3021894 3686 void arm_biquad_cascade_df2T_init_f32(
elessair 0:f269e3021894 3687 arm_biquad_cascade_df2T_instance_f32 * S,
elessair 0:f269e3021894 3688 uint8_t numStages,
elessair 0:f269e3021894 3689 float32_t * pCoeffs,
elessair 0:f269e3021894 3690 float32_t * pState);
elessair 0:f269e3021894 3691
elessair 0:f269e3021894 3692
elessair 0:f269e3021894 3693 /**
elessair 0:f269e3021894 3694 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
elessair 0:f269e3021894 3695 * @param[in,out] S points to an instance of the filter data structure.
elessair 0:f269e3021894 3696 * @param[in] numStages number of 2nd order stages in the filter.
elessair 0:f269e3021894 3697 * @param[in] pCoeffs points to the filter coefficients.
elessair 0:f269e3021894 3698 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 3699 */
elessair 0:f269e3021894 3700 void arm_biquad_cascade_stereo_df2T_init_f32(
elessair 0:f269e3021894 3701 arm_biquad_cascade_stereo_df2T_instance_f32 * S,
elessair 0:f269e3021894 3702 uint8_t numStages,
elessair 0:f269e3021894 3703 float32_t * pCoeffs,
elessair 0:f269e3021894 3704 float32_t * pState);
elessair 0:f269e3021894 3705
elessair 0:f269e3021894 3706
elessair 0:f269e3021894 3707 /**
elessair 0:f269e3021894 3708 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
elessair 0:f269e3021894 3709 * @param[in,out] S points to an instance of the filter data structure.
elessair 0:f269e3021894 3710 * @param[in] numStages number of 2nd order stages in the filter.
elessair 0:f269e3021894 3711 * @param[in] pCoeffs points to the filter coefficients.
elessair 0:f269e3021894 3712 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 3713 */
elessair 0:f269e3021894 3714 void arm_biquad_cascade_df2T_init_f64(
elessair 0:f269e3021894 3715 arm_biquad_cascade_df2T_instance_f64 * S,
elessair 0:f269e3021894 3716 uint8_t numStages,
elessair 0:f269e3021894 3717 float64_t * pCoeffs,
elessair 0:f269e3021894 3718 float64_t * pState);
elessair 0:f269e3021894 3719
elessair 0:f269e3021894 3720
elessair 0:f269e3021894 3721 /**
elessair 0:f269e3021894 3722 * @brief Instance structure for the Q15 FIR lattice filter.
elessair 0:f269e3021894 3723 */
elessair 0:f269e3021894 3724 typedef struct
elessair 0:f269e3021894 3725 {
elessair 0:f269e3021894 3726 uint16_t numStages; /**< number of filter stages. */
elessair 0:f269e3021894 3727 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
elessair 0:f269e3021894 3728 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
elessair 0:f269e3021894 3729 } arm_fir_lattice_instance_q15;
elessair 0:f269e3021894 3730
elessair 0:f269e3021894 3731 /**
elessair 0:f269e3021894 3732 * @brief Instance structure for the Q31 FIR lattice filter.
elessair 0:f269e3021894 3733 */
elessair 0:f269e3021894 3734 typedef struct
elessair 0:f269e3021894 3735 {
elessair 0:f269e3021894 3736 uint16_t numStages; /**< number of filter stages. */
elessair 0:f269e3021894 3737 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
elessair 0:f269e3021894 3738 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
elessair 0:f269e3021894 3739 } arm_fir_lattice_instance_q31;
elessair 0:f269e3021894 3740
elessair 0:f269e3021894 3741 /**
elessair 0:f269e3021894 3742 * @brief Instance structure for the floating-point FIR lattice filter.
elessair 0:f269e3021894 3743 */
elessair 0:f269e3021894 3744 typedef struct
elessair 0:f269e3021894 3745 {
elessair 0:f269e3021894 3746 uint16_t numStages; /**< number of filter stages. */
elessair 0:f269e3021894 3747 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
elessair 0:f269e3021894 3748 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
elessair 0:f269e3021894 3749 } arm_fir_lattice_instance_f32;
elessair 0:f269e3021894 3750
elessair 0:f269e3021894 3751
elessair 0:f269e3021894 3752 /**
elessair 0:f269e3021894 3753 * @brief Initialization function for the Q15 FIR lattice filter.
elessair 0:f269e3021894 3754 * @param[in] S points to an instance of the Q15 FIR lattice structure.
elessair 0:f269e3021894 3755 * @param[in] numStages number of filter stages.
elessair 0:f269e3021894 3756 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
elessair 0:f269e3021894 3757 * @param[in] pState points to the state buffer. The array is of length numStages.
elessair 0:f269e3021894 3758 */
elessair 0:f269e3021894 3759 void arm_fir_lattice_init_q15(
elessair 0:f269e3021894 3760 arm_fir_lattice_instance_q15 * S,
elessair 0:f269e3021894 3761 uint16_t numStages,
elessair 0:f269e3021894 3762 q15_t * pCoeffs,
elessair 0:f269e3021894 3763 q15_t * pState);
elessair 0:f269e3021894 3764
elessair 0:f269e3021894 3765
elessair 0:f269e3021894 3766 /**
elessair 0:f269e3021894 3767 * @brief Processing function for the Q15 FIR lattice filter.
elessair 0:f269e3021894 3768 * @param[in] S points to an instance of the Q15 FIR lattice structure.
elessair 0:f269e3021894 3769 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3770 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 3771 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 3772 */
elessair 0:f269e3021894 3773 void arm_fir_lattice_q15(
elessair 0:f269e3021894 3774 const arm_fir_lattice_instance_q15 * S,
elessair 0:f269e3021894 3775 q15_t * pSrc,
elessair 0:f269e3021894 3776 q15_t * pDst,
elessair 0:f269e3021894 3777 uint32_t blockSize);
elessair 0:f269e3021894 3778
elessair 0:f269e3021894 3779
elessair 0:f269e3021894 3780 /**
elessair 0:f269e3021894 3781 * @brief Initialization function for the Q31 FIR lattice filter.
elessair 0:f269e3021894 3782 * @param[in] S points to an instance of the Q31 FIR lattice structure.
elessair 0:f269e3021894 3783 * @param[in] numStages number of filter stages.
elessair 0:f269e3021894 3784 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
elessair 0:f269e3021894 3785 * @param[in] pState points to the state buffer. The array is of length numStages.
elessair 0:f269e3021894 3786 */
elessair 0:f269e3021894 3787 void arm_fir_lattice_init_q31(
elessair 0:f269e3021894 3788 arm_fir_lattice_instance_q31 * S,
elessair 0:f269e3021894 3789 uint16_t numStages,
elessair 0:f269e3021894 3790 q31_t * pCoeffs,
elessair 0:f269e3021894 3791 q31_t * pState);
elessair 0:f269e3021894 3792
elessair 0:f269e3021894 3793
elessair 0:f269e3021894 3794 /**
elessair 0:f269e3021894 3795 * @brief Processing function for the Q31 FIR lattice filter.
elessair 0:f269e3021894 3796 * @param[in] S points to an instance of the Q31 FIR lattice structure.
elessair 0:f269e3021894 3797 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3798 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3799 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 3800 */
elessair 0:f269e3021894 3801 void arm_fir_lattice_q31(
elessair 0:f269e3021894 3802 const arm_fir_lattice_instance_q31 * S,
elessair 0:f269e3021894 3803 q31_t * pSrc,
elessair 0:f269e3021894 3804 q31_t * pDst,
elessair 0:f269e3021894 3805 uint32_t blockSize);
elessair 0:f269e3021894 3806
elessair 0:f269e3021894 3807
elessair 0:f269e3021894 3808 /**
elessair 0:f269e3021894 3809 * @brief Initialization function for the floating-point FIR lattice filter.
elessair 0:f269e3021894 3810 * @param[in] S points to an instance of the floating-point FIR lattice structure.
elessair 0:f269e3021894 3811 * @param[in] numStages number of filter stages.
elessair 0:f269e3021894 3812 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
elessair 0:f269e3021894 3813 * @param[in] pState points to the state buffer. The array is of length numStages.
elessair 0:f269e3021894 3814 */
elessair 0:f269e3021894 3815 void arm_fir_lattice_init_f32(
elessair 0:f269e3021894 3816 arm_fir_lattice_instance_f32 * S,
elessair 0:f269e3021894 3817 uint16_t numStages,
elessair 0:f269e3021894 3818 float32_t * pCoeffs,
elessair 0:f269e3021894 3819 float32_t * pState);
elessair 0:f269e3021894 3820
elessair 0:f269e3021894 3821
elessair 0:f269e3021894 3822 /**
elessair 0:f269e3021894 3823 * @brief Processing function for the floating-point FIR lattice filter.
elessair 0:f269e3021894 3824 * @param[in] S points to an instance of the floating-point FIR lattice structure.
elessair 0:f269e3021894 3825 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3826 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 3827 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 3828 */
elessair 0:f269e3021894 3829 void arm_fir_lattice_f32(
elessair 0:f269e3021894 3830 const arm_fir_lattice_instance_f32 * S,
elessair 0:f269e3021894 3831 float32_t * pSrc,
elessair 0:f269e3021894 3832 float32_t * pDst,
elessair 0:f269e3021894 3833 uint32_t blockSize);
elessair 0:f269e3021894 3834
elessair 0:f269e3021894 3835
elessair 0:f269e3021894 3836 /**
elessair 0:f269e3021894 3837 * @brief Instance structure for the Q15 IIR lattice filter.
elessair 0:f269e3021894 3838 */
elessair 0:f269e3021894 3839 typedef struct
elessair 0:f269e3021894 3840 {
elessair 0:f269e3021894 3841 uint16_t numStages; /**< number of stages in the filter. */
elessair 0:f269e3021894 3842 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
elessair 0:f269e3021894 3843 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
elessair 0:f269e3021894 3844 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
elessair 0:f269e3021894 3845 } arm_iir_lattice_instance_q15;
elessair 0:f269e3021894 3846
elessair 0:f269e3021894 3847 /**
elessair 0:f269e3021894 3848 * @brief Instance structure for the Q31 IIR lattice filter.
elessair 0:f269e3021894 3849 */
elessair 0:f269e3021894 3850 typedef struct
elessair 0:f269e3021894 3851 {
elessair 0:f269e3021894 3852 uint16_t numStages; /**< number of stages in the filter. */
elessair 0:f269e3021894 3853 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
elessair 0:f269e3021894 3854 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
elessair 0:f269e3021894 3855 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
elessair 0:f269e3021894 3856 } arm_iir_lattice_instance_q31;
elessair 0:f269e3021894 3857
elessair 0:f269e3021894 3858 /**
elessair 0:f269e3021894 3859 * @brief Instance structure for the floating-point IIR lattice filter.
elessair 0:f269e3021894 3860 */
elessair 0:f269e3021894 3861 typedef struct
elessair 0:f269e3021894 3862 {
elessair 0:f269e3021894 3863 uint16_t numStages; /**< number of stages in the filter. */
elessair 0:f269e3021894 3864 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
elessair 0:f269e3021894 3865 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
elessair 0:f269e3021894 3866 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
elessair 0:f269e3021894 3867 } arm_iir_lattice_instance_f32;
elessair 0:f269e3021894 3868
elessair 0:f269e3021894 3869
elessair 0:f269e3021894 3870 /**
elessair 0:f269e3021894 3871 * @brief Processing function for the floating-point IIR lattice filter.
elessair 0:f269e3021894 3872 * @param[in] S points to an instance of the floating-point IIR lattice structure.
elessair 0:f269e3021894 3873 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3874 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 3875 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 3876 */
elessair 0:f269e3021894 3877 void arm_iir_lattice_f32(
elessair 0:f269e3021894 3878 const arm_iir_lattice_instance_f32 * S,
elessair 0:f269e3021894 3879 float32_t * pSrc,
elessair 0:f269e3021894 3880 float32_t * pDst,
elessair 0:f269e3021894 3881 uint32_t blockSize);
elessair 0:f269e3021894 3882
elessair 0:f269e3021894 3883
elessair 0:f269e3021894 3884 /**
elessair 0:f269e3021894 3885 * @brief Initialization function for the floating-point IIR lattice filter.
elessair 0:f269e3021894 3886 * @param[in] S points to an instance of the floating-point IIR lattice structure.
elessair 0:f269e3021894 3887 * @param[in] numStages number of stages in the filter.
elessair 0:f269e3021894 3888 * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
elessair 0:f269e3021894 3889 * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
elessair 0:f269e3021894 3890 * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.
elessair 0:f269e3021894 3891 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 3892 */
elessair 0:f269e3021894 3893 void arm_iir_lattice_init_f32(
elessair 0:f269e3021894 3894 arm_iir_lattice_instance_f32 * S,
elessair 0:f269e3021894 3895 uint16_t numStages,
elessair 0:f269e3021894 3896 float32_t * pkCoeffs,
elessair 0:f269e3021894 3897 float32_t * pvCoeffs,
elessair 0:f269e3021894 3898 float32_t * pState,
elessair 0:f269e3021894 3899 uint32_t blockSize);
elessair 0:f269e3021894 3900
elessair 0:f269e3021894 3901
elessair 0:f269e3021894 3902 /**
elessair 0:f269e3021894 3903 * @brief Processing function for the Q31 IIR lattice filter.
elessair 0:f269e3021894 3904 * @param[in] S points to an instance of the Q31 IIR lattice structure.
elessair 0:f269e3021894 3905 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3906 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 3907 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 3908 */
elessair 0:f269e3021894 3909 void arm_iir_lattice_q31(
elessair 0:f269e3021894 3910 const arm_iir_lattice_instance_q31 * S,
elessair 0:f269e3021894 3911 q31_t * pSrc,
elessair 0:f269e3021894 3912 q31_t * pDst,
elessair 0:f269e3021894 3913 uint32_t blockSize);
elessair 0:f269e3021894 3914
elessair 0:f269e3021894 3915
elessair 0:f269e3021894 3916 /**
elessair 0:f269e3021894 3917 * @brief Initialization function for the Q31 IIR lattice filter.
elessair 0:f269e3021894 3918 * @param[in] S points to an instance of the Q31 IIR lattice structure.
elessair 0:f269e3021894 3919 * @param[in] numStages number of stages in the filter.
elessair 0:f269e3021894 3920 * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
elessair 0:f269e3021894 3921 * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
elessair 0:f269e3021894 3922 * @param[in] pState points to the state buffer. The array is of length numStages+blockSize.
elessair 0:f269e3021894 3923 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 3924 */
elessair 0:f269e3021894 3925 void arm_iir_lattice_init_q31(
elessair 0:f269e3021894 3926 arm_iir_lattice_instance_q31 * S,
elessair 0:f269e3021894 3927 uint16_t numStages,
elessair 0:f269e3021894 3928 q31_t * pkCoeffs,
elessair 0:f269e3021894 3929 q31_t * pvCoeffs,
elessair 0:f269e3021894 3930 q31_t * pState,
elessair 0:f269e3021894 3931 uint32_t blockSize);
elessair 0:f269e3021894 3932
elessair 0:f269e3021894 3933
elessair 0:f269e3021894 3934 /**
elessair 0:f269e3021894 3935 * @brief Processing function for the Q15 IIR lattice filter.
elessair 0:f269e3021894 3936 * @param[in] S points to an instance of the Q15 IIR lattice structure.
elessair 0:f269e3021894 3937 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3938 * @param[out] pDst points to the block of output data.
elessair 0:f269e3021894 3939 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 3940 */
elessair 0:f269e3021894 3941 void arm_iir_lattice_q15(
elessair 0:f269e3021894 3942 const arm_iir_lattice_instance_q15 * S,
elessair 0:f269e3021894 3943 q15_t * pSrc,
elessair 0:f269e3021894 3944 q15_t * pDst,
elessair 0:f269e3021894 3945 uint32_t blockSize);
elessair 0:f269e3021894 3946
elessair 0:f269e3021894 3947
elessair 0:f269e3021894 3948 /**
elessair 0:f269e3021894 3949 * @brief Initialization function for the Q15 IIR lattice filter.
elessair 0:f269e3021894 3950 * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.
elessair 0:f269e3021894 3951 * @param[in] numStages number of stages in the filter.
elessair 0:f269e3021894 3952 * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
elessair 0:f269e3021894 3953 * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
elessair 0:f269e3021894 3954 * @param[in] pState points to state buffer. The array is of length numStages+blockSize.
elessair 0:f269e3021894 3955 * @param[in] blockSize number of samples to process per call.
elessair 0:f269e3021894 3956 */
elessair 0:f269e3021894 3957 void arm_iir_lattice_init_q15(
elessair 0:f269e3021894 3958 arm_iir_lattice_instance_q15 * S,
elessair 0:f269e3021894 3959 uint16_t numStages,
elessair 0:f269e3021894 3960 q15_t * pkCoeffs,
elessair 0:f269e3021894 3961 q15_t * pvCoeffs,
elessair 0:f269e3021894 3962 q15_t * pState,
elessair 0:f269e3021894 3963 uint32_t blockSize);
elessair 0:f269e3021894 3964
elessair 0:f269e3021894 3965
elessair 0:f269e3021894 3966 /**
elessair 0:f269e3021894 3967 * @brief Instance structure for the floating-point LMS filter.
elessair 0:f269e3021894 3968 */
elessair 0:f269e3021894 3969 typedef struct
elessair 0:f269e3021894 3970 {
elessair 0:f269e3021894 3971 uint16_t numTaps; /**< number of coefficients in the filter. */
elessair 0:f269e3021894 3972 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
elessair 0:f269e3021894 3973 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
elessair 0:f269e3021894 3974 float32_t mu; /**< step size that controls filter coefficient updates. */
elessair 0:f269e3021894 3975 } arm_lms_instance_f32;
elessair 0:f269e3021894 3976
elessair 0:f269e3021894 3977
elessair 0:f269e3021894 3978 /**
elessair 0:f269e3021894 3979 * @brief Processing function for floating-point LMS filter.
elessair 0:f269e3021894 3980 * @param[in] S points to an instance of the floating-point LMS filter structure.
elessair 0:f269e3021894 3981 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 3982 * @param[in] pRef points to the block of reference data.
elessair 0:f269e3021894 3983 * @param[out] pOut points to the block of output data.
elessair 0:f269e3021894 3984 * @param[out] pErr points to the block of error data.
elessair 0:f269e3021894 3985 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 3986 */
elessair 0:f269e3021894 3987 void arm_lms_f32(
elessair 0:f269e3021894 3988 const arm_lms_instance_f32 * S,
elessair 0:f269e3021894 3989 float32_t * pSrc,
elessair 0:f269e3021894 3990 float32_t * pRef,
elessair 0:f269e3021894 3991 float32_t * pOut,
elessair 0:f269e3021894 3992 float32_t * pErr,
elessair 0:f269e3021894 3993 uint32_t blockSize);
elessair 0:f269e3021894 3994
elessair 0:f269e3021894 3995
elessair 0:f269e3021894 3996 /**
elessair 0:f269e3021894 3997 * @brief Initialization function for floating-point LMS filter.
elessair 0:f269e3021894 3998 * @param[in] S points to an instance of the floating-point LMS filter structure.
elessair 0:f269e3021894 3999 * @param[in] numTaps number of filter coefficients.
elessair 0:f269e3021894 4000 * @param[in] pCoeffs points to the coefficient buffer.
elessair 0:f269e3021894 4001 * @param[in] pState points to state buffer.
elessair 0:f269e3021894 4002 * @param[in] mu step size that controls filter coefficient updates.
elessair 0:f269e3021894 4003 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 4004 */
elessair 0:f269e3021894 4005 void arm_lms_init_f32(
elessair 0:f269e3021894 4006 arm_lms_instance_f32 * S,
elessair 0:f269e3021894 4007 uint16_t numTaps,
elessair 0:f269e3021894 4008 float32_t * pCoeffs,
elessair 0:f269e3021894 4009 float32_t * pState,
elessair 0:f269e3021894 4010 float32_t mu,
elessair 0:f269e3021894 4011 uint32_t blockSize);
elessair 0:f269e3021894 4012
elessair 0:f269e3021894 4013
elessair 0:f269e3021894 4014 /**
elessair 0:f269e3021894 4015 * @brief Instance structure for the Q15 LMS filter.
elessair 0:f269e3021894 4016 */
elessair 0:f269e3021894 4017 typedef struct
elessair 0:f269e3021894 4018 {
elessair 0:f269e3021894 4019 uint16_t numTaps; /**< number of coefficients in the filter. */
elessair 0:f269e3021894 4020 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
elessair 0:f269e3021894 4021 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
elessair 0:f269e3021894 4022 q15_t mu; /**< step size that controls filter coefficient updates. */
elessair 0:f269e3021894 4023 uint32_t postShift; /**< bit shift applied to coefficients. */
elessair 0:f269e3021894 4024 } arm_lms_instance_q15;
elessair 0:f269e3021894 4025
elessair 0:f269e3021894 4026
elessair 0:f269e3021894 4027 /**
elessair 0:f269e3021894 4028 * @brief Initialization function for the Q15 LMS filter.
elessair 0:f269e3021894 4029 * @param[in] S points to an instance of the Q15 LMS filter structure.
elessair 0:f269e3021894 4030 * @param[in] numTaps number of filter coefficients.
elessair 0:f269e3021894 4031 * @param[in] pCoeffs points to the coefficient buffer.
elessair 0:f269e3021894 4032 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 4033 * @param[in] mu step size that controls filter coefficient updates.
elessair 0:f269e3021894 4034 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 4035 * @param[in] postShift bit shift applied to coefficients.
elessair 0:f269e3021894 4036 */
elessair 0:f269e3021894 4037 void arm_lms_init_q15(
elessair 0:f269e3021894 4038 arm_lms_instance_q15 * S,
elessair 0:f269e3021894 4039 uint16_t numTaps,
elessair 0:f269e3021894 4040 q15_t * pCoeffs,
elessair 0:f269e3021894 4041 q15_t * pState,
elessair 0:f269e3021894 4042 q15_t mu,
elessair 0:f269e3021894 4043 uint32_t blockSize,
elessair 0:f269e3021894 4044 uint32_t postShift);
elessair 0:f269e3021894 4045
elessair 0:f269e3021894 4046
elessair 0:f269e3021894 4047 /**
elessair 0:f269e3021894 4048 * @brief Processing function for Q15 LMS filter.
elessair 0:f269e3021894 4049 * @param[in] S points to an instance of the Q15 LMS filter structure.
elessair 0:f269e3021894 4050 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 4051 * @param[in] pRef points to the block of reference data.
elessair 0:f269e3021894 4052 * @param[out] pOut points to the block of output data.
elessair 0:f269e3021894 4053 * @param[out] pErr points to the block of error data.
elessair 0:f269e3021894 4054 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 4055 */
elessair 0:f269e3021894 4056 void arm_lms_q15(
elessair 0:f269e3021894 4057 const arm_lms_instance_q15 * S,
elessair 0:f269e3021894 4058 q15_t * pSrc,
elessair 0:f269e3021894 4059 q15_t * pRef,
elessair 0:f269e3021894 4060 q15_t * pOut,
elessair 0:f269e3021894 4061 q15_t * pErr,
elessair 0:f269e3021894 4062 uint32_t blockSize);
elessair 0:f269e3021894 4063
elessair 0:f269e3021894 4064
elessair 0:f269e3021894 4065 /**
elessair 0:f269e3021894 4066 * @brief Instance structure for the Q31 LMS filter.
elessair 0:f269e3021894 4067 */
elessair 0:f269e3021894 4068 typedef struct
elessair 0:f269e3021894 4069 {
elessair 0:f269e3021894 4070 uint16_t numTaps; /**< number of coefficients in the filter. */
elessair 0:f269e3021894 4071 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
elessair 0:f269e3021894 4072 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
elessair 0:f269e3021894 4073 q31_t mu; /**< step size that controls filter coefficient updates. */
elessair 0:f269e3021894 4074 uint32_t postShift; /**< bit shift applied to coefficients. */
elessair 0:f269e3021894 4075 } arm_lms_instance_q31;
elessair 0:f269e3021894 4076
elessair 0:f269e3021894 4077
elessair 0:f269e3021894 4078 /**
elessair 0:f269e3021894 4079 * @brief Processing function for Q31 LMS filter.
elessair 0:f269e3021894 4080 * @param[in] S points to an instance of the Q15 LMS filter structure.
elessair 0:f269e3021894 4081 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 4082 * @param[in] pRef points to the block of reference data.
elessair 0:f269e3021894 4083 * @param[out] pOut points to the block of output data.
elessair 0:f269e3021894 4084 * @param[out] pErr points to the block of error data.
elessair 0:f269e3021894 4085 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 4086 */
elessair 0:f269e3021894 4087 void arm_lms_q31(
elessair 0:f269e3021894 4088 const arm_lms_instance_q31 * S,
elessair 0:f269e3021894 4089 q31_t * pSrc,
elessair 0:f269e3021894 4090 q31_t * pRef,
elessair 0:f269e3021894 4091 q31_t * pOut,
elessair 0:f269e3021894 4092 q31_t * pErr,
elessair 0:f269e3021894 4093 uint32_t blockSize);
elessair 0:f269e3021894 4094
elessair 0:f269e3021894 4095
elessair 0:f269e3021894 4096 /**
elessair 0:f269e3021894 4097 * @brief Initialization function for Q31 LMS filter.
elessair 0:f269e3021894 4098 * @param[in] S points to an instance of the Q31 LMS filter structure.
elessair 0:f269e3021894 4099 * @param[in] numTaps number of filter coefficients.
elessair 0:f269e3021894 4100 * @param[in] pCoeffs points to coefficient buffer.
elessair 0:f269e3021894 4101 * @param[in] pState points to state buffer.
elessair 0:f269e3021894 4102 * @param[in] mu step size that controls filter coefficient updates.
elessair 0:f269e3021894 4103 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 4104 * @param[in] postShift bit shift applied to coefficients.
elessair 0:f269e3021894 4105 */
elessair 0:f269e3021894 4106 void arm_lms_init_q31(
elessair 0:f269e3021894 4107 arm_lms_instance_q31 * S,
elessair 0:f269e3021894 4108 uint16_t numTaps,
elessair 0:f269e3021894 4109 q31_t * pCoeffs,
elessair 0:f269e3021894 4110 q31_t * pState,
elessair 0:f269e3021894 4111 q31_t mu,
elessair 0:f269e3021894 4112 uint32_t blockSize,
elessair 0:f269e3021894 4113 uint32_t postShift);
elessair 0:f269e3021894 4114
elessair 0:f269e3021894 4115
elessair 0:f269e3021894 4116 /**
elessair 0:f269e3021894 4117 * @brief Instance structure for the floating-point normalized LMS filter.
