Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: Nucleo-Heart-Rate ejercicioVrms2 PROYECTOFINAL ejercicioVrms ... more
arm_fir_q7.c
00001 /* ---------------------------------------------------------------------- 00002 * Project: CMSIS DSP Library 00003 * Title: arm_fir_q7.c 00004 * Description: Q7 FIR filter processing function 00005 * 00006 * $Date: 27. January 2017 00007 * $Revision: V.1.5.1 00008 * 00009 * Target Processor: Cortex-M cores 00010 * -------------------------------------------------------------------- */ 00011 /* 00012 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. 00013 * 00014 * SPDX-License-Identifier: Apache-2.0 00015 * 00016 * Licensed under the Apache License, Version 2.0 (the License); you may 00017 * not use this file except in compliance with the License. 00018 * You may obtain a copy of the License at 00019 * 00020 * www.apache.org/licenses/LICENSE-2.0 00021 * 00022 * Unless required by applicable law or agreed to in writing, software 00023 * distributed under the License is distributed on an AS IS BASIS, WITHOUT 00024 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00025 * See the License for the specific language governing permissions and 00026 * limitations under the License. 00027 */ 00028 00029 #include "arm_math.h" 00030 00031 /** 00032 * @ingroup groupFilters 00033 */ 00034 00035 /** 00036 * @addtogroup FIR 00037 * @{ 00038 */ 00039 00040 /** 00041 * @param[in] *S points to an instance of the Q7 FIR filter structure. 00042 * @param[in] *pSrc points to the block of input data. 00043 * @param[out] *pDst points to the block of output data. 00044 * @param[in] blockSize number of samples to process per call. 00045 * @return none. 00046 * 00047 * <b>Scaling and Overflow Behavior:</b> 00048 * \par 00049 * The function is implemented using a 32-bit internal accumulator. 00050 * Both coefficients and state variables are represented in 1.7 format and multiplications yield a 2.14 result. 00051 * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format. 00052 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. 00053 * The accumulator is converted to 18.7 format by discarding the low 7 bits. 00054 * Finally, the result is truncated to 1.7 format. 00055 */ 00056 00057 void arm_fir_q7( 00058 const arm_fir_instance_q7 * S, 00059 q7_t * pSrc, 00060 q7_t * pDst, 00061 uint32_t blockSize) 00062 { 00063 00064 #if defined (ARM_MATH_DSP) 00065 00066 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00067 00068 q7_t *pState = S->pState; /* State pointer */ 00069 q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00070 q7_t *pStateCurnt; /* Points to the current sample of the state */ 00071 q7_t x0, x1, x2, x3; /* Temporary variables to hold state */ 00072 q7_t c0; /* Temporary variable to hold coefficient value */ 00073 q7_t *px; /* Temporary pointer for state */ 00074 q7_t *pb; /* Temporary pointer for coefficient buffer */ 00075 q31_t acc0, acc1, acc2, acc3; /* Accumulators */ 00076 uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */ 00077 uint32_t i, tapCnt, blkCnt; /* Loop counters */ 00078 00079 /* S->pState points to state array which contains previous frame (numTaps - 1) samples */ 00080 /* pStateCurnt points to the location where the new input data should be written */ 00081 pStateCurnt = &(S->pState[(numTaps - 1U)]); 00082 00083 /* Apply loop unrolling and compute 4 output values simultaneously. 