elessair 0:f269e3021894 4118 */
elessair 0:f269e3021894 4119 typedef struct
elessair 0:f269e3021894 4120 {
elessair 0:f269e3021894 4121 uint16_t numTaps; /**< number of coefficients in the filter. */
elessair 0:f269e3021894 4122 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
elessair 0:f269e3021894 4123 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
elessair 0:f269e3021894 4124 float32_t mu; /**< step size that control filter coefficient updates. */
elessair 0:f269e3021894 4125 float32_t energy; /**< saves previous frame energy. */
elessair 0:f269e3021894 4126 float32_t x0; /**< saves previous input sample. */
elessair 0:f269e3021894 4127 } arm_lms_norm_instance_f32;
elessair 0:f269e3021894 4128
elessair 0:f269e3021894 4129
elessair 0:f269e3021894 4130 /**
elessair 0:f269e3021894 4131 * @brief Processing function for floating-point normalized LMS filter.
elessair 0:f269e3021894 4132 * @param[in] S points to an instance of the floating-point normalized LMS filter structure.
elessair 0:f269e3021894 4133 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 4134 * @param[in] pRef points to the block of reference data.
elessair 0:f269e3021894 4135 * @param[out] pOut points to the block of output data.
elessair 0:f269e3021894 4136 * @param[out] pErr points to the block of error data.
elessair 0:f269e3021894 4137 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 4138 */
elessair 0:f269e3021894 4139 void arm_lms_norm_f32(
elessair 0:f269e3021894 4140 arm_lms_norm_instance_f32 * S,
elessair 0:f269e3021894 4141 float32_t * pSrc,
elessair 0:f269e3021894 4142 float32_t * pRef,
elessair 0:f269e3021894 4143 float32_t * pOut,
elessair 0:f269e3021894 4144 float32_t * pErr,
elessair 0:f269e3021894 4145 uint32_t blockSize);
elessair 0:f269e3021894 4146
elessair 0:f269e3021894 4147
elessair 0:f269e3021894 4148 /**
elessair 0:f269e3021894 4149 * @brief Initialization function for floating-point normalized LMS filter.
elessair 0:f269e3021894 4150 * @param[in] S points to an instance of the floating-point LMS filter structure.
elessair 0:f269e3021894 4151 * @param[in] numTaps number of filter coefficients.
elessair 0:f269e3021894 4152 * @param[in] pCoeffs points to coefficient buffer.
elessair 0:f269e3021894 4153 * @param[in] pState points to state buffer.
elessair 0:f269e3021894 4154 * @param[in] mu step size that controls filter coefficient updates.
elessair 0:f269e3021894 4155 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 4156 */
elessair 0:f269e3021894 4157 void arm_lms_norm_init_f32(
elessair 0:f269e3021894 4158 arm_lms_norm_instance_f32 * S,
elessair 0:f269e3021894 4159 uint16_t numTaps,
elessair 0:f269e3021894 4160 float32_t * pCoeffs,
elessair 0:f269e3021894 4161 float32_t * pState,
elessair 0:f269e3021894 4162 float32_t mu,
elessair 0:f269e3021894 4163 uint32_t blockSize);
elessair 0:f269e3021894 4164
elessair 0:f269e3021894 4165
elessair 0:f269e3021894 4166 /**
elessair 0:f269e3021894 4167 * @brief Instance structure for the Q31 normalized LMS filter.
elessair 0:f269e3021894 4168 */
elessair 0:f269e3021894 4169 typedef struct
elessair 0:f269e3021894 4170 {
elessair 0:f269e3021894 4171 uint16_t numTaps; /**< number of coefficients in the filter. */
elessair 0:f269e3021894 4172 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
elessair 0:f269e3021894 4173 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
elessair 0:f269e3021894 4174 q31_t mu; /**< step size that controls filter coefficient updates. */
elessair 0:f269e3021894 4175 uint8_t postShift; /**< bit shift applied to coefficients. */
elessair 0:f269e3021894 4176 q31_t *recipTable; /**< points to the reciprocal initial value table. */
elessair 0:f269e3021894 4177 q31_t energy; /**< saves previous frame energy. */
elessair 0:f269e3021894 4178 q31_t x0; /**< saves previous input sample. */
elessair 0:f269e3021894 4179 } arm_lms_norm_instance_q31;
elessair 0:f269e3021894 4180
elessair 0:f269e3021894 4181
elessair 0:f269e3021894 4182 /**
elessair 0:f269e3021894 4183 * @brief Processing function for Q31 normalized LMS filter.
elessair 0:f269e3021894 4184 * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
elessair 0:f269e3021894 4185 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 4186 * @param[in] pRef points to the block of reference data.
elessair 0:f269e3021894 4187 * @param[out] pOut points to the block of output data.
elessair 0:f269e3021894 4188 * @param[out] pErr points to the block of error data.
elessair 0:f269e3021894 4189 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 4190 */
elessair 0:f269e3021894 4191 void arm_lms_norm_q31(
elessair 0:f269e3021894 4192 arm_lms_norm_instance_q31 * S,
elessair 0:f269e3021894 4193 q31_t * pSrc,
elessair 0:f269e3021894 4194 q31_t * pRef,
elessair 0:f269e3021894 4195 q31_t * pOut,
elessair 0:f269e3021894 4196 q31_t * pErr,
elessair 0:f269e3021894 4197 uint32_t blockSize);
elessair 0:f269e3021894 4198
elessair 0:f269e3021894 4199
elessair 0:f269e3021894 4200 /**
elessair 0:f269e3021894 4201 * @brief Initialization function for Q31 normalized LMS filter.
elessair 0:f269e3021894 4202 * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
elessair 0:f269e3021894 4203 * @param[in] numTaps number of filter coefficients.
elessair 0:f269e3021894 4204 * @param[in] pCoeffs points to coefficient buffer.
elessair 0:f269e3021894 4205 * @param[in] pState points to state buffer.
elessair 0:f269e3021894 4206 * @param[in] mu step size that controls filter coefficient updates.
elessair 0:f269e3021894 4207 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 4208 * @param[in] postShift bit shift applied to coefficients.
elessair 0:f269e3021894 4209 */
elessair 0:f269e3021894 4210 void arm_lms_norm_init_q31(
elessair 0:f269e3021894 4211 arm_lms_norm_instance_q31 * S,
elessair 0:f269e3021894 4212 uint16_t numTaps,
elessair 0:f269e3021894 4213 q31_t * pCoeffs,
elessair 0:f269e3021894 4214 q31_t * pState,
elessair 0:f269e3021894 4215 q31_t mu,
elessair 0:f269e3021894 4216 uint32_t blockSize,
elessair 0:f269e3021894 4217 uint8_t postShift);
elessair 0:f269e3021894 4218
elessair 0:f269e3021894 4219
elessair 0:f269e3021894 4220 /**
elessair 0:f269e3021894 4221 * @brief Instance structure for the Q15 normalized LMS filter.
elessair 0:f269e3021894 4222 */
elessair 0:f269e3021894 4223 typedef struct
elessair 0:f269e3021894 4224 {
elessair 0:f269e3021894 4225 uint16_t numTaps; /**< Number of coefficients in the filter. */
elessair 0:f269e3021894 4226 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
elessair 0:f269e3021894 4227 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
elessair 0:f269e3021894 4228 q15_t mu; /**< step size that controls filter coefficient updates. */
elessair 0:f269e3021894 4229 uint8_t postShift; /**< bit shift applied to coefficients. */
elessair 0:f269e3021894 4230 q15_t *recipTable; /**< Points to the reciprocal initial value table. */
elessair 0:f269e3021894 4231 q15_t energy; /**< saves previous frame energy. */
elessair 0:f269e3021894 4232 q15_t x0; /**< saves previous input sample. */
elessair 0:f269e3021894 4233 } arm_lms_norm_instance_q15;
elessair 0:f269e3021894 4234
elessair 0:f269e3021894 4235
elessair 0:f269e3021894 4236 /**
elessair 0:f269e3021894 4237 * @brief Processing function for Q15 normalized LMS filter.
elessair 0:f269e3021894 4238 * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
elessair 0:f269e3021894 4239 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 4240 * @param[in] pRef points to the block of reference data.
elessair 0:f269e3021894 4241 * @param[out] pOut points to the block of output data.
elessair 0:f269e3021894 4242 * @param[out] pErr points to the block of error data.
elessair 0:f269e3021894 4243 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 4244 */
elessair 0:f269e3021894 4245 void arm_lms_norm_q15(
elessair 0:f269e3021894 4246 arm_lms_norm_instance_q15 * S,
elessair 0:f269e3021894 4247 q15_t * pSrc,
elessair 0:f269e3021894 4248 q15_t * pRef,
elessair 0:f269e3021894 4249 q15_t * pOut,
elessair 0:f269e3021894 4250 q15_t * pErr,
elessair 0:f269e3021894 4251 uint32_t blockSize);
elessair 0:f269e3021894 4252
elessair 0:f269e3021894 4253
elessair 0:f269e3021894 4254 /**
elessair 0:f269e3021894 4255 * @brief Initialization function for Q15 normalized LMS filter.
elessair 0:f269e3021894 4256 * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
elessair 0:f269e3021894 4257 * @param[in] numTaps number of filter coefficients.
elessair 0:f269e3021894 4258 * @param[in] pCoeffs points to coefficient buffer.
elessair 0:f269e3021894 4259 * @param[in] pState points to state buffer.
elessair 0:f269e3021894 4260 * @param[in] mu step size that controls filter coefficient updates.
elessair 0:f269e3021894 4261 * @param[in] blockSize number of samples to process.
elessair 0:f269e3021894 4262 * @param[in] postShift bit shift applied to coefficients.
elessair 0:f269e3021894 4263 */
elessair 0:f269e3021894 4264 void arm_lms_norm_init_q15(
elessair 0:f269e3021894 4265 arm_lms_norm_instance_q15 * S,
elessair 0:f269e3021894 4266 uint16_t numTaps,
elessair 0:f269e3021894 4267 q15_t * pCoeffs,
elessair 0:f269e3021894 4268 q15_t * pState,
elessair 0:f269e3021894 4269 q15_t mu,
elessair 0:f269e3021894 4270 uint32_t blockSize,
elessair 0:f269e3021894 4271 uint8_t postShift);
elessair 0:f269e3021894 4272
elessair 0:f269e3021894 4273
elessair 0:f269e3021894 4274 /**
elessair 0:f269e3021894 4275 * @brief Correlation of floating-point sequences.
elessair 0:f269e3021894 4276 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 4277 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 4278 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 4279 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 4280 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
elessair 0:f269e3021894 4281 */
elessair 0:f269e3021894 4282 void arm_correlate_f32(
elessair 0:f269e3021894 4283 float32_t * pSrcA,
elessair 0:f269e3021894 4284 uint32_t srcALen,
elessair 0:f269e3021894 4285 float32_t * pSrcB,
elessair 0:f269e3021894 4286 uint32_t srcBLen,
elessair 0:f269e3021894 4287 float32_t * pDst);
elessair 0:f269e3021894 4288
elessair 0:f269e3021894 4289
elessair 0:f269e3021894 4290 /**
elessair 0:f269e3021894 4291 * @brief Correlation of Q15 sequences
elessair 0:f269e3021894 4292 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 4293 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 4294 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 4295 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 4296 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
elessair 0:f269e3021894 4297 * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
elessair 0:f269e3021894 4298 */
elessair 0:f269e3021894 4299 void arm_correlate_opt_q15(
elessair 0:f269e3021894 4300 q15_t * pSrcA,
elessair 0:f269e3021894 4301 uint32_t srcALen,
elessair 0:f269e3021894 4302 q15_t * pSrcB,
elessair 0:f269e3021894 4303 uint32_t srcBLen,
elessair 0:f269e3021894 4304 q15_t * pDst,
elessair 0:f269e3021894 4305 q15_t * pScratch);
elessair 0:f269e3021894 4306
elessair 0:f269e3021894 4307
elessair 0:f269e3021894 4308 /**
elessair 0:f269e3021894 4309 * @brief Correlation of Q15 sequences.
elessair 0:f269e3021894 4310 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 4311 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 4312 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 4313 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 4314 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
elessair 0:f269e3021894 4315 */
elessair 0:f269e3021894 4316
elessair 0:f269e3021894 4317 void arm_correlate_q15(
elessair 0:f269e3021894 4318 q15_t * pSrcA,
elessair 0:f269e3021894 4319 uint32_t srcALen,
elessair 0:f269e3021894 4320 q15_t * pSrcB,
elessair 0:f269e3021894 4321 uint32_t srcBLen,
elessair 0:f269e3021894 4322 q15_t * pDst);
elessair 0:f269e3021894 4323
elessair 0:f269e3021894 4324
elessair 0:f269e3021894 4325 /**
elessair 0:f269e3021894 4326 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
elessair 0:f269e3021894 4327 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 4328 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 4329 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 4330 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 4331 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
elessair 0:f269e3021894 4332 */
elessair 0:f269e3021894 4333
elessair 0:f269e3021894 4334 void arm_correlate_fast_q15(
elessair 0:f269e3021894 4335 q15_t * pSrcA,
elessair 0:f269e3021894 4336 uint32_t srcALen,
elessair 0:f269e3021894 4337 q15_t * pSrcB,
elessair 0:f269e3021894 4338 uint32_t srcBLen,
elessair 0:f269e3021894 4339 q15_t * pDst);
elessair 0:f269e3021894 4340
elessair 0:f269e3021894 4341
elessair 0:f269e3021894 4342 /**
elessair 0:f269e3021894 4343 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
elessair 0:f269e3021894 4344 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 4345 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 4346 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 4347 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 4348 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
elessair 0:f269e3021894 4349 * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
elessair 0:f269e3021894 4350 */
elessair 0:f269e3021894 4351 void arm_correlate_fast_opt_q15(
elessair 0:f269e3021894 4352 q15_t * pSrcA,
elessair 0:f269e3021894 4353 uint32_t srcALen,
elessair 0:f269e3021894 4354 q15_t * pSrcB,
elessair 0:f269e3021894 4355 uint32_t srcBLen,
elessair 0:f269e3021894 4356 q15_t * pDst,
elessair 0:f269e3021894 4357 q15_t * pScratch);
elessair 0:f269e3021894 4358
elessair 0:f269e3021894 4359
elessair 0:f269e3021894 4360 /**
elessair 0:f269e3021894 4361 * @brief Correlation of Q31 sequences.
elessair 0:f269e3021894 4362 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 4363 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 4364 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 4365 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 4366 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
elessair 0:f269e3021894 4367 */
elessair 0:f269e3021894 4368 void arm_correlate_q31(
elessair 0:f269e3021894 4369 q31_t * pSrcA,
elessair 0:f269e3021894 4370 uint32_t srcALen,
elessair 0:f269e3021894 4371 q31_t * pSrcB,
elessair 0:f269e3021894 4372 uint32_t srcBLen,
elessair 0:f269e3021894 4373 q31_t * pDst);
elessair 0:f269e3021894 4374
elessair 0:f269e3021894 4375
elessair 0:f269e3021894 4376 /**
elessair 0:f269e3021894 4377 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
elessair 0:f269e3021894 4378 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 4379 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 4380 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 4381 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 4382 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
elessair 0:f269e3021894 4383 */
elessair 0:f269e3021894 4384 void arm_correlate_fast_q31(
elessair 0:f269e3021894 4385 q31_t * pSrcA,
elessair 0:f269e3021894 4386 uint32_t srcALen,
elessair 0:f269e3021894 4387 q31_t * pSrcB,
elessair 0:f269e3021894 4388 uint32_t srcBLen,
elessair 0:f269e3021894 4389 q31_t * pDst);
elessair 0:f269e3021894 4390
elessair 0:f269e3021894 4391
elessair 0:f269e3021894 4392 /**
elessair 0:f269e3021894 4393 * @brief Correlation of Q7 sequences.
elessair 0:f269e3021894 4394 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 4395 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 4396 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 4397 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 4398 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
elessair 0:f269e3021894 4399 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
elessair 0:f269e3021894 4400 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
elessair 0:f269e3021894 4401 */
elessair 0:f269e3021894 4402 void arm_correlate_opt_q7(
elessair 0:f269e3021894 4403 q7_t * pSrcA,
elessair 0:f269e3021894 4404 uint32_t srcALen,
elessair 0:f269e3021894 4405 q7_t * pSrcB,
elessair 0:f269e3021894 4406 uint32_t srcBLen,
elessair 0:f269e3021894 4407 q7_t * pDst,
elessair 0:f269e3021894 4408 q15_t * pScratch1,
elessair 0:f269e3021894 4409 q15_t * pScratch2);
elessair 0:f269e3021894 4410
elessair 0:f269e3021894 4411
elessair 0:f269e3021894 4412 /**
elessair 0:f269e3021894 4413 * @brief Correlation of Q7 sequences.
elessair 0:f269e3021894 4414 * @param[in] pSrcA points to the first input sequence.
elessair 0:f269e3021894 4415 * @param[in] srcALen length of the first input sequence.
elessair 0:f269e3021894 4416 * @param[in] pSrcB points to the second input sequence.
elessair 0:f269e3021894 4417 * @param[in] srcBLen length of the second input sequence.
elessair 0:f269e3021894 4418 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
elessair 0:f269e3021894 4419 */
elessair 0:f269e3021894 4420 void arm_correlate_q7(
elessair 0:f269e3021894 4421 q7_t * pSrcA,
elessair 0:f269e3021894 4422 uint32_t srcALen,
elessair 0:f269e3021894 4423 q7_t * pSrcB,
elessair 0:f269e3021894 4424 uint32_t srcBLen,
elessair 0:f269e3021894 4425 q7_t * pDst);
elessair 0:f269e3021894 4426
elessair 0:f269e3021894 4427
elessair 0:f269e3021894 4428 /**
elessair 0:f269e3021894 4429 * @brief Instance structure for the floating-point sparse FIR filter.
elessair 0:f269e3021894 4430 */
elessair 0:f269e3021894 4431 typedef struct
elessair 0:f269e3021894 4432 {
elessair 0:f269e3021894 4433 uint16_t numTaps; /**< number of coefficients in the filter. */
elessair 0:f269e3021894 4434 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
elessair 0:f269e3021894 4435 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
elessair 0:f269e3021894 4436 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
elessair 0:f269e3021894 4437 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
elessair 0:f269e3021894 4438 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
elessair 0:f269e3021894 4439 } arm_fir_sparse_instance_f32;
elessair 0:f269e3021894 4440
elessair 0:f269e3021894 4441 /**
elessair 0:f269e3021894 4442 * @brief Instance structure for the Q31 sparse FIR filter.
elessair 0:f269e3021894 4443 */
elessair 0:f269e3021894 4444 typedef struct
elessair 0:f269e3021894 4445 {
elessair 0:f269e3021894 4446 uint16_t numTaps; /**< number of coefficients in the filter. */
elessair 0:f269e3021894 4447 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
elessair 0:f269e3021894 4448 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
elessair 0:f269e3021894 4449 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
elessair 0:f269e3021894 4450 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
elessair 0:f269e3021894 4451 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
elessair 0:f269e3021894 4452 } arm_fir_sparse_instance_q31;
elessair 0:f269e3021894 4453
elessair 0:f269e3021894 4454 /**
elessair 0:f269e3021894 4455 * @brief Instance structure for the Q15 sparse FIR filter.
elessair 0:f269e3021894 4456 */
elessair 0:f269e3021894 4457 typedef struct
elessair 0:f269e3021894 4458 {
elessair 0:f269e3021894 4459 uint16_t numTaps; /**< number of coefficients in the filter. */
elessair 0:f269e3021894 4460 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
elessair 0:f269e3021894 4461 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
elessair 0:f269e3021894 4462 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
elessair 0:f269e3021894 4463 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
elessair 0:f269e3021894 4464 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
elessair 0:f269e3021894 4465 } arm_fir_sparse_instance_q15;
elessair 0:f269e3021894 4466
elessair 0:f269e3021894 4467 /**
elessair 0:f269e3021894 4468 * @brief Instance structure for the Q7 sparse FIR filter.
elessair 0:f269e3021894 4469 */
elessair 0:f269e3021894 4470 typedef struct
elessair 0:f269e3021894 4471 {
elessair 0:f269e3021894 4472 uint16_t numTaps; /**< number of coefficients in the filter. */
elessair 0:f269e3021894 4473 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
elessair 0:f269e3021894 4474 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
elessair 0:f269e3021894 4475 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
elessair 0:f269e3021894 4476 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
elessair 0:f269e3021894 4477 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
elessair 0:f269e3021894 4478 } arm_fir_sparse_instance_q7;
elessair 0:f269e3021894 4479
elessair 0:f269e3021894 4480
elessair 0:f269e3021894 4481 /**
elessair 0:f269e3021894 4482 * @brief Processing function for the floating-point sparse FIR filter.
elessair 0:f269e3021894 4483 * @param[in] S points to an instance of the floating-point sparse FIR structure.
elessair 0:f269e3021894 4484 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 4485 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 4486 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
elessair 0:f269e3021894 4487 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 4488 */
elessair 0:f269e3021894 4489 void arm_fir_sparse_f32(
elessair 0:f269e3021894 4490 arm_fir_sparse_instance_f32 * S,
elessair 0:f269e3021894 4491 float32_t * pSrc,
elessair 0:f269e3021894 4492 float32_t * pDst,
elessair 0:f269e3021894 4493 float32_t * pScratchIn,
elessair 0:f269e3021894 4494 uint32_t blockSize);
elessair 0:f269e3021894 4495
elessair 0:f269e3021894 4496
elessair 0:f269e3021894 4497 /**
elessair 0:f269e3021894 4498 * @brief Initialization function for the floating-point sparse FIR filter.
elessair 0:f269e3021894 4499 * @param[in,out] S points to an instance of the floating-point sparse FIR structure.
elessair 0:f269e3021894 4500 * @param[in] numTaps number of nonzero coefficients in the filter.
elessair 0:f269e3021894 4501 * @param[in] pCoeffs points to the array of filter coefficients.
elessair 0:f269e3021894 4502 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 4503 * @param[in] pTapDelay points to the array of offset times.
elessair 0:f269e3021894 4504 * @param[in] maxDelay maximum offset time supported.
elessair 0:f269e3021894 4505 * @param[in] blockSize number of samples that will be processed per block.
elessair 0:f269e3021894 4506 */
elessair 0:f269e3021894 4507 void arm_fir_sparse_init_f32(
elessair 0:f269e3021894 4508 arm_fir_sparse_instance_f32 * S,
elessair 0:f269e3021894 4509 uint16_t numTaps,
elessair 0:f269e3021894 4510 float32_t * pCoeffs,
elessair 0:f269e3021894 4511 float32_t * pState,
elessair 0:f269e3021894 4512 int32_t * pTapDelay,
elessair 0:f269e3021894 4513 uint16_t maxDelay,
elessair 0:f269e3021894 4514 uint32_t blockSize);
elessair 0:f269e3021894 4515
elessair 0:f269e3021894 4516
elessair 0:f269e3021894 4517 /**
elessair 0:f269e3021894 4518 * @brief Processing function for the Q31 sparse FIR filter.
elessair 0:f269e3021894 4519 * @param[in] S points to an instance of the Q31 sparse FIR structure.
elessair 0:f269e3021894 4520 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 4521 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 4522 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
elessair 0:f269e3021894 4523 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 4524 */
elessair 0:f269e3021894 4525 void arm_fir_sparse_q31(
elessair 0:f269e3021894 4526 arm_fir_sparse_instance_q31 * S,
elessair 0:f269e3021894 4527 q31_t * pSrc,
elessair 0:f269e3021894 4528 q31_t * pDst,
elessair 0:f269e3021894 4529 q31_t * pScratchIn,
elessair 0:f269e3021894 4530 uint32_t blockSize);
elessair 0:f269e3021894 4531
elessair 0:f269e3021894 4532
elessair 0:f269e3021894 4533 /**
elessair 0:f269e3021894 4534 * @brief Initialization function for the Q31 sparse FIR filter.
elessair 0:f269e3021894 4535 * @param[in,out] S points to an instance of the Q31 sparse FIR structure.
elessair 0:f269e3021894 4536 * @param[in] numTaps number of nonzero coefficients in the filter.
elessair 0:f269e3021894 4537 * @param[in] pCoeffs points to the array of filter coefficients.
elessair 0:f269e3021894 4538 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 4539 * @param[in] pTapDelay points to the array of offset times.
elessair 0:f269e3021894 4540 * @param[in] maxDelay maximum offset time supported.
elessair 0:f269e3021894 4541 * @param[in] blockSize number of samples that will be processed per block.
elessair 0:f269e3021894 4542 */
elessair 0:f269e3021894 4543 void arm_fir_sparse_init_q31(
elessair 0:f269e3021894 4544 arm_fir_sparse_instance_q31 * S,
elessair 0:f269e3021894 4545 uint16_t numTaps,
elessair 0:f269e3021894 4546 q31_t * pCoeffs,
elessair 0:f269e3021894 4547 q31_t * pState,
elessair 0:f269e3021894 4548 int32_t * pTapDelay,
elessair 0:f269e3021894 4549 uint16_t maxDelay,
elessair 0:f269e3021894 4550 uint32_t blockSize);
elessair 0:f269e3021894 4551
elessair 0:f269e3021894 4552
elessair 0:f269e3021894 4553 /**
elessair 0:f269e3021894 4554 * @brief Processing function for the Q15 sparse FIR filter.
elessair 0:f269e3021894 4555 * @param[in] S points to an instance of the Q15 sparse FIR structure.
elessair 0:f269e3021894 4556 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 4557 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 4558 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
elessair 0:f269e3021894 4559 * @param[in] pScratchOut points to a temporary buffer of size blockSize.
elessair 0:f269e3021894 4560 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 4561 */
elessair 0:f269e3021894 4562 void arm_fir_sparse_q15(
elessair 0:f269e3021894 4563 arm_fir_sparse_instance_q15 * S,
elessair 0:f269e3021894 4564 q15_t * pSrc,
elessair 0:f269e3021894 4565 q15_t * pDst,
elessair 0:f269e3021894 4566 q15_t * pScratchIn,
elessair 0:f269e3021894 4567 q31_t * pScratchOut,
elessair 0:f269e3021894 4568 uint32_t blockSize);
elessair 0:f269e3021894 4569
elessair 0:f269e3021894 4570
elessair 0:f269e3021894 4571 /**
elessair 0:f269e3021894 4572 * @brief Initialization function for the Q15 sparse FIR filter.
elessair 0:f269e3021894 4573 * @param[in,out] S points to an instance of the Q15 sparse FIR structure.
elessair 0:f269e3021894 4574 * @param[in] numTaps number of nonzero coefficients in the filter.
elessair 0:f269e3021894 4575 * @param[in] pCoeffs points to the array of filter coefficients.
elessair 0:f269e3021894 4576 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 4577 * @param[in] pTapDelay points to the array of offset times.
elessair 0:f269e3021894 4578 * @param[in] maxDelay maximum offset time supported.
elessair 0:f269e3021894 4579 * @param[in] blockSize number of samples that will be processed per block.
elessair 0:f269e3021894 4580 */
elessair 0:f269e3021894 4581 void arm_fir_sparse_init_q15(
elessair 0:f269e3021894 4582 arm_fir_sparse_instance_q15 * S,
elessair 0:f269e3021894 4583 uint16_t numTaps,
elessair 0:f269e3021894 4584 q15_t * pCoeffs,
elessair 0:f269e3021894 4585 q15_t * pState,
elessair 0:f269e3021894 4586 int32_t * pTapDelay,
elessair 0:f269e3021894 4587 uint16_t maxDelay,
elessair 0:f269e3021894 4588 uint32_t blockSize);
elessair 0:f269e3021894 4589
elessair 0:f269e3021894 4590
elessair 0:f269e3021894 4591 /**
elessair 0:f269e3021894 4592 * @brief Processing function for the Q7 sparse FIR filter.
elessair 0:f269e3021894 4593 * @param[in] S points to an instance of the Q7 sparse FIR structure.
elessair 0:f269e3021894 4594 * @param[in] pSrc points to the block of input data.
elessair 0:f269e3021894 4595 * @param[out] pDst points to the block of output data
elessair 0:f269e3021894 4596 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
elessair 0:f269e3021894 4597 * @param[in] pScratchOut points to a temporary buffer of size blockSize.
elessair 0:f269e3021894 4598 * @param[in] blockSize number of input samples to process per call.
elessair 0:f269e3021894 4599 */
elessair 0:f269e3021894 4600 void arm_fir_sparse_q7(
elessair 0:f269e3021894 4601 arm_fir_sparse_instance_q7 * S,
elessair 0:f269e3021894 4602 q7_t * pSrc,
elessair 0:f269e3021894 4603 q7_t * pDst,
elessair 0:f269e3021894 4604 q7_t * pScratchIn,
elessair 0:f269e3021894 4605 q31_t * pScratchOut,
elessair 0:f269e3021894 4606 uint32_t blockSize);
elessair 0:f269e3021894 4607
elessair 0:f269e3021894 4608
elessair 0:f269e3021894 4609 /**
elessair 0:f269e3021894 4610 * @brief Initialization function for the Q7 sparse FIR filter.
elessair 0:f269e3021894 4611 * @param[in,out] S points to an instance of the Q7 sparse FIR structure.
elessair 0:f269e3021894 4612 * @param[in] numTaps number of nonzero coefficients in the filter.
elessair 0:f269e3021894 4613 * @param[in] pCoeffs points to the array of filter coefficients.
elessair 0:f269e3021894 4614 * @param[in] pState points to the state buffer.
elessair 0:f269e3021894 4615 * @param[in] pTapDelay points to the array of offset times.
elessair 0:f269e3021894 4616 * @param[in] maxDelay maximum offset time supported.
elessair 0:f269e3021894 4617 * @param[in] blockSize number of samples that will be processed per block.
elessair 0:f269e3021894 4618 */
elessair 0:f269e3021894 4619 void arm_fir_sparse_init_q7(
elessair 0:f269e3021894 4620 arm_fir_sparse_instance_q7 * S,
elessair 0:f269e3021894 4621 uint16_t numTaps,
elessair 0:f269e3021894 4622 q7_t * pCoeffs,
elessair 0:f269e3021894 4623 q7_t * pState,
elessair 0:f269e3021894 4624 int32_t * pTapDelay,
elessair 0:f269e3021894 4625 uint16_t maxDelay,
elessair 0:f269e3021894 4626 uint32_t blockSize);
elessair 0:f269e3021894 4627
elessair 0:f269e3021894 4628
elessair 0:f269e3021894 4629 /**
elessair 0:f269e3021894 4630 * @brief Floating-point sin_cos function.
elessair 0:f269e3021894 4631 * @param[in] theta input value in degrees
elessair 0:f269e3021894 4632 * @param[out] pSinVal points to the processed sine output.
elessair 0:f269e3021894 4633 * @param[out] pCosVal points to the processed cos output.
elessair 0:f269e3021894 4634 */
elessair 0:f269e3021894 4635 void arm_sin_cos_f32(
elessair 0:f269e3021894 4636 float32_t theta,
elessair 0:f269e3021894 4637 float32_t * pSinVal,
elessair 0:f269e3021894 4638 float32_t * pCosVal);
elessair 0:f269e3021894 4639
elessair 0:f269e3021894 4640
elessair 0:f269e3021894 4641 /**
elessair 0:f269e3021894 4642 * @brief Q31 sin_cos function.
elessair 0:f269e3021894 4643 * @param[in] theta scaled input value in degrees
elessair 0:f269e3021894 4644 * @param[out] pSinVal points to the processed sine output.
elessair 0:f269e3021894 4645 * @param[out] pCosVal points to the processed cosine output.
elessair 0:f269e3021894 4646 */
elessair 0:f269e3021894 4647 void arm_sin_cos_q31(
elessair 0:f269e3021894 4648 q31_t theta,
elessair 0:f269e3021894 4649 q31_t * pSinVal,
elessair 0:f269e3021894 4650 q31_t * pCosVal);
elessair 0:f269e3021894 4651
elessair 0:f269e3021894 4652
elessair 0:f269e3021894 4653 /**
elessair 0:f269e3021894 4654 * @brief Floating-point complex conjugate.
elessair 0:f269e3021894 4655 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 4656 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 4657 * @param[in] numSamples number of complex samples in each vector
elessair 0:f269e3021894 4658 */
elessair 0:f269e3021894 4659 void arm_cmplx_conj_f32(
elessair 0:f269e3021894 4660 float32_t * pSrc,
elessair 0:f269e3021894 4661 float32_t * pDst,
elessair 0:f269e3021894 4662 uint32_t numSamples);
elessair 0:f269e3021894 4663
elessair 0:f269e3021894 4664 /**
elessair 0:f269e3021894 4665 * @brief Q31 complex conjugate.
elessair 0:f269e3021894 4666 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 4667 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 4668 * @param[in] numSamples number of complex samples in each vector
elessair 0:f269e3021894 4669 */
elessair 0:f269e3021894 4670 void arm_cmplx_conj_q31(
elessair 0:f269e3021894 4671 q31_t * pSrc,
elessair 0:f269e3021894 4672 q31_t * pDst,
elessair 0:f269e3021894 4673 uint32_t numSamples);
elessair 0:f269e3021894 4674
elessair 0:f269e3021894 4675
elessair 0:f269e3021894 4676 /**
elessair 0:f269e3021894 4677 * @brief Q15 complex conjugate.
elessair 0:f269e3021894 4678 * @param[in] pSrc points to the input vector
elessair 0:f269e3021894 4679 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 4680 * @param[in] numSamples number of complex samples in each vector
elessair 0:f269e3021894 4681 */
elessair 0:f269e3021894 4682 void arm_cmplx_conj_q15(
elessair 0:f269e3021894 4683 q15_t * pSrc,
elessair 0:f269e3021894 4684 q15_t * pDst,
elessair 0:f269e3021894 4685 uint32_t numSamples);
elessair 0:f269e3021894 4686
elessair 0:f269e3021894 4687
elessair 0:f269e3021894 4688 /**
elessair 0:f269e3021894 4689 * @brief Floating-point complex magnitude squared
elessair 0:f269e3021894 4690 * @param[in] pSrc points to the complex input vector
elessair 0:f269e3021894 4691 * @param[out] pDst points to the real output vector
elessair 0:f269e3021894 4692 * @param[in] numSamples number of complex samples in the input vector
elessair 0:f269e3021894 4693 */
elessair 0:f269e3021894 4694 void arm_cmplx_mag_squared_f32(
elessair 0:f269e3021894 4695 float32_t * pSrc,
elessair 0:f269e3021894 4696 float32_t * pDst,
elessair 0:f269e3021894 4697 uint32_t numSamples);
elessair 0:f269e3021894 4698
elessair 0:f269e3021894 4699
elessair 0:f269e3021894 4700 /**
elessair 0:f269e3021894 4701 * @brief Q31 complex magnitude squared
elessair 0:f269e3021894 4702 * @param[in] pSrc points to the complex input vector
elessair 0:f269e3021894 4703 * @param[out] pDst points to the real output vector
elessair 0:f269e3021894 4704 * @param[in] numSamples number of complex samples in the input vector
elessair 0:f269e3021894 4705 */
elessair 0:f269e3021894 4706 void arm_cmplx_mag_squared_q31(
elessair 0:f269e3021894 4707 q31_t * pSrc,
elessair 0:f269e3021894 4708 q31_t * pDst,
elessair 0:f269e3021894 4709 uint32_t numSamples);
elessair 0:f269e3021894 4710
elessair 0:f269e3021894 4711
elessair 0:f269e3021894 4712 /**
elessair 0:f269e3021894 4713 * @brief Q15 complex magnitude squared
elessair 0:f269e3021894 4714 * @param[in] pSrc points to the complex input vector
elessair 0:f269e3021894 4715 * @param[out] pDst points to the real output vector
elessair 0:f269e3021894 4716 * @param[in] numSamples number of complex samples in the input vector
elessair 0:f269e3021894 4717 */
elessair 0:f269e3021894 4718 void arm_cmplx_mag_squared_q15(
elessair 0:f269e3021894 4719 q15_t * pSrc,
elessair 0:f269e3021894 4720 q15_t * pDst,
elessair 0:f269e3021894 4721 uint32_t numSamples);
elessair 0:f269e3021894 4722
elessair 0:f269e3021894 4723
elessair 0:f269e3021894 4724 /**
elessair 0:f269e3021894 4725 * @ingroup groupController
elessair 0:f269e3021894 4726 */
elessair 0:f269e3021894 4727
elessair 0:f269e3021894 4728 /**
elessair 0:f269e3021894 4729 * @defgroup PID PID Motor Control
elessair 0:f269e3021894 4730 *
elessair 0:f269e3021894 4731 * A Proportional Integral Derivative (PID) controller is a generic feedback control
elessair 0:f269e3021894 4732 * loop mechanism widely used in industrial control systems.
elessair 0:f269e3021894 4733 * A PID controller is the most commonly used type of feedback controller.
elessair 0:f269e3021894 4734 *
elessair 0:f269e3021894 4735 * This set of functions implements (PID) controllers
elessair 0:f269e3021894 4736 * for Q15, Q31, and floating-point data types. The functions operate on a single sample
elessair 0:f269e3021894 4737 * of data and each call to the function returns a single processed value.
elessair 0:f269e3021894 4738 * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
elessair 0:f269e3021894 4739 * is the input sample value. The functions return the output value.
elessair 0:f269e3021894 4740 *
elessair 0:f269e3021894 4741 * \par Algorithm:
elessair 0:f269e3021894 4742 * <pre>
elessair 0:f269e3021894 4743 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
elessair 0:f269e3021894 4744 * A0 = Kp + Ki + Kd
elessair 0:f269e3021894 4745 * A1 = (-Kp ) - (2 * Kd )
elessair 0:f269e3021894 4746 * A2 = Kd </pre>
elessair 0:f269e3021894 4747 *
elessair 0:f269e3021894 4748 * \par
elessair 0:f269e3021894 4749 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
elessair 0:f269e3021894 4750 *
elessair 0:f269e3021894 4751 * \par
elessair 0:f269e3021894 4752 * \image html PID.gif "Proportional Integral Derivative Controller"
elessair 0:f269e3021894 4753 *
elessair 0:f269e3021894 4754 * \par
elessair 0:f269e3021894 4755 * The PID controller calculates an "error" value as the difference between
elessair 0:f269e3021894 4756 * the measured output and the reference input.
elessair 0:f269e3021894 4757 * The controller attempts to minimize the error by adjusting the process control inputs.
elessair 0:f269e3021894 4758 * The proportional value determines the reaction to the current error,
elessair 0:f269e3021894 4759 * the integral value determines the reaction based on the sum of recent errors,
elessair 0:f269e3021894 4760 * and the derivative value determines the reaction based on the rate at which the error has been changing.
elessair 0:f269e3021894 4761 *
elessair 0:f269e3021894 4762 * \par Instance Structure
elessair 0:f269e3021894 4763 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
elessair 0:f269e3021894 4764 * A separate instance structure must be defined for each PID Controller.
elessair 0:f269e3021894 4765 * There are separate instance structure declarations for each of the 3 supported data types.
elessair 0:f269e3021894 4766 *
elessair 0:f269e3021894 4767 * \par Reset Functions
elessair 0:f269e3021894 4768 * There is also an associated reset function for each data type which clears the state array.
elessair 0:f269e3021894 4769 *
elessair 0:f269e3021894 4770 * \par Initialization Functions
elessair 0:f269e3021894 4771 * There is also an associated initialization function for each data type.
elessair 0:f269e3021894 4772 * The initialization function performs the following operations:
elessair 0:f269e3021894 4773 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
elessair 0:f269e3021894 4774 * - Zeros out the values in the state buffer.
elessair 0:f269e3021894 4775 *
elessair 0:f269e3021894 4776 * \par
elessair 0:f269e3021894 4777 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
elessair 0:f269e3021894 4778 *
elessair 0:f269e3021894 4779 * \par Fixed-Point Behavior
elessair 0:f269e3021894 4780 * Care must be taken when using the fixed-point versions of the PID Controller functions.
elessair 0:f269e3021894 4781 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
elessair 0:f269e3021894 4782 * Refer to the function specific documentation below for usage guidelines.
elessair 0:f269e3021894 4783 */
elessair 0:f269e3021894 4784
elessair 0:f269e3021894 4785 /**
elessair 0:f269e3021894 4786 * @addtogroup PID
elessair 0:f269e3021894 4787 * @{
elessair 0:f269e3021894 4788 */
elessair 0:f269e3021894 4789
elessair 0:f269e3021894 4790 /**
elessair 0:f269e3021894 4791 * @brief Process function for the floating-point PID Control.
elessair 0:f269e3021894 4792 * @param[in,out] S is an instance of the floating-point PID Control structure
elessair 0:f269e3021894 4793 * @param[in] in input sample to process
elessair 0:f269e3021894 4794 * @return out processed output sample.
elessair 0:f269e3021894 4795 */
elessair 0:f269e3021894 4796 static __INLINE float32_t arm_pid_f32(
elessair 0:f269e3021894 4797 arm_pid_instance_f32 * S,
elessair 0:f269e3021894 4798 float32_t in)
elessair 0:f269e3021894 4799 {
elessair 0:f269e3021894 4800 float32_t out;
elessair 0:f269e3021894 4801
elessair 0:f269e3021894 4802 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
elessair 0:f269e3021894 4803 out = (S->A0 * in) +
elessair 0:f269e3021894 4804 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
elessair 0:f269e3021894 4805
elessair 0:f269e3021894 4806 /* Update state */
elessair 0:f269e3021894 4807 S->state[1] = S->state[0];
elessair 0:f269e3021894 4808 S->state[0] = in;
elessair 0:f269e3021894 4809 S->state[2] = out;
elessair 0:f269e3021894 4810
elessair 0:f269e3021894 4811 /* return to application */
elessair 0:f269e3021894 4812 return (out);
elessair 0:f269e3021894 4813
elessair 0:f269e3021894 4814 }
elessair 0:f269e3021894 4815
elessair 0:f269e3021894 4816 /**
elessair 0:f269e3021894 4817 * @brief Process function for the Q31 PID Control.
elessair 0:f269e3021894 4818 * @param[in,out] S points to an instance of the Q31 PID Control structure
elessair 0:f269e3021894 4819 * @param[in] in input sample to process
elessair 0:f269e3021894 4820 * @return out processed output sample.
elessair 0:f269e3021894 4821 *
elessair 0:f269e3021894 4822 * <b>Scaling and Overflow Behavior:</b>
elessair 0:f269e3021894 4823 * \par
elessair 0:f269e3021894 4824 * The function is implemented using an internal 64-bit accumulator.
elessair 0:f269e3021894 4825 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
elessair 0:f269e3021894 4826 * Thus, if the accumulator result overflows it wraps around rather than clip.
elessair 0:f269e3021894 4827 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
elessair 0:f269e3021894 4828 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
elessair 0:f269e3021894 4829 */
elessair 0:f269e3021894 4830 static __INLINE q31_t arm_pid_q31(
elessair 0:f269e3021894 4831 arm_pid_instance_q31 * S,
elessair 0:f269e3021894 4832 q31_t in)
elessair 0:f269e3021894 4833 {
elessair 0:f269e3021894 4834 q63_t acc;
elessair 0:f269e3021894 4835 q31_t out;
elessair 0:f269e3021894 4836
elessair 0:f269e3021894 4837 /* acc = A0 * x[n] */
elessair 0:f269e3021894 4838 acc = (q63_t) S->A0 * in;
elessair 0:f269e3021894 4839
elessair 0:f269e3021894 4840 /* acc += A1 * x[n-1] */
elessair 0:f269e3021894 4841 acc += (q63_t) S->A1 * S->state[0];
elessair 0:f269e3021894 4842
elessair 0:f269e3021894 4843 /* acc += A2 * x[n-2] */
elessair 0:f269e3021894 4844 acc += (q63_t) S->A2 * S->state[1];
elessair 0:f269e3021894 4845
elessair 0:f269e3021894 4846 /* convert output to 1.31 format to add y[n-1] */
elessair 0:f269e3021894 4847 out = (q31_t) (acc >> 31u);
elessair 0:f269e3021894 4848
elessair 0:f269e3021894 4849 /* out += y[n-1] */
elessair 0:f269e3021894 4850 out += S->state[2];
elessair 0:f269e3021894 4851
elessair 0:f269e3021894 4852 /* Update state */
elessair 0:f269e3021894 4853 S->state[1] = S->state[0];
elessair 0:f269e3021894 4854 S->state[0] = in;
elessair 0:f269e3021894 4855 S->state[2] = out;
elessair 0:f269e3021894 4856
elessair 0:f269e3021894 4857 /* return to application */
elessair 0:f269e3021894 4858 return (out);
elessair 0:f269e3021894 4859 }
elessair 0:f269e3021894 4860
elessair 0:f269e3021894 4861
elessair 0:f269e3021894 4862 /**
elessair 0:f269e3021894 4863 * @brief Process function for the Q15 PID Control.
elessair 0:f269e3021894 4864 * @param[in,out] S points to an instance of the Q15 PID Control structure
elessair 0:f269e3021894 4865 * @param[in] in input sample to process
elessair 0:f269e3021894 4866 * @return out processed output sample.
elessair 0:f269e3021894 4867 *
elessair 0:f269e3021894 4868 * <b>Scaling and Overflow Behavior:</b>
elessair 0:f269e3021894 4869 * \par
elessair 0:f269e3021894 4870 * The function is implemented using a 64-bit internal accumulator.
elessair 0:f269e3021894 4871 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
elessair 0:f269e3021894 4872 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
elessair 0:f269e3021894 4873 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
elessair 0:f269e3021894 4874 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
elessair 0:f269e3021894 4875 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
elessair 0:f269e3021894 4876 */
elessair 0:f269e3021894 4877 static __INLINE q15_t arm_pid_q15(
elessair 0:f269e3021894 4878 arm_pid_instance_q15 * S,
elessair 0:f269e3021894 4879 q15_t in)
elessair 0:f269e3021894 4880 {
elessair 0:f269e3021894 4881 q63_t acc;
elessair 0:f269e3021894 4882 q15_t out;
elessair 0:f269e3021894 4883
elessair 0:f269e3021894 4884 #ifndef ARM_MATH_CM0_FAMILY
elessair 0:f269e3021894 4885 __SIMD32_TYPE *vstate;
elessair 0:f269e3021894 4886
elessair 0:f269e3021894 4887 /* Implementation of PID controller */
elessair 0:f269e3021894 4888
elessair 0:f269e3021894 4889 /* acc = A0 * x[n] */
elessair 0:f269e3021894 4890 acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);
elessair 0:f269e3021894 4891
elessair 0:f269e3021894 4892 /* acc += A1 * x[n-1] + A2 * x[n-2] */
elessair 0:f269e3021894 4893 vstate = __SIMD32_CONST(S->state);
elessair 0:f269e3021894 4894 acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc);
elessair 0:f269e3021894 4895 #else
elessair 0:f269e3021894 4896 /* acc = A0 * x[n] */
elessair 0:f269e3021894 4897 acc = ((q31_t) S->A0) * in;
elessair 0:f269e3021894 4898
elessair 0:f269e3021894 4899 /* acc += A1 * x[n-1] + A2 * x[n-2] */
elessair 0:f269e3021894 4900 acc += (q31_t) S->A1 * S->state[0];
elessair 0:f269e3021894 4901 acc += (q31_t) S->A2 * S->state[1];
elessair 0:f269e3021894 4902 #endif
elessair 0:f269e3021894 4903
elessair 0:f269e3021894 4904 /* acc += y[n-1] */
elessair 0:f269e3021894 4905 acc += (q31_t) S->state[2] << 15;
elessair 0:f269e3021894 4906
elessair 0:f269e3021894 4907 /* saturate the output */
elessair 0:f269e3021894 4908 out = (q15_t) (__SSAT((acc >> 15), 16));
elessair 0:f269e3021894 4909
elessair 0:f269e3021894 4910 /* Update state */
elessair 0:f269e3021894 4911 S->state[1] = S->state[0];
elessair 0:f269e3021894 4912 S->state[0] = in;
elessair 0:f269e3021894 4913 S->state[2] = out;
elessair 0:f269e3021894 4914
elessair 0:f269e3021894 4915 /* return to application */
elessair 0:f269e3021894 4916 return (out);
elessair 0:f269e3021894 4917 }
elessair 0:f269e3021894 4918
elessair 0:f269e3021894 4919 /**
elessair 0:f269e3021894 4920 * @} end of PID group
elessair 0:f269e3021894 4921 */
elessair 0:f269e3021894 4922
elessair 0:f269e3021894 4923
elessair 0:f269e3021894 4924 /**
elessair 0:f269e3021894 4925 * @brief Floating-point matrix inverse.
elessair 0:f269e3021894 4926 * @param[in] src points to the instance of the input floating-point matrix structure.
elessair 0:f269e3021894 4927 * @param[out] dst points to the instance of the output floating-point matrix structure.
elessair 0:f269e3021894 4928 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
elessair 0:f269e3021894 4929 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
elessair 0:f269e3021894 4930 */
elessair 0:f269e3021894 4931 arm_status arm_mat_inverse_f32(
elessair 0:f269e3021894 4932 const arm_matrix_instance_f32 * src,
elessair 0:f269e3021894 4933 arm_matrix_instance_f32 * dst);
elessair 0:f269e3021894 4934
elessair 0:f269e3021894 4935
elessair 0:f269e3021894 4936 /**
elessair 0:f269e3021894 4937 * @brief Floating-point matrix inverse.
elessair 0:f269e3021894 4938 * @param[in] src points to the instance of the input floating-point matrix structure.
elessair 0:f269e3021894 4939 * @param[out] dst points to the instance of the output floating-point matrix structure.
elessair 0:f269e3021894 4940 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
elessair 0:f269e3021894 4941 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
elessair 0:f269e3021894 4942 */
elessair 0:f269e3021894 4943 arm_status arm_mat_inverse_f64(
elessair 0:f269e3021894 4944 const arm_matrix_instance_f64 * src,
elessair 0:f269e3021894 4945 arm_matrix_instance_f64 * dst);
elessair 0:f269e3021894 4946
elessair 0:f269e3021894 4947
elessair 0:f269e3021894 4948
elessair 0:f269e3021894 4949 /**
elessair 0:f269e3021894 4950 * @ingroup groupController
elessair 0:f269e3021894 4951 */
elessair 0:f269e3021894 4952
elessair 0:f269e3021894 4953 /**
elessair 0:f269e3021894 4954 * @defgroup clarke Vector Clarke Transform
elessair 0:f269e3021894 4955 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
elessair 0:f269e3021894 4956 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
elessair 0:f269e3021894 4957 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
elessair 0:f269e3021894 4958 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
elessair 0:f269e3021894 4959 * \image html clarke.gif Stator current space vector and its components in (a,b).
elessair 0:f269e3021894 4960 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
elessair 0:f269e3021894 4961 * can be calculated using only <code>Ia</code> and <code>Ib</code>.
elessair 0:f269e3021894 4962 *
elessair 0:f269e3021894 4963 * The function operates on a single sample of data and each call to the function returns the processed output.
elessair 0:f269e3021894 4964 * The library provides separate functions for Q31 and floating-point data types.
elessair 0:f269e3021894 4965 * \par Algorithm
elessair 0:f269e3021894 4966 * \image html clarkeFormula.gif
elessair 0:f269e3021894 4967 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
elessair 0:f269e3021894 4968 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
elessair 0:f269e3021894 4969 * \par Fixed-Point Behavior
elessair 0:f269e3021894 4970 * Care must be taken when using the Q31 version of the Clarke transform.
elessair 0:f269e3021894 4971 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
elessair 0:f269e3021894 4972 * Refer to the function specific documentation below for usage guidelines.
elessair 0:f269e3021894 4973 */
elessair 0:f269e3021894 4974
elessair 0:f269e3021894 4975 /**
elessair 0:f269e3021894 4976 * @addtogroup clarke
elessair 0:f269e3021894 4977 * @{
elessair 0:f269e3021894 4978 */
elessair 0:f269e3021894 4979
elessair 0:f269e3021894 4980 /**
elessair 0:f269e3021894 4981 *
elessair 0:f269e3021894 4982 * @brief Floating-point Clarke transform
elessair 0:f269e3021894 4983 * @param[in] Ia input three-phase coordinate <code>a</code>
elessair 0:f269e3021894 4984 * @param[in] Ib input three-phase coordinate <code>b</code>
elessair 0:f269e3021894 4985 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
elessair 0:f269e3021894 4986 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
elessair 0:f269e3021894 4987 */
elessair 0:f269e3021894 4988 static __INLINE void arm_clarke_f32(
elessair 0:f269e3021894 4989 float32_t Ia,
elessair 0:f269e3021894 4990 float32_t Ib,
elessair 0:f269e3021894 4991 float32_t * pIalpha,
elessair 0:f269e3021894 4992 float32_t * pIbeta)
elessair 0:f269e3021894 4993 {
elessair 0:f269e3021894 4994 /* Calculate pIalpha using the equation, pIalpha = Ia */
elessair 0:f269e3021894 4995 *pIalpha = Ia;
elessair 0:f269e3021894 4996
elessair 0:f269e3021894 4997 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
elessair 0:f269e3021894 4998 *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
elessair 0:f269e3021894 4999 }
elessair 0:f269e3021894 5000
elessair 0:f269e3021894 5001
elessair 0:f269e3021894 5002 /**
elessair 0:f269e3021894 5003 * @brief Clarke transform for Q31 version
elessair 0:f269e3021894 5004 * @param[in] Ia input three-phase coordinate <code>a</code>
elessair 0:f269e3021894 5005 * @param[in] Ib input three-phase coordinate <code>b</code>
elessair 0:f269e3021894 5006 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
elessair 0:f269e3021894 5007 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
elessair 0:f269e3021894 5008 *
elessair 0:f269e3021894 5009 * <b>Scaling and Overflow Behavior:</b>
elessair 0:f269e3021894 5010 * \par
elessair 0:f269e3021894 5011 * The function is implemented using an internal 32-bit accumulator.
elessair 0:f269e3021894 5012 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
elessair 0:f269e3021894 5013 * There is saturation on the addition, hence there is no risk of overflow.
elessair 0:f269e3021894 5014 */
elessair 0:f269e3021894 5015 static __INLINE void arm_clarke_q31(
elessair 0:f269e3021894 5016 q31_t Ia,
elessair 0:f269e3021894 5017 q31_t Ib,
elessair 0:f269e3021894 5018 q31_t * pIalpha,
elessair 0:f269e3021894 5019 q31_t * pIbeta)
elessair 0:f269e3021894 5020 {
elessair 0:f269e3021894 5021 q31_t product1, product2; /* Temporary variables used to store intermediate results */
elessair 0:f269e3021894 5022
elessair 0:f269e3021894 5023 /* Calculating pIalpha from Ia by equation pIalpha = Ia */
elessair 0:f269e3021894 5024 *pIalpha = Ia;
elessair 0:f269e3021894 5025
elessair 0:f269e3021894 5026 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
elessair 0:f269e3021894 5027 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
elessair 0:f269e3021894 5028
elessair 0:f269e3021894 5029 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
elessair 0:f269e3021894 5030 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
elessair 0:f269e3021894 5031
elessair 0:f269e3021894 5032 /* pIbeta is calculated by adding the intermediate products */
elessair 0:f269e3021894 5033 *pIbeta = __QADD(product1, product2);
elessair 0:f269e3021894 5034 }
elessair 0:f269e3021894 5035
elessair 0:f269e3021894 5036 /**
elessair 0:f269e3021894 5037 * @} end of clarke group
elessair 0:f269e3021894 5038 */
elessair 0:f269e3021894 5039
elessair 0:f269e3021894 5040 /**
elessair 0:f269e3021894 5041 * @brief Converts the elements of the Q7 vector to Q31 vector.
elessair 0:f269e3021894 5042 * @param[in] pSrc input pointer
elessair 0:f269e3021894 5043 * @param[out] pDst output pointer
elessair 0:f269e3021894 5044 * @param[in] blockSize number of samples to process
elessair 0:f269e3021894 5045 */
elessair 0:f269e3021894 5046 void arm_q7_to_q31(
elessair 0:f269e3021894 5047 q7_t * pSrc,
elessair 0:f269e3021894 5048 q31_t * pDst,
elessair 0:f269e3021894 5049 uint32_t blockSize);
elessair 0:f269e3021894 5050
elessair 0:f269e3021894 5051
elessair 0:f269e3021894 5052
elessair 0:f269e3021894 5053 /**
elessair 0:f269e3021894 5054 * @ingroup groupController
elessair 0:f269e3021894 5055 */
elessair 0:f269e3021894 5056
elessair 0:f269e3021894 5057 /**
elessair 0:f269e3021894 5058 * @defgroup inv_clarke Vector Inverse Clarke Transform
elessair 0:f269e3021894 5059 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
elessair 0:f269e3021894 5060 *
elessair 0:f269e3021894 5061 * The function operates on a single sample of data and each call to the function returns the processed output.
elessair 0:f269e3021894 5062 * The library provides separate functions for Q31 and floating-point data types.
elessair 0:f269e3021894 5063 * \par Algorithm
elessair 0:f269e3021894 5064 * \image html clarkeInvFormula.gif
elessair 0:f269e3021894 5065 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
elessair 0:f269e3021894 5066 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
elessair 0:f269e3021894 5067 * \par Fixed-Point Behavior
elessair 0:f269e3021894 5068 * Care must be taken when using the Q31 version of the Clarke transform.
elessair 0:f269e3021894 5069 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
elessair 0:f269e3021894 5070 * Refer to the function specific documentation below for usage guidelines.
elessair 0:f269e3021894 5071 */
elessair 0:f269e3021894 5072
elessair 0:f269e3021894 5073 /**
elessair 0:f269e3021894 5074 * @addtogroup inv_clarke
elessair 0:f269e3021894 5075 * @{
elessair 0:f269e3021894 5076 */
elessair 0:f269e3021894 5077
elessair 0:f269e3021894 5078 /**
elessair 0:f269e3021894 5079 * @brief Floating-point Inverse Clarke transform
elessair 0:f269e3021894 5080 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
elessair 0:f269e3021894 5081 * @param[in] Ibeta input two-phase orthogonal vector axis beta
elessair 0:f269e3021894 5082 * @param[out] pIa points to output three-phase coordinate <code>a</code>
elessair 0:f269e3021894 5083 * @param[out] pIb points to output three-phase coordinate <code>b</code>
elessair 0:f269e3021894 5084 */
elessair 0:f269e3021894 5085 static __INLINE void arm_inv_clarke_f32(
elessair 0:f269e3021894 5086 float32_t Ialpha,
elessair 0:f269e3021894 5087 float32_t Ibeta,
elessair 0:f269e3021894 5088 float32_t * pIa,
elessair 0:f269e3021894 5089 float32_t * pIb)
elessair 0:f269e3021894 5090 {
elessair 0:f269e3021894 5091 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
elessair 0:f269e3021894 5092 *pIa = Ialpha;
elessair 0:f269e3021894 5093
elessair 0:f269e3021894 5094 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
elessair 0:f269e3021894 5095 *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
elessair 0:f269e3021894 5096 }
elessair 0:f269e3021894 5097
elessair 0:f269e3021894 5098
elessair 0:f269e3021894 5099 /**
elessair 0:f269e3021894 5100 * @brief Inverse Clarke transform for Q31 version
elessair 0:f269e3021894 5101 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
elessair 0:f269e3021894 5102 * @param[in] Ibeta input two-phase orthogonal vector axis beta
elessair 0:f269e3021894 5103 * @param[out] pIa points to output three-phase coordinate <code>a</code>
elessair 0:f269e3021894 5104 * @param[out] pIb points to output three-phase coordinate <code>b</code>
elessair 0:f269e3021894 5105 *
elessair 0:f269e3021894 5106 * <b>Scaling and Overflow Behavior:</b>
elessair 0:f269e3021894 5107 * \par
elessair 0:f269e3021894 5108 * The function is implemented using an internal 32-bit accumulator.
elessair 0:f269e3021894 5109 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
elessair 0:f269e3021894 5110 * There is saturation on the subtraction, hence there is no risk of overflow.
elessair 0:f269e3021894 5111 */
elessair 0:f269e3021894 5112 static __INLINE void arm_inv_clarke_q31(
elessair 0:f269e3021894 5113 q31_t Ialpha,
elessair 0:f269e3021894 5114 q31_t Ibeta,
elessair 0:f269e3021894 5115 q31_t * pIa,
elessair 0:f269e3021894 5116 q31_t * pIb)
elessair 0:f269e3021894 5117 {
elessair 0:f269e3021894 5118 q31_t product1, product2; /* Temporary variables used to store intermediate results */
elessair 0:f269e3021894 5119
elessair 0:f269e3021894 5120 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
elessair 0:f269e3021894 5121 *pIa = Ialpha;
elessair 0:f269e3021894 5122
elessair 0:f269e3021894 5123 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
elessair 0:f269e3021894 5124 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
elessair 0:f269e3021894 5125
elessair 0:f269e3021894 5126 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
elessair 0:f269e3021894 5127 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
elessair 0:f269e3021894 5128
elessair 0:f269e3021894 5129 /* pIb is calculated by subtracting the products */
elessair 0:f269e3021894 5130 *pIb = __QSUB(product2, product1);
elessair 0:f269e3021894 5131 }
elessair 0:f269e3021894 5132
elessair 0:f269e3021894 5133 /**
elessair 0:f269e3021894 5134 * @} end of inv_clarke group
elessair 0:f269e3021894 5135 */
elessair 0:f269e3021894 5136
elessair 0:f269e3021894 5137 /**
elessair 0:f269e3021894 5138 * @brief Converts the elements of the Q7 vector to Q15 vector.
elessair 0:f269e3021894 5139 * @param[in] pSrc input pointer
elessair 0:f269e3021894 5140 * @param[out] pDst output pointer
elessair 0:f269e3021894 5141 * @param[in] blockSize number of samples to process
elessair 0:f269e3021894 5142 */
elessair 0:f269e3021894 5143 void arm_q7_to_q15(
elessair 0:f269e3021894 5144 q7_t * pSrc,
elessair 0:f269e3021894 5145 q15_t * pDst,
elessair 0:f269e3021894 5146 uint32_t blockSize);
elessair 0:f269e3021894 5147
elessair 0:f269e3021894 5148
elessair 0:f269e3021894 5149
elessair 0:f269e3021894 5150 /**
elessair 0:f269e3021894 5151 * @ingroup groupController
elessair 0:f269e3021894 5152 */
elessair 0:f269e3021894 5153
elessair 0:f269e3021894 5154 /**
elessair 0:f269e3021894 5155 * @defgroup park Vector Park Transform
elessair 0:f269e3021894 5156 *
elessair 0:f269e3021894 5157 * Forward Park transform converts the input two-coordinate vector to flux and torque components.
elessair 0:f269e3021894 5158 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
elessair 0:f269e3021894 5159 * from the stationary to the moving reference frame and control the spatial relationship between
elessair 0:f269e3021894 5160 * the stator vector current and rotor flux vector.
elessair 0:f269e3021894 5161 * If we consider the d axis aligned with the rotor flux, the diagram below shows the
elessair 0:f269e3021894 5162 * current vector and the relationship from the two reference frames:
elessair 0:f269e3021894 5163 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
elessair 0:f269e3021894 5164 *
elessair 0:f269e3021894 5165 * The function operates on a single sample of data and each call to the function returns the processed output.
elessair 0:f269e3021894 5166 * The library provides separate functions for Q31 and floating-point data types.
elessair 0:f269e3021894 5167 * \par Algorithm
elessair 0:f269e3021894 5168 * \image html parkFormula.gif
elessair 0:f269e3021894 5169 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
elessair 0:f269e3021894 5170 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
elessair 0:f269e3021894 5171 * cosine and sine values of theta (rotor flux position).
elessair 0:f269e3021894 5172 * \par Fixed-Point Behavior
elessair 0:f269e3021894 5173 * Care must be taken when using the Q31 version of the Park transform.
elessair 0:f269e3021894 5174 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
elessair 0:f269e3021894 5175 * Refer to the function specific documentation below for usage guidelines.
elessair 0:f269e3021894 5176 */
elessair 0:f269e3021894 5177
elessair 0:f269e3021894 5178 /**
elessair 0:f269e3021894 5179 * @addtogroup park
elessair 0:f269e3021894 5180 * @{
elessair 0:f269e3021894 5181 */
elessair 0:f269e3021894 5182
elessair 0:f269e3021894 5183 /**
elessair 0:f269e3021894 5184 * @brief Floating-point Park transform
elessair 0:f269e3021894 5185 * @param[in] Ialpha input two-phase vector coordinate alpha
elessair 0:f269e3021894 5186 * @param[in] Ibeta input two-phase vector coordinate beta
elessair 0:f269e3021894 5187 * @param[out] pId points to output rotor reference frame d
elessair 0:f269e3021894 5188 * @param[out] pIq points to output rotor reference frame q
elessair 0:f269e3021894 5189 * @param[in] sinVal sine value of rotation angle theta
elessair 0:f269e3021894 5190 * @param[in] cosVal cosine value of rotation angle theta
elessair 0:f269e3021894 5191 *
elessair 0:f269e3021894 5192 * The function implements the forward Park transform.
elessair 0:f269e3021894 5193 *
elessair 0:f269e3021894 5194 */
elessair 0:f269e3021894 5195 static __INLINE void arm_park_f32(
elessair 0:f269e3021894 5196 float32_t Ialpha,
elessair 0:f269e3021894 5197 float32_t Ibeta,
elessair 0:f269e3021894 5198 float32_t * pId,
elessair 0:f269e3021894 5199 float32_t * pIq,
elessair 0:f269e3021894 5200 float32_t sinVal,
elessair 0:f269e3021894 5201 float32_t cosVal)
elessair 0:f269e3021894 5202 {
elessair 0:f269e3021894 5203 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
elessair 0:f269e3021894 5204 *pId = Ialpha * cosVal + Ibeta * sinVal;
elessair 0:f269e3021894 5205
elessair 0:f269e3021894 5206 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
elessair 0:f269e3021894 5207 *pIq = -Ialpha * sinVal + Ibeta * cosVal;
elessair 0:f269e3021894 5208 }
elessair 0:f269e3021894 5209
elessair 0:f269e3021894 5210
elessair 0:f269e3021894 5211 /**
elessair 0:f269e3021894 5212 * @brief Park transform for Q31 version
elessair 0:f269e3021894 5213 * @param[in] Ialpha input two-phase vector coordinate alpha
elessair 0:f269e3021894 5214 * @param[in] Ibeta input two-phase vector coordinate beta
elessair 0:f269e3021894 5215 * @param[out] pId points to output rotor reference frame d
elessair 0:f269e3021894 5216 * @param[out] pIq points to output rotor reference frame q
elessair 0:f269e3021894 5217 * @param[in] sinVal sine value of rotation angle theta
elessair 0:f269e3021894 5218 * @param[in] cosVal cosine value of rotation angle theta
elessair 0:f269e3021894 5219 *
elessair 0:f269e3021894 5220 * <b>Scaling and Overflow Behavior:</b>
elessair 0:f269e3021894 5221 * \par
elessair 0:f269e3021894 5222 * The function is implemented using an internal 32-bit accumulator.
elessair 0:f269e3021894 5223 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
elessair 0:f269e3021894 5224 * There is saturation on the addition and subtraction, hence there is no risk of overflow.
elessair 0:f269e3021894 5225 */
elessair 0:f269e3021894 5226 static __INLINE void arm_park_q31(
elessair 0:f269e3021894 5227 q31_t Ialpha,
elessair 0:f269e3021894 5228 q31_t Ibeta,
elessair 0:f269e3021894 5229 q31_t * pId,
elessair 0:f269e3021894 5230 q31_t * pIq,
elessair 0:f269e3021894 5231 q31_t sinVal,
elessair 0:f269e3021894 5232 q31_t cosVal)
elessair 0:f269e3021894 5233 {
elessair 0:f269e3021894 5234 q31_t product1, product2; /* Temporary variables used to store intermediate results */
elessair 0:f269e3021894 5235 q31_t product3, product4; /* Temporary variables used to store intermediate results */
elessair 0:f269e3021894 5236
elessair 0:f269e3021894 5237 /* Intermediate product is calculated by (Ialpha * cosVal) */
elessair 0:f269e3021894 5238 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
elessair 0:f269e3021894 5239
elessair 0:f269e3021894 5240 /* Intermediate product is calculated by (Ibeta * sinVal) */
elessair 0:f269e3021894 5241 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
elessair 0:f269e3021894 5242
elessair 0:f269e3021894 5243
elessair 0:f269e3021894 5244 /* Intermediate product is calculated by (Ialpha * sinVal) */
elessair 0:f269e3021894 5245 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
elessair 0:f269e3021894 5246
elessair 0:f269e3021894 5247 /* Intermediate product is calculated by (Ibeta * cosVal) */
elessair 0:f269e3021894 5248 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
elessair 0:f269e3021894 5249
elessair 0:f269e3021894 5250 /* Calculate pId by adding the two intermediate products 1 and 2 */
elessair 0:f269e3021894 5251 *pId = __QADD(product1, product2);
elessair 0:f269e3021894 5252
elessair 0:f269e3021894 5253 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
elessair 0:f269e3021894 5254 *pIq = __QSUB(product4, product3);
elessair 0:f269e3021894 5255 }
elessair 0:f269e3021894 5256
elessair 0:f269e3021894 5257 /**
elessair 0:f269e3021894 5258 * @} end of park group
elessair 0:f269e3021894 5259 */
elessair 0:f269e3021894 5260
elessair 0:f269e3021894 5261 /**
elessair 0:f269e3021894 5262 * @brief Converts the elements of the Q7 vector to floating-point vector.
elessair 0:f269e3021894 5263 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 5264 * @param[out] pDst is output pointer
elessair 0:f269e3021894 5265 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 5266 */
elessair 0:f269e3021894 5267 void arm_q7_to_float(
elessair 0:f269e3021894 5268 q7_t * pSrc,
elessair 0:f269e3021894 5269 float32_t * pDst,
elessair 0:f269e3021894 5270 uint32_t blockSize);
elessair 0:f269e3021894 5271
elessair 0:f269e3021894 5272
elessair 0:f269e3021894 5273 /**
elessair 0:f269e3021894 5274 * @ingroup groupController
elessair 0:f269e3021894 5275 */
elessair 0:f269e3021894 5276
elessair 0:f269e3021894 5277 /**
elessair 0:f269e3021894 5278 * @defgroup inv_park Vector Inverse Park transform
elessair 0:f269e3021894 5279 * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
elessair 0:f269e3021894 5280 *
elessair 0:f269e3021894 5281 * The function operates on a single sample of data and each call to the function returns the processed output.
elessair 0:f269e3021894 5282 * The library provides separate functions for Q31 and floating-point data types.
elessair 0:f269e3021894 5283 * \par Algorithm
elessair 0:f269e3021894 5284 * \image html parkInvFormula.gif
elessair 0:f269e3021894 5285 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
elessair 0:f269e3021894 5286 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
elessair 0:f269e3021894 5287 * cosine and sine values of theta (rotor flux position).
elessair 0:f269e3021894 5288 * \par Fixed-Point Behavior
elessair 0:f269e3021894 5289 * Care must be taken when using the Q31 version of the Park transform.
elessair 0:f269e3021894 5290 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
elessair 0:f269e3021894 5291 * Refer to the function specific documentation below for usage guidelines.
elessair 0:f269e3021894 5292 */
elessair 0:f269e3021894 5293
elessair 0:f269e3021894 5294 /**
elessair 0:f269e3021894 5295 * @addtogroup inv_park
elessair 0:f269e3021894 5296 * @{
elessair 0:f269e3021894 5297 */
elessair 0:f269e3021894 5298
elessair 0:f269e3021894 5299 /**
elessair 0:f269e3021894 5300 * @brief Floating-point Inverse Park transform
elessair 0:f269e3021894 5301 * @param[in] Id input coordinate of rotor reference frame d
elessair 0:f269e3021894 5302 * @param[in] Iq input coordinate of rotor reference frame q
elessair 0:f269e3021894 5303 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
elessair 0:f269e3021894 5304 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
elessair 0:f269e3021894 5305 * @param[in] sinVal sine value of rotation angle theta
elessair 0:f269e3021894 5306 * @param[in] cosVal cosine value of rotation angle theta
elessair 0:f269e3021894 5307 */
elessair 0:f269e3021894 5308 static __INLINE void arm_inv_park_f32(
elessair 0:f269e3021894 5309 float32_t Id,
elessair 0:f269e3021894 5310 float32_t Iq,
elessair 0:f269e3021894 5311 float32_t * pIalpha,
elessair 0:f269e3021894 5312 float32_t * pIbeta,
elessair 0:f269e3021894 5313 float32_t sinVal,
elessair 0:f269e3021894 5314 float32_t cosVal)
elessair 0:f269e3021894 5315 {
elessair 0:f269e3021894 5316 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
elessair 0:f269e3021894 5317 *pIalpha = Id * cosVal - Iq * sinVal;
elessair 0:f269e3021894 5318
elessair 0:f269e3021894 5319 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
elessair 0:f269e3021894 5320 *pIbeta = Id * sinVal + Iq * cosVal;
elessair 0:f269e3021894 5321 }
elessair 0:f269e3021894 5322
elessair 0:f269e3021894 5323
elessair 0:f269e3021894 5324 /**
elessair 0:f269e3021894 5325 * @brief Inverse Park transform for Q31 version
elessair 0:f269e3021894 5326 * @param[in] Id input coordinate of rotor reference frame d
elessair 0:f269e3021894 5327 * @param[in] Iq input coordinate of rotor reference frame q
elessair 0:f269e3021894 5328 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
elessair 0:f269e3021894 5329 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
elessair 0:f269e3021894 5330 * @param[in] sinVal sine value of rotation angle theta
elessair 0:f269e3021894 5331 * @param[in] cosVal cosine value of rotation angle theta
elessair 0:f269e3021894 5332 *
elessair 0:f269e3021894 5333 * <b>Scaling and Overflow Behavior:</b>
elessair 0:f269e3021894 5334 * \par
elessair 0:f269e3021894 5335 * The function is implemented using an internal 32-bit accumulator.
elessair 0:f269e3021894 5336 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
elessair 0:f269e3021894 5337 * There is saturation on the addition, hence there is no risk of overflow.
elessair 0:f269e3021894 5338 */
elessair 0:f269e3021894 5339 static __INLINE void arm_inv_park_q31(
elessair 0:f269e3021894 5340 q31_t Id,
elessair 0:f269e3021894 5341 q31_t Iq,
elessair 0:f269e3021894 5342 q31_t * pIalpha,
elessair 0:f269e3021894 5343 q31_t * pIbeta,
elessair 0:f269e3021894 5344 q31_t sinVal,
elessair 0:f269e3021894 5345 q31_t cosVal)
elessair 0:f269e3021894 5346 {
elessair 0:f269e3021894 5347 q31_t product1, product2; /* Temporary variables used to store intermediate results */
elessair 0:f269e3021894 5348 q31_t product3, product4; /* Temporary variables used to store intermediate results */
elessair 0:f269e3021894 5349
elessair 0:f269e3021894 5350 /* Intermediate product is calculated by (Id * cosVal) */
elessair 0:f269e3021894 5351 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
elessair 0:f269e3021894 5352
elessair 0:f269e3021894 5353 /* Intermediate product is calculated by (Iq * sinVal) */
elessair 0:f269e3021894 5354 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
elessair 0:f269e3021894 5355
elessair 0:f269e3021894 5356
elessair 0:f269e3021894 5357 /* Intermediate product is calculated by (Id * sinVal) */
elessair 0:f269e3021894 5358 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
elessair 0:f269e3021894 5359
elessair 0:f269e3021894 5360 /* Intermediate product is calculated by (Iq * cosVal) */
elessair 0:f269e3021894 5361 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
elessair 0:f269e3021894 5362
elessair 0:f269e3021894 5363 /* Calculate pIalpha by using the two intermediate products 1 and 2 */
elessair 0:f269e3021894 5364 *pIalpha = __QSUB(product1, product2);
elessair 0:f269e3021894 5365
elessair 0:f269e3021894 5366 /* Calculate pIbeta by using the two intermediate products 3 and 4 */
elessair 0:f269e3021894 5367 *pIbeta = __QADD(product4, product3);
elessair 0:f269e3021894 5368 }
elessair 0:f269e3021894 5369
elessair 0:f269e3021894 5370 /**
elessair 0:f269e3021894 5371 * @} end of Inverse park group
elessair 0:f269e3021894 5372 */
elessair 0:f269e3021894 5373
elessair 0:f269e3021894 5374
elessair 0:f269e3021894 5375 /**
elessair 0:f269e3021894 5376 * @brief Converts the elements of the Q31 vector to floating-point vector.
elessair 0:f269e3021894 5377 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 5378 * @param[out] pDst is output pointer
elessair 0:f269e3021894 5379 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 5380 */
elessair 0:f269e3021894 5381 void arm_q31_to_float(
elessair 0:f269e3021894 5382 q31_t * pSrc,
elessair 0:f269e3021894 5383 float32_t * pDst,
elessair 0:f269e3021894 5384 uint32_t blockSize);
elessair 0:f269e3021894 5385
elessair 0:f269e3021894 5386 /**
elessair 0:f269e3021894 5387 * @ingroup groupInterpolation
elessair 0:f269e3021894 5388 */
elessair 0:f269e3021894 5389
elessair 0:f269e3021894 5390 /**
elessair 0:f269e3021894 5391 * @defgroup LinearInterpolate Linear Interpolation
elessair 0:f269e3021894 5392 *
elessair 0:f269e3021894 5393 * Linear interpolation is a method of curve fitting using linear polynomials.
elessair 0:f269e3021894 5394 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
elessair 0:f269e3021894 5395 *
elessair 0:f269e3021894 5396 * \par
elessair 0:f269e3021894 5397 * \image html LinearInterp.gif "Linear interpolation"
elessair 0:f269e3021894 5398 *
elessair 0:f269e3021894 5399 * \par
elessair 0:f269e3021894 5400 * A Linear Interpolate function calculates an output value(y), for the input(x)
elessair 0:f269e3021894 5401 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
elessair 0:f269e3021894 5402 *
elessair 0:f269e3021894 5403 * \par Algorithm:
elessair 0:f269e3021894 5404 * <pre>
elessair 0:f269e3021894 5405 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
elessair 0:f269e3021894 5406 * where x0, x1 are nearest values of input x
elessair 0:f269e3021894 5407 * y0, y1 are nearest values to output y
elessair 0:f269e3021894 5408 * </pre>
elessair 0:f269e3021894 5409 *
elessair 0:f269e3021894 5410 * \par
elessair 0:f269e3021894 5411 * This set of functions implements Linear interpolation process
elessair 0:f269e3021894 5412 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
elessair 0:f269e3021894 5413 * sample of data and each call to the function returns a single processed value.
elessair 0:f269e3021894 5414 * <code>S</code> points to an instance of the Linear Interpolate function data structure.
elessair 0:f269e3021894 5415 * <code>x</code> is the input sample value. The functions returns the output value.
elessair 0:f269e3021894 5416 *
elessair 0:f269e3021894 5417 * \par
elessair 0:f269e3021894 5418 * if x is outside of the table boundary, Linear interpolation returns first value of the table
elessair 0:f269e3021894 5419 * if x is below input range and returns last value of table if x is above range.
elessair 0:f269e3021894 5420 */
elessair 0:f269e3021894 5421
elessair 0:f269e3021894 5422 /**
elessair 0:f269e3021894 5423 * @addtogroup LinearInterpolate
elessair 0:f269e3021894 5424 * @{
elessair 0:f269e3021894 5425 */
elessair 0:f269e3021894 5426
elessair 0:f269e3021894 5427 /**
elessair 0:f269e3021894 5428 * @brief Process function for the floating-point Linear Interpolation Function.
elessair 0:f269e3021894 5429 * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
elessair 0:f269e3021894 5430 * @param[in] x input sample to process
elessair 0:f269e3021894 5431 * @return y processed output sample.
elessair 0:f269e3021894 5432 *
elessair 0:f269e3021894 5433 */
elessair 0:f269e3021894 5434 static __INLINE float32_t arm_linear_interp_f32(
elessair 0:f269e3021894 5435 arm_linear_interp_instance_f32 * S,
elessair 0:f269e3021894 5436 float32_t x)
elessair 0:f269e3021894 5437 {
elessair 0:f269e3021894 5438 float32_t y;
elessair 0:f269e3021894 5439 float32_t x0, x1; /* Nearest input values */
elessair 0:f269e3021894 5440 float32_t y0, y1; /* Nearest output values */
elessair 0:f269e3021894 5441 float32_t xSpacing = S->xSpacing; /* spacing between input values */
elessair 0:f269e3021894 5442 int32_t i; /* Index variable */
elessair 0:f269e3021894 5443 float32_t *pYData = S->pYData; /* pointer to output table */
elessair 0:f269e3021894 5444
elessair 0:f269e3021894 5445 /* Calculation of index */
elessair 0:f269e3021894 5446 i = (int32_t) ((x - S->x1) / xSpacing);
elessair 0:f269e3021894 5447
elessair 0:f269e3021894 5448 if(i < 0)
elessair 0:f269e3021894 5449 {
elessair 0:f269e3021894 5450 /* Iniatilize output for below specified range as least output value of table */
elessair 0:f269e3021894 5451 y = pYData[0];
elessair 0:f269e3021894 5452 }
elessair 0:f269e3021894 5453 else if((uint32_t)i >= S->nValues)
elessair 0:f269e3021894 5454 {
elessair 0:f269e3021894 5455 /* Iniatilize output for above specified range as last output value of table */
elessair 0:f269e3021894 5456 y = pYData[S->nValues - 1];
elessair 0:f269e3021894 5457 }
elessair 0:f269e3021894 5458 else
elessair 0:f269e3021894 5459 {
elessair 0:f269e3021894 5460 /* Calculation of nearest input values */
elessair 0:f269e3021894 5461 x0 = S->x1 + i * xSpacing;
elessair 0:f269e3021894 5462 x1 = S->x1 + (i + 1) * xSpacing;
elessair 0:f269e3021894 5463
elessair 0:f269e3021894 5464 /* Read of nearest output values */
elessair 0:f269e3021894 5465 y0 = pYData[i];
elessair 0:f269e3021894 5466 y1 = pYData[i + 1];
elessair 0:f269e3021894 5467
elessair 0:f269e3021894 5468 /* Calculation of output */
elessair 0:f269e3021894 5469 y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
elessair 0:f269e3021894 5470
elessair 0:f269e3021894 5471 }
elessair 0:f269e3021894 5472
elessair 0:f269e3021894 5473 /* returns output value */
elessair 0:f269e3021894 5474 return (y);
elessair 0:f269e3021894 5475 }
elessair 0:f269e3021894 5476
elessair 0:f269e3021894 5477
elessair 0:f269e3021894 5478 /**
elessair 0:f269e3021894 5479 *
elessair 0:f269e3021894 5480 * @brief Process function for the Q31 Linear Interpolation Function.
elessair 0:f269e3021894 5481 * @param[in] pYData pointer to Q31 Linear Interpolation table
elessair 0:f269e3021894 5482 * @param[in] x input sample to process
elessair 0:f269e3021894 5483 * @param[in] nValues number of table values
elessair 0:f269e3021894 5484 * @return y processed output sample.
elessair 0:f269e3021894 5485 *
elessair 0:f269e3021894 5486 * \par
elessair 0:f269e3021894 5487 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
elessair 0:f269e3021894 5488 * This function can support maximum of table size 2^12.
elessair 0:f269e3021894 5489 *
elessair 0:f269e3021894 5490 */
elessair 0:f269e3021894 5491 static __INLINE q31_t arm_linear_interp_q31(
elessair 0:f269e3021894 5492 q31_t * pYData,
elessair 0:f269e3021894 5493 q31_t x,
elessair 0:f269e3021894 5494 uint32_t nValues)
elessair 0:f269e3021894 5495 {
elessair 0:f269e3021894 5496 q31_t y; /* output */
elessair 0:f269e3021894 5497 q31_t y0, y1; /* Nearest output values */
elessair 0:f269e3021894 5498 q31_t fract; /* fractional part */
elessair 0:f269e3021894 5499 int32_t index; /* Index to read nearest output values */
elessair 0:f269e3021894 5500
elessair 0:f269e3021894 5501 /* Input is in 12.20 format */
elessair 0:f269e3021894 5502 /* 12 bits for the table index */
elessair 0:f269e3021894 5503 /* Index value calculation */
elessair 0:f269e3021894 5504 index = ((x & (q31_t)0xFFF00000) >> 20);
elessair 0:f269e3021894 5505
elessair 0:f269e3021894 5506 if(index >= (int32_t)(nValues - 1))
elessair 0:f269e3021894 5507 {
elessair 0:f269e3021894 5508 return (pYData[nValues - 1]);
elessair 0:f269e3021894 5509 }
elessair 0:f269e3021894 5510 else if(index < 0)
elessair 0:f269e3021894 5511 {
elessair 0:f269e3021894 5512 return (pYData[0]);
elessair 0:f269e3021894 5513 }
elessair 0:f269e3021894 5514 else
elessair 0:f269e3021894 5515 {
elessair 0:f269e3021894 5516 /* 20 bits for the fractional part */
elessair 0:f269e3021894 5517 /* shift left by 11 to keep fract in 1.31 format */
elessair 0:f269e3021894 5518 fract = (x & 0x000FFFFF) << 11;
elessair 0:f269e3021894 5519
elessair 0:f269e3021894 5520 /* Read two nearest output values from the index in 1.31(q31) format */
elessair 0:f269e3021894 5521 y0 = pYData[index];
elessair 0:f269e3021894 5522 y1 = pYData[index + 1];
elessair 0:f269e3021894 5523
elessair 0:f269e3021894 5524 /* Calculation of y0 * (1-fract) and y is in 2.30 format */
elessair 0:f269e3021894 5525 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
elessair 0:f269e3021894 5526
elessair 0:f269e3021894 5527 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
elessair 0:f269e3021894 5528 y += ((q31_t) (((q63_t) y1 * fract) >> 32));
elessair 0:f269e3021894 5529
elessair 0:f269e3021894 5530 /* Convert y to 1.31 format */
elessair 0:f269e3021894 5531 return (y << 1u);
elessair 0:f269e3021894 5532 }
elessair 0:f269e3021894 5533 }
elessair 0:f269e3021894 5534
elessair 0:f269e3021894 5535
elessair 0:f269e3021894 5536 /**
elessair 0:f269e3021894 5537 *
elessair 0:f269e3021894 5538 * @brief Process function for the Q15 Linear Interpolation Function.
elessair 0:f269e3021894 5539 * @param[in] pYData pointer to Q15 Linear Interpolation table
elessair 0:f269e3021894 5540 * @param[in] x input sample to process
elessair 0:f269e3021894 5541 * @param[in] nValues number of table values
elessair 0:f269e3021894 5542 * @return y processed output sample.
elessair 0:f269e3021894 5543 *
elessair 0:f269e3021894 5544 * \par
elessair 0:f269e3021894 5545 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
elessair 0:f269e3021894 5546 * This function can support maximum of table size 2^12.
elessair 0:f269e3021894 5547 *
elessair 0:f269e3021894 5548 */
elessair 0:f269e3021894 5549 static __INLINE q15_t arm_linear_interp_q15(
elessair 0:f269e3021894 5550 q15_t * pYData,
elessair 0:f269e3021894 5551 q31_t x,
elessair 0:f269e3021894 5552 uint32_t nValues)
elessair 0:f269e3021894 5553 {
elessair 0:f269e3021894 5554 q63_t y; /* output */
elessair 0:f269e3021894 5555 q15_t y0, y1; /* Nearest output values */
elessair 0:f269e3021894 5556 q31_t fract; /* fractional part */
elessair 0:f269e3021894 5557 int32_t index; /* Index to read nearest output values */
elessair 0:f269e3021894 5558
elessair 0:f269e3021894 5559 /* Input is in 12.20 format */
elessair 0:f269e3021894 5560 /* 12 bits for the table index */
elessair 0:f269e3021894 5561 /* Index value calculation */
elessair 0:f269e3021894 5562 index = ((x & (int32_t)0xFFF00000) >> 20);
elessair 0:f269e3021894 5563
elessair 0:f269e3021894 5564 if(index >= (int32_t)(nValues - 1))
elessair 0:f269e3021894 5565 {
elessair 0:f269e3021894 5566 return (pYData[nValues - 1]);
elessair 0:f269e3021894 5567 }
elessair 0:f269e3021894 5568 else if(index < 0)
elessair 0:f269e3021894 5569 {
elessair 0:f269e3021894 5570 return (pYData[0]);
elessair 0:f269e3021894 5571 }
elessair 0:f269e3021894 5572 else
elessair 0:f269e3021894 5573 {
elessair 0:f269e3021894 5574 /* 20 bits for the fractional part */
elessair 0:f269e3021894 5575 /* fract is in 12.20 format */
elessair 0:f269e3021894 5576 fract = (x & 0x000FFFFF);
elessair 0:f269e3021894 5577
elessair 0:f269e3021894 5578 /* Read two nearest output values from the index */
elessair 0:f269e3021894 5579 y0 = pYData[index];
elessair 0:f269e3021894 5580 y1 = pYData[index + 1];
elessair 0:f269e3021894 5581
elessair 0:f269e3021894 5582 /* Calculation of y0 * (1-fract) and y is in 13.35 format */
elessair 0:f269e3021894 5583 y = ((q63_t) y0 * (0xFFFFF - fract));
elessair 0:f269e3021894 5584
elessair 0:f269e3021894 5585 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
elessair 0:f269e3021894 5586 y += ((q63_t) y1 * (fract));
elessair 0:f269e3021894 5587
elessair 0:f269e3021894 5588 /* convert y to 1.15 format */
elessair 0:f269e3021894 5589 return (q15_t) (y >> 20);
elessair 0:f269e3021894 5590 }
elessair 0:f269e3021894 5591 }
elessair 0:f269e3021894 5592
elessair 0:f269e3021894 5593
elessair 0:f269e3021894 5594 /**
elessair 0:f269e3021894 5595 *
elessair 0:f269e3021894 5596 * @brief Process function for the Q7 Linear Interpolation Function.
elessair 0:f269e3021894 5597 * @param[in] pYData pointer to Q7 Linear Interpolation table
elessair 0:f269e3021894 5598 * @param[in] x input sample to process
elessair 0:f269e3021894 5599 * @param[in] nValues number of table values
elessair 0:f269e3021894 5600 * @return y processed output sample.
elessair 0:f269e3021894 5601 *
elessair 0:f269e3021894 5602 * \par
elessair 0:f269e3021894 5603 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
elessair 0:f269e3021894 5604 * This function can support maximum of table size 2^12.
elessair 0:f269e3021894 5605 */
elessair 0:f269e3021894 5606 static __INLINE q7_t arm_linear_interp_q7(
elessair 0:f269e3021894 5607 q7_t * pYData,
elessair 0:f269e3021894 5608 q31_t x,
elessair 0:f269e3021894 5609 uint32_t nValues)
elessair 0:f269e3021894 5610 {
elessair 0:f269e3021894 5611 q31_t y; /* output */
elessair 0:f269e3021894 5612 q7_t y0, y1; /* Nearest output values */
elessair 0:f269e3021894 5613 q31_t fract; /* fractional part */
elessair 0:f269e3021894 5614 uint32_t index; /* Index to read nearest output values */
elessair 0:f269e3021894 5615
elessair 0:f269e3021894 5616 /* Input is in 12.20 format */
elessair 0:f269e3021894 5617 /* 12 bits for the table index */
elessair 0:f269e3021894 5618 /* Index value calculation */
elessair 0:f269e3021894 5619 if (x < 0)
elessair 0:f269e3021894 5620 {
elessair 0:f269e3021894 5621 return (pYData[0]);
elessair 0:f269e3021894 5622 }
elessair 0:f269e3021894 5623 index = (x >> 20) & 0xfff;
elessair 0:f269e3021894 5624
elessair 0:f269e3021894 5625 if(index >= (nValues - 1))
elessair 0:f269e3021894 5626 {
elessair 0:f269e3021894 5627 return (pYData[nValues - 1]);
elessair 0:f269e3021894 5628 }
elessair 0:f269e3021894 5629 else
elessair 0:f269e3021894 5630 {
elessair 0:f269e3021894 5631 /* 20 bits for the fractional part */
elessair 0:f269e3021894 5632 /* fract is in 12.20 format */
elessair 0:f269e3021894 5633 fract = (x & 0x000FFFFF);
elessair 0:f269e3021894 5634
elessair 0:f269e3021894 5635 /* Read two nearest output values from the index and are in 1.7(q7) format */
elessair 0:f269e3021894 5636 y0 = pYData[index];
elessair 0:f269e3021894 5637 y1 = pYData[index + 1];
elessair 0:f269e3021894 5638
elessair 0:f269e3021894 5639 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
elessair 0:f269e3021894 5640 y = ((y0 * (0xFFFFF - fract)));
elessair 0:f269e3021894 5641
elessair 0:f269e3021894 5642 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
elessair 0:f269e3021894 5643 y += (y1 * fract);
elessair 0:f269e3021894 5644
elessair 0:f269e3021894 5645 /* convert y to 1.7(q7) format */
elessair 0:f269e3021894 5646 return (q7_t) (y >> 20);
elessair 0:f269e3021894 5647 }
elessair 0:f269e3021894 5648 }
elessair 0:f269e3021894 5649
elessair 0:f269e3021894 5650 /**
elessair 0:f269e3021894 5651 * @} end of LinearInterpolate group
elessair 0:f269e3021894 5652 */
elessair 0:f269e3021894 5653
elessair 0:f269e3021894 5654 /**
elessair 0:f269e3021894 5655 * @brief Fast approximation to the trigonometric sine function for floating-point data.
elessair 0:f269e3021894 5656 * @param[in] x input value in radians.
elessair 0:f269e3021894 5657 * @return sin(x).
elessair 0:f269e3021894 5658 */
elessair 0:f269e3021894 5659 float32_t arm_sin_f32(
elessair 0:f269e3021894 5660 float32_t x);
elessair 0:f269e3021894 5661
elessair 0:f269e3021894 5662
elessair 0:f269e3021894 5663 /**
elessair 0:f269e3021894 5664 * @brief Fast approximation to the trigonometric sine function for Q31 data.
elessair 0:f269e3021894 5665 * @param[in] x Scaled input value in radians.
elessair 0:f269e3021894 5666 * @return sin(x).
elessair 0:f269e3021894 5667 */
elessair 0:f269e3021894 5668 q31_t arm_sin_q31(
elessair 0:f269e3021894 5669 q31_t x);
elessair 0:f269e3021894 5670
elessair 0:f269e3021894 5671
elessair 0:f269e3021894 5672 /**
elessair 0:f269e3021894 5673 * @brief Fast approximation to the trigonometric sine function for Q15 data.
elessair 0:f269e3021894 5674 * @param[in] x Scaled input value in radians.
elessair 0:f269e3021894 5675 * @return sin(x).
elessair 0:f269e3021894 5676 */
elessair 0:f269e3021894 5677 q15_t arm_sin_q15(
elessair 0:f269e3021894 5678 q15_t x);
elessair 0:f269e3021894 5679
elessair 0:f269e3021894 5680
elessair 0:f269e3021894 5681 /**
elessair 0:f269e3021894 5682 * @brief Fast approximation to the trigonometric cosine function for floating-point data.
elessair 0:f269e3021894 5683 * @param[in] x input value in radians.
elessair 0:f269e3021894 5684 * @return cos(x).
elessair 0:f269e3021894 5685 */
elessair 0:f269e3021894 5686 float32_t arm_cos_f32(
elessair 0:f269e3021894 5687 float32_t x);
elessair 0:f269e3021894 5688
elessair 0:f269e3021894 5689
elessair 0:f269e3021894 5690 /**
elessair 0:f269e3021894 5691 * @brief Fast approximation to the trigonometric cosine function for Q31 data.
elessair 0:f269e3021894 5692 * @param[in] x Scaled input value in radians.
elessair 0:f269e3021894 5693 * @return cos(x).
elessair 0:f269e3021894 5694 */
elessair 0:f269e3021894 5695 q31_t arm_cos_q31(
elessair 0:f269e3021894 5696 q31_t x);
elessair 0:f269e3021894 5697
elessair 0:f269e3021894 5698
elessair 0:f269e3021894 5699 /**
elessair 0:f269e3021894 5700 * @brief Fast approximation to the trigonometric cosine function for Q15 data.
elessair 0:f269e3021894 5701 * @param[in] x Scaled input value in radians.
elessair 0:f269e3021894 5702 * @return cos(x).
elessair 0:f269e3021894 5703 */
elessair 0:f269e3021894 5704 q15_t arm_cos_q15(
elessair 0:f269e3021894 5705 q15_t x);
elessair 0:f269e3021894 5706
elessair 0:f269e3021894 5707
elessair 0:f269e3021894 5708 /**
elessair 0:f269e3021894 5709 * @ingroup groupFastMath
elessair 0:f269e3021894 5710 */
elessair 0:f269e3021894 5711
elessair 0:f269e3021894 5712
elessair 0:f269e3021894 5713 /**
elessair 0:f269e3021894 5714 * @defgroup SQRT Square Root
elessair 0:f269e3021894 5715 *
elessair 0:f269e3021894 5716 * Computes the square root of a number.
elessair 0:f269e3021894 5717 * There are separate functions for Q15, Q31, and floating-point data types.
elessair 0:f269e3021894 5718 * The square root function is computed using the Newton-Raphson algorithm.
elessair 0:f269e3021894 5719 * This is an iterative algorithm of the form:
elessair 0:f269e3021894 5720 * <pre>
elessair 0:f269e3021894 5721 * x1 = x0 - f(x0)/f'(x0)
elessair 0:f269e3021894 5722 * </pre>
elessair 0:f269e3021894 5723 * where <code>x1</code> is the current estimate,
elessair 0:f269e3021894 5724 * <code>x0</code> is the previous estimate, and
elessair 0:f269e3021894 5725 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
elessair 0:f269e3021894 5726 * For the square root function, the algorithm reduces to:
elessair 0:f269e3021894 5727 * <pre>
elessair 0:f269e3021894 5728 * x0 = in/2 [initial guess]
elessair 0:f269e3021894 5729 * x1 = 1/2 * ( x0 + in / x0) [each iteration]
elessair 0:f269e3021894 5730 * </pre>
elessair 0:f269e3021894 5731 */
elessair 0:f269e3021894 5732
elessair 0:f269e3021894 5733
elessair 0:f269e3021894 5734 /**
elessair 0:f269e3021894 5735 * @addtogroup SQRT
elessair 0:f269e3021894 5736 * @{
elessair 0:f269e3021894 5737 */
elessair 0:f269e3021894 5738
elessair 0:f269e3021894 5739 /**
elessair 0:f269e3021894 5740 * @brief Floating-point square root function.
elessair 0:f269e3021894 5741 * @param[in] in input value.
elessair 0:f269e3021894 5742 * @param[out] pOut square root of input value.
elessair 0:f269e3021894 5743 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
elessair 0:f269e3021894 5744 * <code>in</code> is negative value and returns zero output for negative values.
elessair 0:f269e3021894 5745 */
elessair 0:f269e3021894 5746 static __INLINE arm_status arm_sqrt_f32(
elessair 0:f269e3021894 5747 float32_t in,
elessair 0:f269e3021894 5748 float32_t * pOut)
elessair 0:f269e3021894 5749 {
elessair 0:f269e3021894 5750 if(in >= 0.0f)
elessair 0:f269e3021894 5751 {
elessair 0:f269e3021894 5752
elessair 0:f269e3021894 5753 #if (__FPU_USED == 1) && defined ( __CC_ARM )
elessair 0:f269e3021894 5754 *pOut = __sqrtf(in);
elessair 0:f269e3021894 5755 #elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
elessair 0:f269e3021894 5756 *pOut = __builtin_sqrtf(in);
elessair 0:f269e3021894 5757 #elif (__FPU_USED == 1) && defined(__GNUC__)
elessair 0:f269e3021894 5758 *pOut = __builtin_sqrtf(in);
elessair 0:f269e3021894 5759 #elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)
elessair 0:f269e3021894 5760 __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
elessair 0:f269e3021894 5761 #else
elessair 0:f269e3021894 5762 *pOut = sqrtf(in);
elessair 0:f269e3021894 5763 #endif
elessair 0:f269e3021894 5764
elessair 0:f269e3021894 5765 return (ARM_MATH_SUCCESS);
elessair 0:f269e3021894 5766 }
elessair 0:f269e3021894 5767 else
elessair 0:f269e3021894 5768 {
elessair 0:f269e3021894 5769 *pOut = 0.0f;
elessair 0:f269e3021894 5770 return (ARM_MATH_ARGUMENT_ERROR);
elessair 0:f269e3021894 5771 }
elessair 0:f269e3021894 5772 }
elessair 0:f269e3021894 5773
elessair 0:f269e3021894 5774
elessair 0:f269e3021894 5775 /**
elessair 0:f269e3021894 5776 * @brief Q31 square root function.
elessair 0:f269e3021894 5777 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
elessair 0:f269e3021894 5778 * @param[out] pOut square root of input value.
elessair 0:f269e3021894 5779 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
elessair 0:f269e3021894 5780 * <code>in</code> is negative value and returns zero output for negative values.
elessair 0:f269e3021894 5781 */
elessair 0:f269e3021894 5782 arm_status arm_sqrt_q31(
elessair 0:f269e3021894 5783 q31_t in,
elessair 0:f269e3021894 5784 q31_t * pOut);
elessair 0:f269e3021894 5785
elessair 0:f269e3021894 5786
elessair 0:f269e3021894 5787 /**
elessair 0:f269e3021894 5788 * @brief Q15 square root function.
elessair 0:f269e3021894 5789 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
elessair 0:f269e3021894 5790 * @param[out] pOut square root of input value.
elessair 0:f269e3021894 5791 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
elessair 0:f269e3021894 5792 * <code>in</code> is negative value and returns zero output for negative values.
elessair 0:f269e3021894 5793 */
elessair 0:f269e3021894 5794 arm_status arm_sqrt_q15(
elessair 0:f269e3021894 5795 q15_t in,
elessair 0:f269e3021894 5796 q15_t * pOut);
elessair 0:f269e3021894 5797
elessair 0:f269e3021894 5798 /**
elessair 0:f269e3021894 5799 * @} end of SQRT group
elessair 0:f269e3021894 5800 */
elessair 0:f269e3021894 5801
elessair 0:f269e3021894 5802
elessair 0:f269e3021894 5803 /**
elessair 0:f269e3021894 5804 * @brief floating-point Circular write function.
elessair 0:f269e3021894 5805 */
elessair 0:f269e3021894 5806 static __INLINE void arm_circularWrite_f32(
elessair 0:f269e3021894 5807 int32_t * circBuffer,
elessair 0:f269e3021894 5808 int32_t L,
elessair 0:f269e3021894 5809 uint16_t * writeOffset,
elessair 0:f269e3021894 5810 int32_t bufferInc,
elessair 0:f269e3021894 5811 const int32_t * src,
elessair 0:f269e3021894 5812 int32_t srcInc,
elessair 0:f269e3021894 5813 uint32_t blockSize)
elessair 0:f269e3021894 5814 {
elessair 0:f269e3021894 5815 uint32_t i = 0u;
elessair 0:f269e3021894 5816 int32_t wOffset;
elessair 0:f269e3021894 5817
elessair 0:f269e3021894 5818 /* Copy the value of Index pointer that points
elessair 0:f269e3021894 5819 * to the current location where the input samples to be copied */
elessair 0:f269e3021894 5820 wOffset = *writeOffset;
elessair 0:f269e3021894 5821
elessair 0:f269e3021894 5822 /* Loop over the blockSize */
elessair 0:f269e3021894 5823 i = blockSize;
elessair 0:f269e3021894 5824
elessair 0:f269e3021894 5825 while(i > 0u)
elessair 0:f269e3021894 5826 {
elessair 0:f269e3021894 5827 /* copy the input sample to the circular buffer */
elessair 0:f269e3021894 5828 circBuffer[wOffset] = *src;
elessair 0:f269e3021894 5829
elessair 0:f269e3021894 5830 /* Update the input pointer */
elessair 0:f269e3021894 5831 src += srcInc;
elessair 0:f269e3021894 5832
elessair 0:f269e3021894 5833 /* Circularly update wOffset. Watch out for positive and negative value */
elessair 0:f269e3021894 5834 wOffset += bufferInc;
elessair 0:f269e3021894 5835 if(wOffset >= L)
elessair 0:f269e3021894 5836 wOffset -= L;
elessair 0:f269e3021894 5837
elessair 0:f269e3021894 5838 /* Decrement the loop counter */
elessair 0:f269e3021894 5839 i--;
elessair 0:f269e3021894 5840 }
elessair 0:f269e3021894 5841
elessair 0:f269e3021894 5842 /* Update the index pointer */
elessair 0:f269e3021894 5843 *writeOffset = (uint16_t)wOffset;
elessair 0:f269e3021894 5844 }
elessair 0:f269e3021894 5845
elessair 0:f269e3021894 5846
elessair 0:f269e3021894 5847
elessair 0:f269e3021894 5848 /**
elessair 0:f269e3021894 5849 * @brief floating-point Circular Read function.
elessair 0:f269e3021894 5850 */
elessair 0:f269e3021894 5851 static __INLINE void arm_circularRead_f32(
elessair 0:f269e3021894 5852 int32_t * circBuffer,
elessair 0:f269e3021894 5853 int32_t L,
elessair 0:f269e3021894 5854 int32_t * readOffset,
elessair 0:f269e3021894 5855 int32_t bufferInc,
elessair 0:f269e3021894 5856 int32_t * dst,
elessair 0:f269e3021894 5857 int32_t * dst_base,
elessair 0:f269e3021894 5858 int32_t dst_length,
elessair 0:f269e3021894 5859 int32_t dstInc,
elessair 0:f269e3021894 5860 uint32_t blockSize)
elessair 0:f269e3021894 5861 {
elessair 0:f269e3021894 5862 uint32_t i = 0u;
elessair 0:f269e3021894 5863 int32_t rOffset, dst_end;
elessair 0:f269e3021894 5864
elessair 0:f269e3021894 5865 /* Copy the value of Index pointer that points
elessair 0:f269e3021894 5866 * to the current location from where the input samples to be read */
elessair 0:f269e3021894 5867 rOffset = *readOffset;
elessair 0:f269e3021894 5868 dst_end = (int32_t) (dst_base + dst_length);
elessair 0:f269e3021894 5869
elessair 0:f269e3021894 5870 /* Loop over the blockSize */
elessair 0:f269e3021894 5871 i = blockSize;
elessair 0:f269e3021894 5872
elessair 0:f269e3021894 5873 while(i > 0u)
elessair 0:f269e3021894 5874 {
elessair 0:f269e3021894 5875 /* copy the sample from the circular buffer to the destination buffer */
elessair 0:f269e3021894 5876 *dst = circBuffer[rOffset];
elessair 0:f269e3021894 5877
elessair 0:f269e3021894 5878 /* Update the input pointer */
elessair 0:f269e3021894 5879 dst += dstInc;
elessair 0:f269e3021894 5880
elessair 0:f269e3021894 5881 if(dst == (int32_t *) dst_end)
elessair 0:f269e3021894 5882 {
elessair 0:f269e3021894 5883 dst = dst_base;
elessair 0:f269e3021894 5884 }
elessair 0:f269e3021894 5885
elessair 0:f269e3021894 5886 /* Circularly update rOffset. Watch out for positive and negative value */
elessair 0:f269e3021894 5887 rOffset += bufferInc;
elessair 0:f269e3021894 5888
elessair 0:f269e3021894 5889 if(rOffset >= L)
elessair 0:f269e3021894 5890 {
elessair 0:f269e3021894 5891 rOffset -= L;
elessair 0:f269e3021894 5892 }
elessair 0:f269e3021894 5893
elessair 0:f269e3021894 5894 /* Decrement the loop counter */
elessair 0:f269e3021894 5895 i--;
elessair 0:f269e3021894 5896 }
elessair 0:f269e3021894 5897
elessair 0:f269e3021894 5898 /* Update the index pointer */
elessair 0:f269e3021894 5899 *readOffset = rOffset;
elessair 0:f269e3021894 5900 }
elessair 0:f269e3021894 5901
elessair 0:f269e3021894 5902
elessair 0:f269e3021894 5903 /**
elessair 0:f269e3021894 5904 * @brief Q15 Circular write function.
elessair 0:f269e3021894 5905 */
elessair 0:f269e3021894 5906 static __INLINE void arm_circularWrite_q15(
elessair 0:f269e3021894 5907 q15_t * circBuffer,
elessair 0:f269e3021894 5908 int32_t L,
elessair 0:f269e3021894 5909 uint16_t * writeOffset,
elessair 0:f269e3021894 5910 int32_t bufferInc,
elessair 0:f269e3021894 5911 const q15_t * src,
elessair 0:f269e3021894 5912 int32_t srcInc,
elessair 0:f269e3021894 5913 uint32_t blockSize)
elessair 0:f269e3021894 5914 {
elessair 0:f269e3021894 5915 uint32_t i = 0u;
elessair 0:f269e3021894 5916 int32_t wOffset;
elessair 0:f269e3021894 5917
elessair 0:f269e3021894 5918 /* Copy the value of Index pointer that points
elessair 0:f269e3021894 5919 * to the current location where the input samples to be copied */
elessair 0:f269e3021894 5920 wOffset = *writeOffset;
elessair 0:f269e3021894 5921
elessair 0:f269e3021894 5922 /* Loop over the blockSize */
elessair 0:f269e3021894 5923 i = blockSize;
elessair 0:f269e3021894 5924
elessair 0:f269e3021894 5925 while(i > 0u)
elessair 0:f269e3021894 5926 {
elessair 0:f269e3021894 5927 /* copy the input sample to the circular buffer */
elessair 0:f269e3021894 5928 circBuffer[wOffset] = *src;
elessair 0:f269e3021894 5929
elessair 0:f269e3021894 5930 /* Update the input pointer */
elessair 0:f269e3021894 5931 src += srcInc;
elessair 0:f269e3021894 5932
elessair 0:f269e3021894 5933 /* Circularly update wOffset. Watch out for positive and negative value */
elessair 0:f269e3021894 5934 wOffset += bufferInc;
elessair 0:f269e3021894 5935 if(wOffset >= L)
elessair 0:f269e3021894 5936 wOffset -= L;
elessair 0:f269e3021894 5937
elessair 0:f269e3021894 5938 /* Decrement the loop counter */
elessair 0:f269e3021894 5939 i--;
elessair 0:f269e3021894 5940 }
elessair 0:f269e3021894 5941
elessair 0:f269e3021894 5942 /* Update the index pointer */
elessair 0:f269e3021894 5943 *writeOffset = (uint16_t)wOffset;
elessair 0:f269e3021894 5944 }
elessair 0:f269e3021894 5945
elessair 0:f269e3021894 5946
elessair 0:f269e3021894 5947 /**
elessair 0:f269e3021894 5948 * @brief Q15 Circular Read function.
elessair 0:f269e3021894 5949 */
elessair 0:f269e3021894 5950 static __INLINE void arm_circularRead_q15(
elessair 0:f269e3021894 5951 q15_t * circBuffer,
elessair 0:f269e3021894 5952 int32_t L,
elessair 0:f269e3021894 5953 int32_t * readOffset,
elessair 0:f269e3021894 5954 int32_t bufferInc,
elessair 0:f269e3021894 5955 q15_t * dst,
elessair 0:f269e3021894 5956 q15_t * dst_base,
elessair 0:f269e3021894 5957 int32_t dst_length,
elessair 0:f269e3021894 5958 int32_t dstInc,
elessair 0:f269e3021894 5959 uint32_t blockSize)
elessair 0:f269e3021894 5960 {
elessair 0:f269e3021894 5961 uint32_t i = 0;
elessair 0:f269e3021894 5962 int32_t rOffset, dst_end;
elessair 0:f269e3021894 5963
elessair 0:f269e3021894 5964 /* Copy the value of Index pointer that points
elessair 0:f269e3021894 5965 * to the current location from where the input samples to be read */
elessair 0:f269e3021894 5966 rOffset = *readOffset;
elessair 0:f269e3021894 5967
elessair 0:f269e3021894 5968 dst_end = (int32_t) (dst_base + dst_length);
elessair 0:f269e3021894 5969
elessair 0:f269e3021894 5970 /* Loop over the blockSize */
elessair 0:f269e3021894 5971 i = blockSize;
elessair 0:f269e3021894 5972
elessair 0:f269e3021894 5973 while(i > 0u)
elessair 0:f269e3021894 5974 {
elessair 0:f269e3021894 5975 /* copy the sample from the circular buffer to the destination buffer */
elessair 0:f269e3021894 5976 *dst = circBuffer[rOffset];
elessair 0:f269e3021894 5977
elessair 0:f269e3021894 5978 /* Update the input pointer */
elessair 0:f269e3021894 5979 dst += dstInc;
elessair 0:f269e3021894 5980
elessair 0:f269e3021894 5981 if(dst == (q15_t *) dst_end)
elessair 0:f269e3021894 5982 {
elessair 0:f269e3021894 5983 dst = dst_base;
elessair 0:f269e3021894 5984 }
elessair 0:f269e3021894 5985
elessair 0:f269e3021894 5986 /* Circularly update wOffset. Watch out for positive and negative value */
elessair 0:f269e3021894 5987 rOffset += bufferInc;
elessair 0:f269e3021894 5988
elessair 0:f269e3021894 5989 if(rOffset >= L)
elessair 0:f269e3021894 5990 {
elessair 0:f269e3021894 5991 rOffset -= L;
elessair 0:f269e3021894 5992 }
elessair 0:f269e3021894 5993
elessair 0:f269e3021894 5994 /* Decrement the loop counter */
elessair 0:f269e3021894 5995 i--;
elessair 0:f269e3021894 5996 }
elessair 0:f269e3021894 5997
elessair 0:f269e3021894 5998 /* Update the index pointer */
elessair 0:f269e3021894 5999 *readOffset = rOffset;
elessair 0:f269e3021894 6000 }
elessair 0:f269e3021894 6001
elessair 0:f269e3021894 6002
elessair 0:f269e3021894 6003 /**
elessair 0:f269e3021894 6004 * @brief Q7 Circular write function.
elessair 0:f269e3021894 6005 */
elessair 0:f269e3021894 6006 static __INLINE void arm_circularWrite_q7(
elessair 0:f269e3021894 6007 q7_t * circBuffer,
elessair 0:f269e3021894 6008 int32_t L,
elessair 0:f269e3021894 6009 uint16_t * writeOffset,
elessair 0:f269e3021894 6010 int32_t bufferInc,
elessair 0:f269e3021894 6011 const q7_t * src,
elessair 0:f269e3021894 6012 int32_t srcInc,
elessair 0:f269e3021894 6013 uint32_t blockSize)
elessair 0:f269e3021894 6014 {
elessair 0:f269e3021894 6015 uint32_t i = 0u;
elessair 0:f269e3021894 6016 int32_t wOffset;
elessair 0:f269e3021894 6017
elessair 0:f269e3021894 6018 /* Copy the value of Index pointer that points
elessair 0:f269e3021894 6019 * to the current location where the input samples to be copied */
elessair 0:f269e3021894 6020 wOffset = *writeOffset;
elessair 0:f269e3021894 6021
elessair 0:f269e3021894 6022 /* Loop over the blockSize */
elessair 0:f269e3021894 6023 i = blockSize;
elessair 0:f269e3021894 6024
elessair 0:f269e3021894 6025 while(i > 0u)
elessair 0:f269e3021894 6026 {
elessair 0:f269e3021894 6027 /* copy the input sample to the circular buffer */
elessair 0:f269e3021894 6028 circBuffer[wOffset] = *src;
elessair 0:f269e3021894 6029
elessair 0:f269e3021894 6030 /* Update the input pointer */
elessair 0:f269e3021894 6031 src += srcInc;
elessair 0:f269e3021894 6032
elessair 0:f269e3021894 6033 /* Circularly update wOffset. Watch out for positive and negative value */
elessair 0:f269e3021894 6034 wOffset += bufferInc;
elessair 0:f269e3021894 6035 if(wOffset >= L)
elessair 0:f269e3021894 6036 wOffset -= L;
elessair 0:f269e3021894 6037
elessair 0:f269e3021894 6038 /* Decrement the loop counter */
elessair 0:f269e3021894 6039 i--;
elessair 0:f269e3021894 6040 }
elessair 0:f269e3021894 6041
elessair 0:f269e3021894 6042 /* Update the index pointer */
elessair 0:f269e3021894 6043 *writeOffset = (uint16_t)wOffset;
elessair 0:f269e3021894 6044 }
elessair 0:f269e3021894 6045
elessair 0:f269e3021894 6046
elessair 0:f269e3021894 6047 /**
elessair 0:f269e3021894 6048 * @brief Q7 Circular Read function.
elessair 0:f269e3021894 6049 */
elessair 0:f269e3021894 6050 static __INLINE void arm_circularRead_q7(
elessair 0:f269e3021894 6051 q7_t * circBuffer,
elessair 0:f269e3021894 6052 int32_t L,
elessair 0:f269e3021894 6053 int32_t * readOffset,
elessair 0:f269e3021894 6054 int32_t bufferInc,
elessair 0:f269e3021894 6055 q7_t * dst,
elessair 0:f269e3021894 6056 q7_t * dst_base,
elessair 0:f269e3021894 6057 int32_t dst_length,
elessair 0:f269e3021894 6058 int32_t dstInc,
elessair 0:f269e3021894 6059 uint32_t blockSize)
elessair 0:f269e3021894 6060 {
elessair 0:f269e3021894 6061 uint32_t i = 0;
elessair 0:f269e3021894 6062 int32_t rOffset, dst_end;
elessair 0:f269e3021894 6063
elessair 0:f269e3021894 6064 /* Copy the value of Index pointer that points
elessair 0:f269e3021894 6065 * to the current location from where the input samples to be read */
elessair 0:f269e3021894 6066 rOffset = *readOffset;
elessair 0:f269e3021894 6067
elessair 0:f269e3021894 6068 dst_end = (int32_t) (dst_base + dst_length);
elessair 0:f269e3021894 6069
elessair 0:f269e3021894 6070 /* Loop over the blockSize */
elessair 0:f269e3021894 6071 i = blockSize;
elessair 0:f269e3021894 6072
elessair 0:f269e3021894 6073 while(i > 0u)
elessair 0:f269e3021894 6074 {
elessair 0:f269e3021894 6075 /* copy the sample from the circular buffer to the destination buffer */
elessair 0:f269e3021894 6076 *dst = circBuffer[rOffset];
elessair 0:f269e3021894 6077
elessair 0:f269e3021894 6078 /* Update the input pointer */
elessair 0:f269e3021894 6079 dst += dstInc;
elessair 0:f269e3021894 6080
elessair 0:f269e3021894 6081 if(dst == (q7_t *) dst_end)
elessair 0:f269e3021894 6082 {
elessair 0:f269e3021894 6083 dst = dst_base;
elessair 0:f269e3021894 6084 }
elessair 0:f269e3021894 6085
elessair 0:f269e3021894 6086 /* Circularly update rOffset. Watch out for positive and negative value */
elessair 0:f269e3021894 6087 rOffset += bufferInc;
elessair 0:f269e3021894 6088
elessair 0:f269e3021894 6089 if(rOffset >= L)
elessair 0:f269e3021894 6090 {
elessair 0:f269e3021894 6091 rOffset -= L;
elessair 0:f269e3021894 6092 }
elessair 0:f269e3021894 6093
elessair 0:f269e3021894 6094 /* Decrement the loop counter */
elessair 0:f269e3021894 6095 i--;
elessair 0:f269e3021894 6096 }
elessair 0:f269e3021894 6097
elessair 0:f269e3021894 6098 /* Update the index pointer */
elessair 0:f269e3021894 6099 *readOffset = rOffset;
elessair 0:f269e3021894 6100 }
elessair 0:f269e3021894 6101
elessair 0:f269e3021894 6102
elessair 0:f269e3021894 6103 /**
elessair 0:f269e3021894 6104 * @brief Sum of the squares of the elements of a Q31 vector.
elessair 0:f269e3021894 6105 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6106 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6107 * @param[out] pResult is output value.
elessair 0:f269e3021894 6108 */
elessair 0:f269e3021894 6109 void arm_power_q31(
elessair 0:f269e3021894 6110 q31_t * pSrc,
elessair 0:f269e3021894 6111 uint32_t blockSize,
elessair 0:f269e3021894 6112 q63_t * pResult);
elessair 0:f269e3021894 6113
elessair 0:f269e3021894 6114
elessair 0:f269e3021894 6115 /**
elessair 0:f269e3021894 6116 * @brief Sum of the squares of the elements of a floating-point vector.
elessair 0:f269e3021894 6117 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6118 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6119 * @param[out] pResult is output value.
elessair 0:f269e3021894 6120 */
elessair 0:f269e3021894 6121 void arm_power_f32(
elessair 0:f269e3021894 6122 float32_t * pSrc,
elessair 0:f269e3021894 6123 uint32_t blockSize,
elessair 0:f269e3021894 6124 float32_t * pResult);
elessair 0:f269e3021894 6125
elessair 0:f269e3021894 6126
elessair 0:f269e3021894 6127 /**
elessair 0:f269e3021894 6128 * @brief Sum of the squares of the elements of a Q15 vector.
elessair 0:f269e3021894 6129 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6130 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6131 * @param[out] pResult is output value.
elessair 0:f269e3021894 6132 */
elessair 0:f269e3021894 6133 void arm_power_q15(
elessair 0:f269e3021894 6134 q15_t * pSrc,
elessair 0:f269e3021894 6135 uint32_t blockSize,
elessair 0:f269e3021894 6136 q63_t * pResult);
elessair 0:f269e3021894 6137
elessair 0:f269e3021894 6138
elessair 0:f269e3021894 6139 /**
elessair 0:f269e3021894 6140 * @brief Sum of the squares of the elements of a Q7 vector.
elessair 0:f269e3021894 6141 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6142 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6143 * @param[out] pResult is output value.
elessair 0:f269e3021894 6144 */
elessair 0:f269e3021894 6145 void arm_power_q7(
elessair 0:f269e3021894 6146 q7_t * pSrc,
elessair 0:f269e3021894 6147 uint32_t blockSize,
elessair 0:f269e3021894 6148 q31_t * pResult);
elessair 0:f269e3021894 6149
elessair 0:f269e3021894 6150
elessair 0:f269e3021894 6151 /**
elessair 0:f269e3021894 6152 * @brief Mean value of a Q7 vector.
elessair 0:f269e3021894 6153 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6154 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6155 * @param[out] pResult is output value.
elessair 0:f269e3021894 6156 */
elessair 0:f269e3021894 6157 void arm_mean_q7(
elessair 0:f269e3021894 6158 q7_t * pSrc,
elessair 0:f269e3021894 6159 uint32_t blockSize,
elessair 0:f269e3021894 6160 q7_t * pResult);
elessair 0:f269e3021894 6161
elessair 0:f269e3021894 6162
elessair 0:f269e3021894 6163 /**
elessair 0:f269e3021894 6164 * @brief Mean value of a Q15 vector.
elessair 0:f269e3021894 6165 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6166 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6167 * @param[out] pResult is output value.
elessair 0:f269e3021894 6168 */
elessair 0:f269e3021894 6169 void arm_mean_q15(
elessair 0:f269e3021894 6170 q15_t * pSrc,
elessair 0:f269e3021894 6171 uint32_t blockSize,
elessair 0:f269e3021894 6172 q15_t * pResult);
elessair 0:f269e3021894 6173
elessair 0:f269e3021894 6174
elessair 0:f269e3021894 6175 /**
elessair 0:f269e3021894 6176 * @brief Mean value of a Q31 vector.
elessair 0:f269e3021894 6177 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6178 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6179 * @param[out] pResult is output value.
elessair 0:f269e3021894 6180 */
elessair 0:f269e3021894 6181 void arm_mean_q31(
elessair 0:f269e3021894 6182 q31_t * pSrc,
elessair 0:f269e3021894 6183 uint32_t blockSize,
elessair 0:f269e3021894 6184 q31_t * pResult);
elessair 0:f269e3021894 6185
elessair 0:f269e3021894 6186
elessair 0:f269e3021894 6187 /**
elessair 0:f269e3021894 6188 * @brief Mean value of a floating-point vector.
elessair 0:f269e3021894 6189 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6190 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6191 * @param[out] pResult is output value.
elessair 0:f269e3021894 6192 */
elessair 0:f269e3021894 6193 void arm_mean_f32(
elessair 0:f269e3021894 6194 float32_t * pSrc,
elessair 0:f269e3021894 6195 uint32_t blockSize,
elessair 0:f269e3021894 6196 float32_t * pResult);
elessair 0:f269e3021894 6197
elessair 0:f269e3021894 6198
elessair 0:f269e3021894 6199 /**
elessair 0:f269e3021894 6200 * @brief Variance of the elements of a floating-point vector.
elessair 0:f269e3021894 6201 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6202 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6203 * @param[out] pResult is output value.
elessair 0:f269e3021894 6204 */
elessair 0:f269e3021894 6205 void arm_var_f32(
elessair 0:f269e3021894 6206 float32_t * pSrc,
elessair 0:f269e3021894 6207 uint32_t blockSize,
elessair 0:f269e3021894 6208 float32_t * pResult);
elessair 0:f269e3021894 6209
elessair 0:f269e3021894 6210
elessair 0:f269e3021894 6211 /**
elessair 0:f269e3021894 6212 * @brief Variance of the elements of a Q31 vector.
elessair 0:f269e3021894 6213 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6214 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6215 * @param[out] pResult is output value.
elessair 0:f269e3021894 6216 */
elessair 0:f269e3021894 6217 void arm_var_q31(
elessair 0:f269e3021894 6218 q31_t * pSrc,
elessair 0:f269e3021894 6219 uint32_t blockSize,
elessair 0:f269e3021894 6220 q31_t * pResult);
elessair 0:f269e3021894 6221
elessair 0:f269e3021894 6222
elessair 0:f269e3021894 6223 /**
elessair 0:f269e3021894 6224 * @brief Variance of the elements of a Q15 vector.
elessair 0:f269e3021894 6225 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6226 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6227 * @param[out] pResult is output value.
elessair 0:f269e3021894 6228 */
elessair 0:f269e3021894 6229 void arm_var_q15(
elessair 0:f269e3021894 6230 q15_t * pSrc,
elessair 0:f269e3021894 6231 uint32_t blockSize,
elessair 0:f269e3021894 6232 q15_t * pResult);
elessair 0:f269e3021894 6233
elessair 0:f269e3021894 6234
elessair 0:f269e3021894 6235 /**
elessair 0:f269e3021894 6236 * @brief Root Mean Square of the elements of a floating-point vector.
elessair 0:f269e3021894 6237 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6238 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6239 * @param[out] pResult is output value.
elessair 0:f269e3021894 6240 */
elessair 0:f269e3021894 6241 void arm_rms_f32(
elessair 0:f269e3021894 6242 float32_t * pSrc,
elessair 0:f269e3021894 6243 uint32_t blockSize,
elessair 0:f269e3021894 6244 float32_t * pResult);
elessair 0:f269e3021894 6245
elessair 0:f269e3021894 6246
elessair 0:f269e3021894 6247 /**
elessair 0:f269e3021894 6248 * @brief Root Mean Square of the elements of a Q31 vector.
elessair 0:f269e3021894 6249 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6250 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6251 * @param[out] pResult is output value.
elessair 0:f269e3021894 6252 */
elessair 0:f269e3021894 6253 void arm_rms_q31(
elessair 0:f269e3021894 6254 q31_t * pSrc,
elessair 0:f269e3021894 6255 uint32_t blockSize,
elessair 0:f269e3021894 6256 q31_t * pResult);
elessair 0:f269e3021894 6257
elessair 0:f269e3021894 6258
elessair 0:f269e3021894 6259 /**
elessair 0:f269e3021894 6260 * @brief Root Mean Square of the elements of a Q15 vector.
elessair 0:f269e3021894 6261 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6262 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6263 * @param[out] pResult is output value.
elessair 0:f269e3021894 6264 */
elessair 0:f269e3021894 6265 void arm_rms_q15(
elessair 0:f269e3021894 6266 q15_t * pSrc,
elessair 0:f269e3021894 6267 uint32_t blockSize,
elessair 0:f269e3021894 6268 q15_t * pResult);
elessair 0:f269e3021894 6269
elessair 0:f269e3021894 6270
elessair 0:f269e3021894 6271 /**
elessair 0:f269e3021894 6272 * @brief Standard deviation of the elements of a floating-point vector.
elessair 0:f269e3021894 6273 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6274 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6275 * @param[out] pResult is output value.
elessair 0:f269e3021894 6276 */
elessair 0:f269e3021894 6277 void arm_std_f32(
elessair 0:f269e3021894 6278 float32_t * pSrc,
elessair 0:f269e3021894 6279 uint32_t blockSize,
elessair 0:f269e3021894 6280 float32_t * pResult);
elessair 0:f269e3021894 6281
elessair 0:f269e3021894 6282
elessair 0:f269e3021894 6283 /**
elessair 0:f269e3021894 6284 * @brief Standard deviation of the elements of a Q31 vector.
elessair 0:f269e3021894 6285 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6286 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6287 * @param[out] pResult is output value.
elessair 0:f269e3021894 6288 */
elessair 0:f269e3021894 6289 void arm_std_q31(
elessair 0:f269e3021894 6290 q31_t * pSrc,
elessair 0:f269e3021894 6291 uint32_t blockSize,
elessair 0:f269e3021894 6292 q31_t * pResult);
elessair 0:f269e3021894 6293
elessair 0:f269e3021894 6294
elessair 0:f269e3021894 6295 /**
elessair 0:f269e3021894 6296 * @brief Standard deviation of the elements of a Q15 vector.
elessair 0:f269e3021894 6297 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6298 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6299 * @param[out] pResult is output value.
elessair 0:f269e3021894 6300 */
elessair 0:f269e3021894 6301 void arm_std_q15(
elessair 0:f269e3021894 6302 q15_t * pSrc,
elessair 0:f269e3021894 6303 uint32_t blockSize,
elessair 0:f269e3021894 6304 q15_t * pResult);
elessair 0:f269e3021894 6305
elessair 0:f269e3021894 6306
elessair 0:f269e3021894 6307 /**
elessair 0:f269e3021894 6308 * @brief Floating-point complex magnitude
elessair 0:f269e3021894 6309 * @param[in] pSrc points to the complex input vector
elessair 0:f269e3021894 6310 * @param[out] pDst points to the real output vector
elessair 0:f269e3021894 6311 * @param[in] numSamples number of complex samples in the input vector
elessair 0:f269e3021894 6312 */
elessair 0:f269e3021894 6313 void arm_cmplx_mag_f32(
elessair 0:f269e3021894 6314 float32_t * pSrc,
elessair 0:f269e3021894 6315 float32_t * pDst,
elessair 0:f269e3021894 6316 uint32_t numSamples);
elessair 0:f269e3021894 6317
elessair 0:f269e3021894 6318
elessair 0:f269e3021894 6319 /**
elessair 0:f269e3021894 6320 * @brief Q31 complex magnitude
elessair 0:f269e3021894 6321 * @param[in] pSrc points to the complex input vector
elessair 0:f269e3021894 6322 * @param[out] pDst points to the real output vector
elessair 0:f269e3021894 6323 * @param[in] numSamples number of complex samples in the input vector
elessair 0:f269e3021894 6324 */
elessair 0:f269e3021894 6325 void arm_cmplx_mag_q31(
elessair 0:f269e3021894 6326 q31_t * pSrc,
elessair 0:f269e3021894 6327 q31_t * pDst,
elessair 0:f269e3021894 6328 uint32_t numSamples);
elessair 0:f269e3021894 6329
elessair 0:f269e3021894 6330
elessair 0:f269e3021894 6331 /**
elessair 0:f269e3021894 6332 * @brief Q15 complex magnitude
elessair 0:f269e3021894 6333 * @param[in] pSrc points to the complex input vector
elessair 0:f269e3021894 6334 * @param[out] pDst points to the real output vector
elessair 0:f269e3021894 6335 * @param[in] numSamples number of complex samples in the input vector
elessair 0:f269e3021894 6336 */
elessair 0:f269e3021894 6337 void arm_cmplx_mag_q15(
elessair 0:f269e3021894 6338 q15_t * pSrc,
elessair 0:f269e3021894 6339 q15_t * pDst,
elessair 0:f269e3021894 6340 uint32_t numSamples);
elessair 0:f269e3021894 6341
elessair 0:f269e3021894 6342
elessair 0:f269e3021894 6343 /**
elessair 0:f269e3021894 6344 * @brief Q15 complex dot product
elessair 0:f269e3021894 6345 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 6346 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 6347 * @param[in] numSamples number of complex samples in each vector
elessair 0:f269e3021894 6348 * @param[out] realResult real part of the result returned here
elessair 0:f269e3021894 6349 * @param[out] imagResult imaginary part of the result returned here
elessair 0:f269e3021894 6350 */
elessair 0:f269e3021894 6351 void arm_cmplx_dot_prod_q15(
elessair 0:f269e3021894 6352 q15_t * pSrcA,
elessair 0:f269e3021894 6353 q15_t * pSrcB,
elessair 0:f269e3021894 6354 uint32_t numSamples,
elessair 0:f269e3021894 6355 q31_t * realResult,
elessair 0:f269e3021894 6356 q31_t * imagResult);
elessair 0:f269e3021894 6357
elessair 0:f269e3021894 6358
elessair 0:f269e3021894 6359 /**
elessair 0:f269e3021894 6360 * @brief Q31 complex dot product
elessair 0:f269e3021894 6361 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 6362 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 6363 * @param[in] numSamples number of complex samples in each vector
elessair 0:f269e3021894 6364 * @param[out] realResult real part of the result returned here
elessair 0:f269e3021894 6365 * @param[out] imagResult imaginary part of the result returned here
elessair 0:f269e3021894 6366 */
elessair 0:f269e3021894 6367 void arm_cmplx_dot_prod_q31(
elessair 0:f269e3021894 6368 q31_t * pSrcA,
elessair 0:f269e3021894 6369 q31_t * pSrcB,
elessair 0:f269e3021894 6370 uint32_t numSamples,
elessair 0:f269e3021894 6371 q63_t * realResult,
elessair 0:f269e3021894 6372 q63_t * imagResult);
elessair 0:f269e3021894 6373
elessair 0:f269e3021894 6374
elessair 0:f269e3021894 6375 /**
elessair 0:f269e3021894 6376 * @brief Floating-point complex dot product
elessair 0:f269e3021894 6377 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 6378 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 6379 * @param[in] numSamples number of complex samples in each vector
elessair 0:f269e3021894 6380 * @param[out] realResult real part of the result returned here
elessair 0:f269e3021894 6381 * @param[out] imagResult imaginary part of the result returned here
elessair 0:f269e3021894 6382 */
elessair 0:f269e3021894 6383 void arm_cmplx_dot_prod_f32(
elessair 0:f269e3021894 6384 float32_t * pSrcA,
elessair 0:f269e3021894 6385 float32_t * pSrcB,
elessair 0:f269e3021894 6386 uint32_t numSamples,
elessair 0:f269e3021894 6387 float32_t * realResult,
elessair 0:f269e3021894 6388 float32_t * imagResult);
elessair 0:f269e3021894 6389
elessair 0:f269e3021894 6390
elessair 0:f269e3021894 6391 /**
elessair 0:f269e3021894 6392 * @brief Q15 complex-by-real multiplication
elessair 0:f269e3021894 6393 * @param[in] pSrcCmplx points to the complex input vector
elessair 0:f269e3021894 6394 * @param[in] pSrcReal points to the real input vector
elessair 0:f269e3021894 6395 * @param[out] pCmplxDst points to the complex output vector
elessair 0:f269e3021894 6396 * @param[in] numSamples number of samples in each vector
elessair 0:f269e3021894 6397 */
elessair 0:f269e3021894 6398 void arm_cmplx_mult_real_q15(
elessair 0:f269e3021894 6399 q15_t * pSrcCmplx,
elessair 0:f269e3021894 6400 q15_t * pSrcReal,
elessair 0:f269e3021894 6401 q15_t * pCmplxDst,
elessair 0:f269e3021894 6402 uint32_t numSamples);
elessair 0:f269e3021894 6403
elessair 0:f269e3021894 6404
elessair 0:f269e3021894 6405 /**
elessair 0:f269e3021894 6406 * @brief Q31 complex-by-real multiplication
elessair 0:f269e3021894 6407 * @param[in] pSrcCmplx points to the complex input vector
elessair 0:f269e3021894 6408 * @param[in] pSrcReal points to the real input vector
elessair 0:f269e3021894 6409 * @param[out] pCmplxDst points to the complex output vector
elessair 0:f269e3021894 6410 * @param[in] numSamples number of samples in each vector
elessair 0:f269e3021894 6411 */
elessair 0:f269e3021894 6412 void arm_cmplx_mult_real_q31(
elessair 0:f269e3021894 6413 q31_t * pSrcCmplx,
elessair 0:f269e3021894 6414 q31_t * pSrcReal,
elessair 0:f269e3021894 6415 q31_t * pCmplxDst,
elessair 0:f269e3021894 6416 uint32_t numSamples);
elessair 0:f269e3021894 6417
elessair 0:f269e3021894 6418
elessair 0:f269e3021894 6419 /**
elessair 0:f269e3021894 6420 * @brief Floating-point complex-by-real multiplication
elessair 0:f269e3021894 6421 * @param[in] pSrcCmplx points to the complex input vector
elessair 0:f269e3021894 6422 * @param[in] pSrcReal points to the real input vector
elessair 0:f269e3021894 6423 * @param[out] pCmplxDst points to the complex output vector
elessair 0:f269e3021894 6424 * @param[in] numSamples number of samples in each vector
elessair 0:f269e3021894 6425 */
elessair 0:f269e3021894 6426 void arm_cmplx_mult_real_f32(
elessair 0:f269e3021894 6427 float32_t * pSrcCmplx,
elessair 0:f269e3021894 6428 float32_t * pSrcReal,
elessair 0:f269e3021894 6429 float32_t * pCmplxDst,
elessair 0:f269e3021894 6430 uint32_t numSamples);
elessair 0:f269e3021894 6431
elessair 0:f269e3021894 6432
elessair 0:f269e3021894 6433 /**
elessair 0:f269e3021894 6434 * @brief Minimum value of a Q7 vector.
elessair 0:f269e3021894 6435 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6436 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6437 * @param[out] result is output pointer
elessair 0:f269e3021894 6438 * @param[in] index is the array index of the minimum value in the input buffer.
elessair 0:f269e3021894 6439 */
elessair 0:f269e3021894 6440 void arm_min_q7(
elessair 0:f269e3021894 6441 q7_t * pSrc,
elessair 0:f269e3021894 6442 uint32_t blockSize,
elessair 0:f269e3021894 6443 q7_t * result,
elessair 0:f269e3021894 6444 uint32_t * index);
elessair 0:f269e3021894 6445
elessair 0:f269e3021894 6446
elessair 0:f269e3021894 6447 /**
elessair 0:f269e3021894 6448 * @brief Minimum value of a Q15 vector.
elessair 0:f269e3021894 6449 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6450 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6451 * @param[out] pResult is output pointer
elessair 0:f269e3021894 6452 * @param[in] pIndex is the array index of the minimum value in the input buffer.
elessair 0:f269e3021894 6453 */
elessair 0:f269e3021894 6454 void arm_min_q15(
elessair 0:f269e3021894 6455 q15_t * pSrc,
elessair 0:f269e3021894 6456 uint32_t blockSize,
elessair 0:f269e3021894 6457 q15_t * pResult,
elessair 0:f269e3021894 6458 uint32_t * pIndex);
elessair 0:f269e3021894 6459
elessair 0:f269e3021894 6460
elessair 0:f269e3021894 6461 /**
elessair 0:f269e3021894 6462 * @brief Minimum value of a Q31 vector.
elessair 0:f269e3021894 6463 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6464 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6465 * @param[out] pResult is output pointer
elessair 0:f269e3021894 6466 * @param[out] pIndex is the array index of the minimum value in the input buffer.
elessair 0:f269e3021894 6467 */
elessair 0:f269e3021894 6468 void arm_min_q31(
elessair 0:f269e3021894 6469 q31_t * pSrc,
elessair 0:f269e3021894 6470 uint32_t blockSize,
elessair 0:f269e3021894 6471 q31_t * pResult,
elessair 0:f269e3021894 6472 uint32_t * pIndex);
elessair 0:f269e3021894 6473
elessair 0:f269e3021894 6474
elessair 0:f269e3021894 6475 /**
elessair 0:f269e3021894 6476 * @brief Minimum value of a floating-point vector.
elessair 0:f269e3021894 6477 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6478 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6479 * @param[out] pResult is output pointer
elessair 0:f269e3021894 6480 * @param[out] pIndex is the array index of the minimum value in the input buffer.
elessair 0:f269e3021894 6481 */
elessair 0:f269e3021894 6482 void arm_min_f32(
elessair 0:f269e3021894 6483 float32_t * pSrc,
elessair 0:f269e3021894 6484 uint32_t blockSize,
elessair 0:f269e3021894 6485 float32_t * pResult,
elessair 0:f269e3021894 6486 uint32_t * pIndex);
elessair 0:f269e3021894 6487
elessair 0:f269e3021894 6488
elessair 0:f269e3021894 6489 /**
elessair 0:f269e3021894 6490 * @brief Maximum value of a Q7 vector.
elessair 0:f269e3021894 6491 * @param[in] pSrc points to the input buffer
elessair 0:f269e3021894 6492 * @param[in] blockSize length of the input vector
elessair 0:f269e3021894 6493 * @param[out] pResult maximum value returned here
elessair 0:f269e3021894 6494 * @param[out] pIndex index of maximum value returned here
elessair 0:f269e3021894 6495 */
elessair 0:f269e3021894 6496 void arm_max_q7(
elessair 0:f269e3021894 6497 q7_t * pSrc,
elessair 0:f269e3021894 6498 uint32_t blockSize,
elessair 0:f269e3021894 6499 q7_t * pResult,
elessair 0:f269e3021894 6500 uint32_t * pIndex);
elessair 0:f269e3021894 6501
elessair 0:f269e3021894 6502
elessair 0:f269e3021894 6503 /**
elessair 0:f269e3021894 6504 * @brief Maximum value of a Q15 vector.
elessair 0:f269e3021894 6505 * @param[in] pSrc points to the input buffer
elessair 0:f269e3021894 6506 * @param[in] blockSize length of the input vector
elessair 0:f269e3021894 6507 * @param[out] pResult maximum value returned here
elessair 0:f269e3021894 6508 * @param[out] pIndex index of maximum value returned here
elessair 0:f269e3021894 6509 */
elessair 0:f269e3021894 6510 void arm_max_q15(
elessair 0:f269e3021894 6511 q15_t * pSrc,
elessair 0:f269e3021894 6512 uint32_t blockSize,
elessair 0:f269e3021894 6513 q15_t * pResult,
elessair 0:f269e3021894 6514 uint32_t * pIndex);
elessair 0:f269e3021894 6515
elessair 0:f269e3021894 6516
elessair 0:f269e3021894 6517 /**
elessair 0:f269e3021894 6518 * @brief Maximum value of a Q31 vector.
elessair 0:f269e3021894 6519 * @param[in] pSrc points to the input buffer
elessair 0:f269e3021894 6520 * @param[in] blockSize length of the input vector
elessair 0:f269e3021894 6521 * @param[out] pResult maximum value returned here
elessair 0:f269e3021894 6522 * @param[out] pIndex index of maximum value returned here
elessair 0:f269e3021894 6523 */
elessair 0:f269e3021894 6524 void arm_max_q31(
elessair 0:f269e3021894 6525 q31_t * pSrc,
elessair 0:f269e3021894 6526 uint32_t blockSize,
elessair 0:f269e3021894 6527 q31_t * pResult,
elessair 0:f269e3021894 6528 uint32_t * pIndex);
elessair 0:f269e3021894 6529
elessair 0:f269e3021894 6530
elessair 0:f269e3021894 6531 /**
elessair 0:f269e3021894 6532 * @brief Maximum value of a floating-point vector.
elessair 0:f269e3021894 6533 * @param[in] pSrc points to the input buffer
elessair 0:f269e3021894 6534 * @param[in] blockSize length of the input vector
elessair 0:f269e3021894 6535 * @param[out] pResult maximum value returned here
elessair 0:f269e3021894 6536 * @param[out] pIndex index of maximum value returned here
elessair 0:f269e3021894 6537 */
elessair 0:f269e3021894 6538 void arm_max_f32(
elessair 0:f269e3021894 6539 float32_t * pSrc,
elessair 0:f269e3021894 6540 uint32_t blockSize,
elessair 0:f269e3021894 6541 float32_t * pResult,
elessair 0:f269e3021894 6542 uint32_t * pIndex);
elessair 0:f269e3021894 6543
elessair 0:f269e3021894 6544
elessair 0:f269e3021894 6545 /**
elessair 0:f269e3021894 6546 * @brief Q15 complex-by-complex multiplication
elessair 0:f269e3021894 6547 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 6548 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 6549 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 6550 * @param[in] numSamples number of complex samples in each vector
elessair 0:f269e3021894 6551 */
elessair 0:f269e3021894 6552 void arm_cmplx_mult_cmplx_q15(
elessair 0:f269e3021894 6553 q15_t * pSrcA,
elessair 0:f269e3021894 6554 q15_t * pSrcB,
elessair 0:f269e3021894 6555 q15_t * pDst,
elessair 0:f269e3021894 6556 uint32_t numSamples);
elessair 0:f269e3021894 6557
elessair 0:f269e3021894 6558
elessair 0:f269e3021894 6559 /**
elessair 0:f269e3021894 6560 * @brief Q31 complex-by-complex multiplication
elessair 0:f269e3021894 6561 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 6562 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 6563 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 6564 * @param[in] numSamples number of complex samples in each vector
elessair 0:f269e3021894 6565 */
elessair 0:f269e3021894 6566 void arm_cmplx_mult_cmplx_q31(
elessair 0:f269e3021894 6567 q31_t * pSrcA,
elessair 0:f269e3021894 6568 q31_t * pSrcB,
elessair 0:f269e3021894 6569 q31_t * pDst,
elessair 0:f269e3021894 6570 uint32_t numSamples);
elessair 0:f269e3021894 6571
elessair 0:f269e3021894 6572
elessair 0:f269e3021894 6573 /**
elessair 0:f269e3021894 6574 * @brief Floating-point complex-by-complex multiplication
elessair 0:f269e3021894 6575 * @param[in] pSrcA points to the first input vector
elessair 0:f269e3021894 6576 * @param[in] pSrcB points to the second input vector
elessair 0:f269e3021894 6577 * @param[out] pDst points to the output vector
elessair 0:f269e3021894 6578 * @param[in] numSamples number of complex samples in each vector
elessair 0:f269e3021894 6579 */
elessair 0:f269e3021894 6580 void arm_cmplx_mult_cmplx_f32(
elessair 0:f269e3021894 6581 float32_t * pSrcA,
elessair 0:f269e3021894 6582 float32_t * pSrcB,
elessair 0:f269e3021894 6583 float32_t * pDst,
elessair 0:f269e3021894 6584 uint32_t numSamples);
elessair 0:f269e3021894 6585
elessair 0:f269e3021894 6586
elessair 0:f269e3021894 6587 /**
elessair 0:f269e3021894 6588 * @brief Converts the elements of the floating-point vector to Q31 vector.
elessair 0:f269e3021894 6589 * @param[in] pSrc points to the floating-point input vector
elessair 0:f269e3021894 6590 * @param[out] pDst points to the Q31 output vector
elessair 0:f269e3021894 6591 * @param[in] blockSize length of the input vector
elessair 0:f269e3021894 6592 */
elessair 0:f269e3021894 6593 void arm_float_to_q31(
elessair 0:f269e3021894 6594 float32_t * pSrc,
elessair 0:f269e3021894 6595 q31_t * pDst,
elessair 0:f269e3021894 6596 uint32_t blockSize);
elessair 0:f269e3021894 6597
elessair 0:f269e3021894 6598
elessair 0:f269e3021894 6599 /**
elessair 0:f269e3021894 6600 * @brief Converts the elements of the floating-point vector to Q15 vector.
elessair 0:f269e3021894 6601 * @param[in] pSrc points to the floating-point input vector
elessair 0:f269e3021894 6602 * @param[out] pDst points to the Q15 output vector
elessair 0:f269e3021894 6603 * @param[in] blockSize length of the input vector
elessair 0:f269e3021894 6604 */
elessair 0:f269e3021894 6605 void arm_float_to_q15(
elessair 0:f269e3021894 6606 float32_t * pSrc,
elessair 0:f269e3021894 6607 q15_t * pDst,
elessair 0:f269e3021894 6608 uint32_t blockSize);
elessair 0:f269e3021894 6609
elessair 0:f269e3021894 6610
elessair 0:f269e3021894 6611 /**
elessair 0:f269e3021894 6612 * @brief Converts the elements of the floating-point vector to Q7 vector.
elessair 0:f269e3021894 6613 * @param[in] pSrc points to the floating-point input vector
elessair 0:f269e3021894 6614 * @param[out] pDst points to the Q7 output vector
elessair 0:f269e3021894 6615 * @param[in] blockSize length of the input vector
elessair 0:f269e3021894 6616 */
elessair 0:f269e3021894 6617 void arm_float_to_q7(
elessair 0:f269e3021894 6618 float32_t * pSrc,
elessair 0:f269e3021894 6619 q7_t * pDst,
elessair 0:f269e3021894 6620 uint32_t blockSize);
elessair 0:f269e3021894 6621
elessair 0:f269e3021894 6622
elessair 0:f269e3021894 6623 /**
elessair 0:f269e3021894 6624 * @brief Converts the elements of the Q31 vector to Q15 vector.
elessair 0:f269e3021894 6625 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6626 * @param[out] pDst is output pointer
elessair 0:f269e3021894 6627 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6628 */
elessair 0:f269e3021894 6629 void arm_q31_to_q15(
elessair 0:f269e3021894 6630 q31_t * pSrc,
elessair 0:f269e3021894 6631 q15_t * pDst,
elessair 0:f269e3021894 6632 uint32_t blockSize);
elessair 0:f269e3021894 6633
elessair 0:f269e3021894 6634
elessair 0:f269e3021894 6635 /**
elessair 0:f269e3021894 6636 * @brief Converts the elements of the Q31 vector to Q7 vector.
elessair 0:f269e3021894 6637 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6638 * @param[out] pDst is output pointer
elessair 0:f269e3021894 6639 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6640 */
elessair 0:f269e3021894 6641 void arm_q31_to_q7(
elessair 0:f269e3021894 6642 q31_t * pSrc,
elessair 0:f269e3021894 6643 q7_t * pDst,
elessair 0:f269e3021894 6644 uint32_t blockSize);
elessair 0:f269e3021894 6645
elessair 0:f269e3021894 6646
elessair 0:f269e3021894 6647 /**
elessair 0:f269e3021894 6648 * @brief Converts the elements of the Q15 vector to floating-point vector.
elessair 0:f269e3021894 6649 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6650 * @param[out] pDst is output pointer
elessair 0:f269e3021894 6651 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6652 */
elessair 0:f269e3021894 6653 void arm_q15_to_float(
elessair 0:f269e3021894 6654 q15_t * pSrc,
elessair 0:f269e3021894 6655 float32_t * pDst,
elessair 0:f269e3021894 6656 uint32_t blockSize);
elessair 0:f269e3021894 6657
elessair 0:f269e3021894 6658
elessair 0:f269e3021894 6659 /**
elessair 0:f269e3021894 6660 * @brief Converts the elements of the Q15 vector to Q31 vector.
elessair 0:f269e3021894 6661 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6662 * @param[out] pDst is output pointer
elessair 0:f269e3021894 6663 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6664 */
elessair 0:f269e3021894 6665 void arm_q15_to_q31(
elessair 0:f269e3021894 6666 q15_t * pSrc,
elessair 0:f269e3021894 6667 q31_t * pDst,
elessair 0:f269e3021894 6668 uint32_t blockSize);
elessair 0:f269e3021894 6669
elessair 0:f269e3021894 6670
elessair 0:f269e3021894 6671 /**
elessair 0:f269e3021894 6672 * @brief Converts the elements of the Q15 vector to Q7 vector.
elessair 0:f269e3021894 6673 * @param[in] pSrc is input pointer
elessair 0:f269e3021894 6674 * @param[out] pDst is output pointer
elessair 0:f269e3021894 6675 * @param[in] blockSize is the number of samples to process
elessair 0:f269e3021894 6676 */
elessair 0:f269e3021894 6677 void arm_q15_to_q7(
elessair 0:f269e3021894 6678 q15_t * pSrc,
elessair 0:f269e3021894 6679 q7_t * pDst,
elessair 0:f269e3021894 6680 uint32_t blockSize);
elessair 0:f269e3021894 6681
elessair 0:f269e3021894 6682
elessair 0:f269e3021894 6683 /**
elessair 0:f269e3021894 6684 * @ingroup groupInterpolation
elessair 0:f269e3021894 6685 */
elessair 0:f269e3021894 6686
elessair 0:f269e3021894 6687 /**
elessair 0:f269e3021894 6688 * @defgroup BilinearInterpolate Bilinear Interpolation
elessair 0:f269e3021894 6689 *
elessair 0:f269e3021894 6690 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
elessair 0:f269e3021894 6691 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
elessair 0:f269e3021894 6692 * determines values between the grid points.
elessair 0:f269e3021894 6693 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
elessair 0:f269e3021894 6694 * Bilinear interpolation is often used in image processing to rescale images.
elessair 0:f269e3021894 6695 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
elessair 0:f269e3021894 6696 *
elessair 0:f269e3021894 6697 * <b>Algorithm</b>
elessair 0:f269e3021894 6698 * \par
elessair 0:f269e3021894 6699 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
elessair 0:f269e3021894 6700 * For floating-point, the instance structure is defined as:
elessair 0:f269e3021894 6701 * <pre>
elessair 0:f269e3021894 6702 * typedef struct
elessair 0:f269e3021894 6703 * {
elessair 0:f269e3021894 6704 * uint16_t numRows;
elessair 0:f269e3021894 6705 * uint16_t numCols;
elessair 0:f269e3021894 6706 * float32_t *pData;
elessair 0:f269e3021894 6707 * } arm_bilinear_interp_instance_f32;
elessair 0:f269e3021894 6708 * </pre>
elessair 0:f269e3021894 6709 *
elessair 0:f269e3021894 6710 * \par
elessair 0:f269e3021894 6711 * where <code>numRows</code> specifies the number of rows in the table;
elessair 0:f269e3021894 6712 * <code>numCols</code> specifies the number of columns in the table;
elessair 0:f269e3021894 6713 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
elessair 0:f269e3021894 6714 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
elessair 0:f269e3021894 6715 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
elessair 0:f269e3021894 6716 *
elessair 0:f269e3021894 6717 * \par
elessair 0:f269e3021894 6718 * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
elessair 0:f269e3021894 6719 * <pre>
elessair 0:f269e3021894 6720 * XF = floor(x)
elessair 0:f269e3021894 6721 * YF = floor(y)
elessair 0:f269e3021894 6722 * </pre>
elessair 0:f269e3021894 6723 * \par
elessair 0:f269e3021894 6724 * The interpolated output point is computed as:
elessair 0:f269e3021894 6725 * <pre>
elessair 0:f269e3021894 6726 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
elessair 0:f269e3021894 6727 * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
elessair 0:f269e3021894 6728 * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
elessair 0:f269e3021894 6729 * + f(XF+1, YF+1) * (x-XF)*(y-YF)
elessair 0:f269e3021894 6730 * </pre>
elessair 0:f269e3021894 6731 * Note that the coordinates (x, y) contain integer and fractional components.
elessair 0:f269e3021894 6732 * The integer components specify which portion of the table to use while the
elessair 0:f269e3021894 6733 * fractional components control the interpolation processor.
elessair 0:f269e3021894 6734 *
elessair 0:f269e3021894 6735 * \par
elessair 0:f269e3021894 6736 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
elessair 0:f269e3021894 6737 */
elessair 0:f269e3021894 6738
elessair 0:f269e3021894 6739 /**
elessair 0:f269e3021894 6740 * @addtogroup BilinearInterpolate
elessair 0:f269e3021894 6741 * @{
elessair 0:f269e3021894 6742 */
elessair 0:f269e3021894 6743
elessair 0:f269e3021894 6744
elessair 0:f269e3021894 6745 /**
elessair 0:f269e3021894 6746 *
elessair 0:f269e3021894 6747 * @brief Floating-point bilinear interpolation.
elessair 0:f269e3021894 6748 * @param[in,out] S points to an instance of the interpolation structure.
elessair 0:f269e3021894 6749 * @param[in] X interpolation coordinate.
elessair 0:f269e3021894 6750 * @param[in] Y interpolation coordinate.
elessair 0:f269e3021894 6751 * @return out interpolated value.
elessair 0:f269e3021894 6752 */
elessair 0:f269e3021894 6753 static __INLINE float32_t arm_bilinear_interp_f32(
elessair 0:f269e3021894 6754 const arm_bilinear_interp_instance_f32 * S,
elessair 0:f269e3021894 6755 float32_t X,
elessair 0:f269e3021894 6756 float32_t Y)
elessair 0:f269e3021894 6757 {
elessair 0:f269e3021894 6758 float32_t out;
elessair 0:f269e3021894 6759 float32_t f00, f01, f10, f11;
elessair 0:f269e3021894 6760 float32_t *pData = S->pData;
elessair 0:f269e3021894 6761 int32_t xIndex, yIndex, index;
elessair 0:f269e3021894 6762 float32_t xdiff, ydiff;
elessair 0:f269e3021894 6763 float32_t b1, b2, b3, b4;
elessair 0:f269e3021894 6764
elessair 0:f269e3021894 6765 xIndex = (int32_t) X;
elessair 0:f269e3021894 6766 yIndex = (int32_t) Y;
elessair 0:f269e3021894 6767
elessair 0:f269e3021894 6768 /* Care taken for table outside boundary */
elessair 0:f269e3021894 6769 /* Returns zero output when values are outside table boundary */
elessair 0:f269e3021894 6770 if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1))
elessair 0:f269e3021894 6771 {
elessair 0:f269e3021894 6772 return (0);
elessair 0:f269e3021894 6773 }
elessair 0:f269e3021894 6774
elessair 0:f269e3021894 6775 /* Calculation of index for two nearest points in X-direction */
elessair 0:f269e3021894 6776 index = (xIndex - 1) + (yIndex - 1) * S->numCols;
elessair 0:f269e3021894 6777
elessair 0:f269e3021894 6778
elessair 0:f269e3021894 6779 /* Read two nearest points in X-direction */
elessair 0:f269e3021894 6780 f00 = pData[index];
elessair 0:f269e3021894 6781 f01 = pData[index + 1];
elessair 0:f269e3021894 6782
elessair 0:f269e3021894 6783 /* Calculation of index for two nearest points in Y-direction */
elessair 0:f269e3021894 6784 index = (xIndex - 1) + (yIndex) * S->numCols;
elessair 0:f269e3021894 6785
elessair 0:f269e3021894 6786
elessair 0:f269e3021894 6787 /* Read two nearest points in Y-direction */
elessair 0:f269e3021894 6788 f10 = pData[index];
elessair 0:f269e3021894 6789 f11 = pData[index + 1];
elessair 0:f269e3021894 6790
elessair 0:f269e3021894 6791 /* Calculation of intermediate values */
elessair 0:f269e3021894 6792 b1 = f00;
elessair 0:f269e3021894 6793 b2 = f01 - f00;
elessair 0:f269e3021894 6794 b3 = f10 - f00;
elessair 0:f269e3021894 6795 b4 = f00 - f01 - f10 + f11;
elessair 0:f269e3021894 6796
elessair 0:f269e3021894 6797 /* Calculation of fractional part in X */
elessair 0:f269e3021894 6798 xdiff = X - xIndex;
elessair 0:f269e3021894 6799
elessair 0:f269e3021894 6800 /* Calculation of fractional part in Y */
elessair 0:f269e3021894 6801 ydiff = Y - yIndex;
elessair 0:f269e3021894 6802
elessair 0:f269e3021894 6803 /* Calculation of bi-linear interpolated output */
elessair 0:f269e3021894 6804 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
elessair 0:f269e3021894 6805
elessair 0:f269e3021894 6806 /* return to application */
elessair 0:f269e3021894 6807 return (out);
elessair 0:f269e3021894 6808 }
elessair 0:f269e3021894 6809
elessair 0:f269e3021894 6810
elessair 0:f269e3021894 6811 /**
elessair 0:f269e3021894 6812 *
elessair 0:f269e3021894 6813 * @brief Q31 bilinear interpolation.
elessair 0:f269e3021894 6814 * @param[in,out] S points to an instance of the interpolation structure.
elessair 0:f269e3021894 6815 * @param[in] X interpolation coordinate in 12.20 format.
elessair 0:f269e3021894 6816 * @param[in] Y interpolation coordinate in 12.20 format.
elessair 0:f269e3021894 6817 * @return out interpolated value.
elessair 0:f269e3021894 6818 */
elessair 0:f269e3021894 6819 static __INLINE q31_t arm_bilinear_interp_q31(
elessair 0:f269e3021894 6820 arm_bilinear_interp_instance_q31 * S,
elessair 0:f269e3021894 6821 q31_t X,
elessair 0:f269e3021894 6822 q31_t Y)
elessair 0:f269e3021894 6823 {
elessair 0:f269e3021894 6824 q31_t out; /* Temporary output */
elessair 0:f269e3021894 6825 q31_t acc = 0; /* output */
elessair 0:f269e3021894 6826 q31_t xfract, yfract; /* X, Y fractional parts */
elessair 0:f269e3021894 6827 q31_t x1, x2, y1, y2; /* Nearest output values */
elessair 0:f269e3021894 6828 int32_t rI, cI; /* Row and column indices */
elessair 0:f269e3021894 6829 q31_t *pYData = S->pData; /* pointer to output table values */
elessair 0:f269e3021894 6830 uint32_t nCols = S->numCols; /* num of rows */
elessair 0:f269e3021894 6831
elessair 0:f269e3021894 6832 /* Input is in 12.20 format */
elessair 0:f269e3021894 6833 /* 12 bits for the table index */
elessair 0:f269e3021894 6834 /* Index value calculation */
elessair 0:f269e3021894 6835 rI = ((X & (q31_t)0xFFF00000) >> 20);
elessair 0:f269e3021894 6836
elessair 0:f269e3021894 6837 /* Input is in 12.20 format */
elessair 0:f269e3021894 6838 /* 12 bits for the table index */
elessair 0:f269e3021894 6839 /* Index value calculation */
elessair 0:f269e3021894 6840 cI = ((Y & (q31_t)0xFFF00000) >> 20);
elessair 0:f269e3021894 6841
elessair 0:f269e3021894 6842 /* Care taken for table outside boundary */
elessair 0:f269e3021894 6843 /* Returns zero output when values are outside table boundary */
elessair 0:f269e3021894 6844 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
elessair 0:f269e3021894 6845 {
elessair 0:f269e3021894 6846 return (0);
elessair 0:f269e3021894 6847 }
elessair 0:f269e3021894 6848
elessair 0:f269e3021894 6849 /* 20 bits for the fractional part */
elessair 0:f269e3021894 6850 /* shift left xfract by 11 to keep 1.31 format */
elessair 0:f269e3021894 6851 xfract = (X & 0x000FFFFF) << 11u;
elessair 0:f269e3021894 6852
elessair 0:f269e3021894 6853 /* Read two nearest output values from the index */
elessair 0:f269e3021894 6854 x1 = pYData[(rI) + (int32_t)nCols * (cI) ];
elessair 0:f269e3021894 6855 x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1];
elessair 0:f269e3021894 6856
elessair 0:f269e3021894 6857 /* 20 bits for the fractional part */
elessair 0:f269e3021894 6858 /* shift left yfract by 11 to keep 1.31 format */
elessair 0:f269e3021894 6859 yfract = (Y & 0x000FFFFF) << 11u;
elessair 0:f269e3021894 6860
elessair 0:f269e3021894 6861 /* Read two nearest output values from the index */
elessair 0:f269e3021894 6862 y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ];
elessair 0:f269e3021894 6863 y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1];
elessair 0:f269e3021894 6864
elessair 0:f269e3021894 6865 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
elessair 0:f269e3021894 6866 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
elessair 0:f269e3021894 6867 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
elessair 0:f269e3021894 6868
elessair 0:f269e3021894 6869 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
elessair 0:f269e3021894 6870 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
elessair 0:f269e3021894 6871 acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
elessair 0:f269e3021894 6872
elessair 0:f269e3021894 6873 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
elessair 0:f269e3021894 6874 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
elessair 0:f269e3021894 6875 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
elessair 0:f269e3021894 6876
elessair 0:f269e3021894 6877 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
elessair 0:f269e3021894 6878 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
elessair 0:f269e3021894 6879 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
elessair 0:f269e3021894 6880
elessair 0:f269e3021894 6881 /* Convert acc to 1.31(q31) format */
elessair 0:f269e3021894 6882 return ((q31_t)(acc << 2));
elessair 0:f269e3021894 6883 }
elessair 0:f269e3021894 6884
elessair 0:f269e3021894 6885
elessair 0:f269e3021894 6886 /**
elessair 0:f269e3021894 6887 * @brief Q15 bilinear interpolation.
elessair 0:f269e3021894 6888 * @param[in,out] S points to an instance of the interpolation structure.
elessair 0:f269e3021894 6889 * @param[in] X interpolation coordinate in 12.20 format.
elessair 0:f269e3021894 6890 * @param[in] Y interpolation coordinate in 12.20 format.
elessair 0:f269e3021894 6891 * @return out interpolated value.
elessair 0:f269e3021894 6892 */
elessair 0:f269e3021894 6893 static __INLINE q15_t arm_bilinear_interp_q15(
elessair 0:f269e3021894 6894 arm_bilinear_interp_instance_q15 * S,
elessair 0:f269e3021894 6895 q31_t X,
elessair 0:f269e3021894 6896 q31_t Y)
elessair 0:f269e3021894 6897 {
elessair 0:f269e3021894 6898 q63_t acc = 0; /* output */
elessair 0:f269e3021894 6899 q31_t out; /* Temporary output */
elessair 0:f269e3021894 6900 q15_t x1, x2, y1, y2; /* Nearest output values */
elessair 0:f269e3021894 6901 q31_t xfract, yfract; /* X, Y fractional parts */
elessair 0:f269e3021894 6902 int32_t rI, cI; /* Row and column indices */
elessair 0:f269e3021894 6903 q15_t *pYData = S->pData; /* pointer to output table values */
elessair 0:f269e3021894 6904 uint32_t nCols = S->numCols; /* num of rows */
elessair 0:f269e3021894 6905
elessair 0:f269e3021894 6906 /* Input is in 12.20 format */
elessair 0:f269e3021894 6907 /* 12 bits for the table index */
elessair 0:f269e3021894 6908 /* Index value calculation */
elessair 0:f269e3021894 6909 rI = ((X & (q31_t)0xFFF00000) >> 20);
elessair 0:f269e3021894 6910
elessair 0:f269e3021894 6911 /* Input is in 12.20 format */
elessair 0:f269e3021894 6912 /* 12 bits for the table index */
elessair 0:f269e3021894 6913 /* Index value calculation */
elessair 0:f269e3021894 6914 cI = ((Y & (q31_t)0xFFF00000) >> 20);
elessair 0:f269e3021894 6915
elessair 0:f269e3021894 6916 /* Care taken for table outside boundary */
elessair 0:f269e3021894 6917 /* Returns zero output when values are outside table boundary */
elessair 0:f269e3021894 6918 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
elessair 0:f269e3021894 6919 {
elessair 0:f269e3021894 6920 return (0);
elessair 0:f269e3021894 6921 }
elessair 0:f269e3021894 6922
elessair 0:f269e3021894 6923 /* 20 bits for the fractional part */
elessair 0:f269e3021894 6924 /* xfract should be in 12.20 format */
elessair 0:f269e3021894 6925 xfract = (X & 0x000FFFFF);
elessair 0:f269e3021894 6926
elessair 0:f269e3021894 6927 /* Read two nearest output values from the index */
elessair 0:f269e3021894 6928 x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
elessair 0:f269e3021894 6929 x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
elessair 0:f269e3021894 6930
elessair 0:f269e3021894 6931 /* 20 bits for the fractional part */
elessair 0:f269e3021894 6932 /* yfract should be in 12.20 format */
elessair 0:f269e3021894 6933 yfract = (Y & 0x000FFFFF);
elessair 0:f269e3021894 6934
elessair 0:f269e3021894 6935 /* Read two nearest output values from the index */
elessair 0:f269e3021894 6936 y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
elessair 0:f269e3021894 6937 y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
elessair 0:f269e3021894 6938
elessair 0:f269e3021894 6939 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
elessair 0:f269e3021894 6940
elessair 0:f269e3021894 6941 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
elessair 0:f269e3021894 6942 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
elessair 0:f269e3021894 6943 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
elessair 0:f269e3021894 6944 acc = ((q63_t) out * (0xFFFFF - yfract));
elessair 0:f269e3021894 6945
elessair 0:f269e3021894 6946 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
elessair 0:f269e3021894 6947 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
elessair 0:f269e3021894 6948 acc += ((q63_t) out * (xfract));
elessair 0:f269e3021894 6949
elessair 0:f269e3021894 6950 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
elessair 0:f269e3021894 6951 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
elessair 0:f269e3021894 6952 acc += ((q63_t) out * (yfract));
elessair 0:f269e3021894 6953
elessair 0:f269e3021894 6954 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
elessair 0:f269e3021894 6955 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
elessair 0:f269e3021894 6956 acc += ((q63_t) out * (yfract));
elessair 0:f269e3021894 6957
elessair 0:f269e3021894 6958 /* acc is in 13.51 format and down shift acc by 36 times */
elessair 0:f269e3021894 6959 /* Convert out to 1.15 format */
elessair 0:f269e3021894 6960 return ((q15_t)(acc >> 36));
elessair 0:f269e3021894 6961 }
elessair 0:f269e3021894 6962
elessair 0:f269e3021894 6963
elessair 0:f269e3021894 6964 /**
elessair 0:f269e3021894 6965 * @brief Q7 bilinear interpolation.
elessair 0:f269e3021894 6966 * @param[in,out] S points to an instance of the interpolation structure.
elessair 0:f269e3021894 6967 * @param[in] X interpolation coordinate in 12.20 format.
elessair 0:f269e3021894 6968 * @param[in] Y interpolation coordinate in 12.20 format.
elessair 0:f269e3021894 6969 * @return out interpolated value.
elessair 0:f269e3021894 6970 */
elessair 0:f269e3021894 6971 static __INLINE q7_t arm_bilinear_interp_q7(
elessair 0:f269e3021894 6972 arm_bilinear_interp_instance_q7 * S,
elessair 0:f269e3021894 6973 q31_t X,
elessair 0:f269e3021894 6974 q31_t Y)
elessair 0:f269e3021894 6975 {
elessair 0:f269e3021894 6976 q63_t acc = 0; /* output */
elessair 0:f269e3021894 6977 q31_t out; /* Temporary output */
elessair 0:f269e3021894 6978 q31_t xfract, yfract; /* X, Y fractional parts */
elessair 0:f269e3021894 6979 q7_t x1, x2, y1, y2; /* Nearest output values */
elessair 0:f269e3021894 6980 int32_t rI, cI; /* Row and column indices */
elessair 0:f269e3021894 6981 q7_t *pYData = S->pData; /* pointer to output table values */
elessair 0:f269e3021894 6982 uint32_t nCols = S->numCols; /* num of rows */
elessair 0:f269e3021894 6983
elessair 0:f269e3021894 6984 /* Input is in 12.20 format */
elessair 0:f269e3021894 6985 /* 12 bits for the table index */
elessair 0:f269e3021894 6986 /* Index value calculation */
elessair 0:f269e3021894 6987 rI = ((X & (q31_t)0xFFF00000) >> 20);
elessair 0:f269e3021894 6988
elessair 0:f269e3021894 6989 /* Input is in 12.20 format */
elessair 0:f269e3021894 6990 /* 12 bits for the table index */
elessair 0:f269e3021894 6991 /* Index value calculation */
elessair 0:f269e3021894 6992 cI = ((Y & (q31_t)0xFFF00000) >> 20);
elessair 0:f269e3021894 6993
elessair 0:f269e3021894 6994 /* Care taken for table outside boundary */
elessair 0:f269e3021894 6995 /* Returns zero output when values are outside table boundary */
elessair 0:f269e3021894 6996 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
elessair 0:f269e3021894 6997 {
elessair 0:f269e3021894 6998 return (0);
elessair 0:f269e3021894 6999 }
elessair 0:f269e3021894 7000
elessair 0:f269e3021894 7001 /* 20 bits for the fractional part */
elessair 0:f269e3021894 7002 /* xfract should be in 12.20 format */
elessair 0:f269e3021894 7003 xfract = (X & (q31_t)0x000FFFFF);
elessair 0:f269e3021894 7004
elessair 0:f269e3021894 7005 /* Read two nearest output values from the index */
elessair 0:f269e3021894 7006 x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
elessair 0:f269e3021894 7007 x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
elessair 0:f269e3021894 7008
elessair 0:f269e3021894 7009 /* 20 bits for the fractional part */
elessair 0:f269e3021894 7010 /* yfract should be in 12.20 format */
elessair 0:f269e3021894 7011 yfract = (Y & (q31_t)0x000FFFFF);
elessair 0:f269e3021894 7012
elessair 0:f269e3021894 7013 /* Read two nearest output values from the index */
elessair 0:f269e3021894 7014 y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
elessair 0:f269e3021894 7015 y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
elessair 0:f269e3021894 7016
elessair 0:f269e3021894 7017 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
elessair 0:f269e3021894 7018 out = ((x1 * (0xFFFFF - xfract)));
elessair 0:f269e3021894 7019 acc = (((q63_t) out * (0xFFFFF - yfract)));
elessair 0:f269e3021894 7020
elessair 0:f269e3021894 7021 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
elessair 0:f269e3021894 7022 out = ((x2 * (0xFFFFF - yfract)));
elessair 0:f269e3021894 7023 acc += (((q63_t) out * (xfract)));
elessair 0:f269e3021894 7024
elessair 0:f269e3021894 7025 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
elessair 0:f269e3021894 7026 out = ((y1 * (0xFFFFF - xfract)));
elessair 0:f269e3021894 7027 acc += (((q63_t) out * (yfract)));
elessair 0:f269e3021894 7028
elessair 0:f269e3021894 7029 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
elessair 0:f269e3021894 7030 out = ((y2 * (yfract)));
elessair 0:f269e3021894 7031 acc += (((q63_t) out * (xfract)));
elessair 0:f269e3021894 7032
elessair 0:f269e3021894 7033 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
elessair 0:f269e3021894 7034 return ((q7_t)(acc >> 40));
elessair 0:f269e3021894 7035 }
elessair 0:f269e3021894 7036
elessair 0:f269e3021894 7037 /**
elessair 0:f269e3021894 7038 * @} end of BilinearInterpolate group
elessair 0:f269e3021894 7039 */
elessair 0:f269e3021894 7040
elessair 0:f269e3021894 7041
elessair 0:f269e3021894 7042 /* SMMLAR */
elessair 0:f269e3021894 7043 #define multAcc_32x32_keep32_R(a, x, y) \
elessair 0:f269e3021894 7044 a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
elessair 0:f269e3021894 7045
elessair 0:f269e3021894 7046 /* SMMLSR */
elessair 0:f269e3021894 7047 #define multSub_32x32_keep32_R(a, x, y) \
elessair 0:f269e3021894 7048 a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
elessair 0:f269e3021894 7049
elessair 0:f269e3021894 7050 /* SMMULR */
elessair 0:f269e3021894 7051 #define mult_32x32_keep32_R(a, x, y) \
elessair 0:f269e3021894 7052 a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
elessair 0:f269e3021894 7053
elessair 0:f269e3021894 7054 /* SMMLA */
elessair 0:f269e3021894 7055 #define multAcc_32x32_keep32(a, x, y) \
elessair 0:f269e3021894 7056 a += (q31_t) (((q63_t) x * y) >> 32)
elessair 0:f269e3021894 7057
elessair 0:f269e3021894 7058 /* SMMLS */
elessair 0:f269e3021894 7059 #define multSub_32x32_keep32(a, x, y) \
elessair 0:f269e3021894 7060 a -= (q31_t) (((q63_t) x * y) >> 32)
elessair 0:f269e3021894 7061
elessair 0:f269e3021894 7062 /* SMMUL */
elessair 0:f269e3021894 7063 #define mult_32x32_keep32(a, x, y) \
elessair 0:f269e3021894 7064 a = (q31_t) (((q63_t) x * y ) >> 32)
elessair 0:f269e3021894 7065
elessair 0:f269e3021894 7066
elessair 0:f269e3021894 7067 #if defined ( __CC_ARM )
elessair 0:f269e3021894 7068 /* Enter low optimization region - place directly above function definition */
elessair 0:f269e3021894 7069 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
elessair 0:f269e3021894 7070 #define LOW_OPTIMIZATION_ENTER \
elessair 0:f269e3021894 7071 _Pragma ("push") \
elessair 0:f269e3021894 7072 _Pragma ("O1")
elessair 0:f269e3021894 7073 #else
elessair 0:f269e3021894 7074 #define LOW_OPTIMIZATION_ENTER
elessair 0:f269e3021894 7075 #endif
elessair 0:f269e3021894 7076
elessair 0:f269e3021894 7077 /* Exit low optimization region - place directly after end of function definition */
elessair 0:f269e3021894 7078 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
elessair 0:f269e3021894 7079 #define LOW_OPTIMIZATION_EXIT \
elessair 0:f269e3021894 7080 _Pragma ("pop")
elessair 0:f269e3021894 7081 #else
elessair 0:f269e3021894 7082 #define LOW_OPTIMIZATION_EXIT
elessair 0:f269e3021894 7083 #endif
elessair 0:f269e3021894 7084
elessair 0:f269e3021894 7085 /* Enter low optimization region - place directly above function definition */
elessair 0:f269e3021894 7086 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
elessair 0:f269e3021894 7087
elessair 0:f269e3021894 7088 /* Exit low optimization region - place directly after end of function definition */
elessair 0:f269e3021894 7089 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
elessair 0:f269e3021894 7090
elessair 0:f269e3021894 7091 #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
elessair 0:f269e3021894 7092 #define LOW_OPTIMIZATION_ENTER
elessair 0:f269e3021894 7093 #define LOW_OPTIMIZATION_EXIT
elessair 0:f269e3021894 7094 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
elessair 0:f269e3021894 7095 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
elessair 0:f269e3021894 7096
elessair 0:f269e3021894 7097 #elif defined(__GNUC__)
elessair 0:f269e3021894 7098 #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
elessair 0:f269e3021894 7099 #define LOW_OPTIMIZATION_EXIT
elessair 0:f269e3021894 7100 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
elessair 0:f269e3021894 7101 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
elessair 0:f269e3021894 7102
elessair 0:f269e3021894 7103 #elif defined(__ICCARM__)
elessair 0:f269e3021894 7104 /* Enter low optimization region - place directly above function definition */
elessair 0:f269e3021894 7105 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
elessair 0:f269e3021894 7106 #define LOW_OPTIMIZATION_ENTER \
elessair 0:f269e3021894 7107 _Pragma ("optimize=low")
elessair 0:f269e3021894 7108 #else
elessair 0:f269e3021894 7109 #define LOW_OPTIMIZATION_ENTER
elessair 0:f269e3021894 7110 #endif
elessair 0:f269e3021894 7111
elessair 0:f269e3021894 7112 /* Exit low optimization region - place directly after end of function definition */
elessair 0:f269e3021894 7113 #define LOW_OPTIMIZATION_EXIT
elessair 0:f269e3021894 7114
elessair 0:f269e3021894 7115 /* Enter low optimization region - place directly above function definition */
elessair 0:f269e3021894 7116 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
elessair 0:f269e3021894 7117 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
elessair 0:f269e3021894 7118 _Pragma ("optimize=low")
elessair 0:f269e3021894 7119 #else
elessair 0:f269e3021894 7120 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
elessair 0:f269e3021894 7121 #endif
elessair 0:f269e3021894 7122
elessair 0:f269e3021894 7123 /* Exit low optimization region - place directly after end of function definition */
elessair 0:f269e3021894 7124 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
elessair 0:f269e3021894 7125
elessair 0:f269e3021894 7126 #elif defined(__CSMC__)
elessair 0:f269e3021894 7127 #define LOW_OPTIMIZATION_ENTER
elessair 0:f269e3021894 7128 #define LOW_OPTIMIZATION_EXIT
elessair 0:f269e3021894 7129 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
elessair 0:f269e3021894 7130 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
elessair 0:f269e3021894 7131
elessair 0:f269e3021894 7132 #elif defined(__TASKING__)
elessair 0:f269e3021894 7133 #define LOW_OPTIMIZATION_ENTER
elessair 0:f269e3021894 7134 #define LOW_OPTIMIZATION_EXIT
elessair 0:f269e3021894 7135 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
elessair 0:f269e3021894 7136 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
elessair 0:f269e3021894 7137
elessair 0:f269e3021894 7138 #endif
elessair 0:f269e3021894 7139
elessair 0:f269e3021894 7140
elessair 0:f269e3021894 7141 #ifdef __cplusplus
elessair 0:f269e3021894 7142 }
elessair 0:f269e3021894 7143 #endif
elessair 0:f269e3021894 7144
elessair 0:f269e3021894 7145
elessair 0:f269e3021894 7146 #if defined ( __GNUC__ )
elessair 0:f269e3021894 7147 #pragma GCC diagnostic pop
elessair 0:f269e3021894 7148 #endif
elessair 0:f269e3021894 7149
elessair 0:f269e3021894 7150 #endif /* _ARM_MATH_H */
elessair 0:f269e3021894 7151
elessair 0:f269e3021894 7152 /**
elessair 0:f269e3021894 7153 *
elessair 0:f269e3021894 7154 * End of file.
elessair 0:f269e3021894 7155 */