00084 * The variables acc0 ... acc3 hold output values that are being computed: 00085 * 00086 * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] 00087 * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1] 00088 * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2] 00089 * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3] 00090 */ 00091 blkCnt = blockSize >> 2; 00092 00093 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00094 ** a second loop below computes the remaining 1 to 3 samples. */ 00095 while (blkCnt > 0U) 00096 { 00097 /* Copy four new input samples into the state buffer */ 00098 *pStateCurnt++ = *pSrc++; 00099 *pStateCurnt++ = *pSrc++; 00100 *pStateCurnt++ = *pSrc++; 00101 *pStateCurnt++ = *pSrc++; 00102 00103 /* Set all accumulators to zero */ 00104 acc0 = 0; 00105 acc1 = 0; 00106 acc2 = 0; 00107 acc3 = 0; 00108 00109 /* Initialize state pointer */ 00110 px = pState; 00111 00112 /* Initialize coefficient pointer */ 00113 pb = pCoeffs; 00114 00115 /* Read the first three samples from the state buffer: 00116 * x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */ 00117 x0 = *(px++); 00118 x1 = *(px++); 00119 x2 = *(px++); 00120 00121 /* Loop unrolling. Process 4 taps at a time. */ 00122 tapCnt = numTaps >> 2; 00123 i = tapCnt; 00124 00125 while (i > 0U) 00126 { 00127 /* Read the b[numTaps] coefficient */ 00128 c0 = *pb; 00129 00130 /* Read x[n-numTaps-3] sample */ 00131 x3 = *px; 00132 00133 /* acc0 += b[numTaps] * x[n-numTaps] */ 00134 acc0 += ((q15_t) x0 * c0); 00135 00136 /* acc1 += b[numTaps] * x[n-numTaps-1] */ 00137 acc1 += ((q15_t) x1 * c0); 00138 00139 /* acc2 += b[numTaps] * x[n-numTaps-2] */ 00140 acc2 += ((q15_t) x2 * c0); 00141 00142 /* acc3 += b[numTaps] * x[n-numTaps-3] */ 00143 acc3 += ((q15_t) x3 * c0); 00144 00145 /* Read the b[numTaps-1] coefficient */ 00146 c0 = *(pb + 1U); 00147 00148 /* Read x[n-numTaps-4] sample */ 00149 x0 = *(px + 1U); 00150 00151 /* Perform the multiply-accumulates */ 00152 acc0 += ((q15_t) x1 * c0); 00153 acc1 += ((q15_t) x2 * c0); 00154 acc2 += ((q15_t) x3 * c0); 00155 acc3 += ((q15_t) x0 * c0); 00156 00157 /* Read the b[numTaps-2] coefficient */ 00158 c0 = *(pb + 2U); 00159 00160 /* Read x[n-numTaps-5] sample */ 00161 x1 = *(px + 2U); 00162 00163 /* Perform the multiply-accumulates */ 00164 acc0 += ((q15_t) x2 * c0); 00165 acc1 += ((q15_t) x3 * c0); 00166 acc2 += ((q15_t) x0 * c0); 00167 acc3 += ((q15_t) x1 * c0); 00168 00169 /* Read the b[numTaps-3] coefficients */ 00170 c0 = *(pb + 3U); 00171 00172 /* Read x[n-numTaps-6] sample */ 00173 x2 = *(px + 3U); 00174 00175 /* Perform the multiply-accumulates */ 00176 acc0 += ((q15_t) x3 * c0); 00177 acc1 += ((q15_t) x0 * c0); 00178 acc2 += ((q15_t) x1 * c0); 00179 acc3 += ((q15_t) x2 * c0); 00180 00181 /* update coefficient pointer */ 00182 pb += 4U; 00183 px += 4U; 00184 00185 /* Decrement the loop counter */ 00186 i--; 00187 } 00188 00189 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00190 00191 i = numTaps - (tapCnt * 4U); 00192 while (i > 0U) 00193 { 00194 /* Read coefficients */ 00195 c0 = *(pb++); 00196 00197 /* Fetch 1 state variable */ 00198 x3 = *(px++); 00199 00200 /* Perform the multiply-accumulates */ 00201 acc0 += ((q15_t) x0 * c0); 00202 acc1 += ((q15_t) x1 * c0); 00203 acc2 += ((q15_t) x2 * c0); 00204 acc3 += ((q15_t) x3 * c0); 00205 00206 /* Reuse the present sample states for next sample */ 00207 x0 = x1; 00208 x1 = x2; 00209 x2 = x3; 00210 00211 /* Decrement the loop counter */ 00212 i--; 00213 } 00214 00215 /* Advance the state pointer by 4 to process the next group of 4 samples */ 00216 pState = pState + 4; 00217 00218 /* The results in the 4 accumulators are in 2.62 format. Convert to 1.31 00219 ** Then store the 4 outputs in the destination buffer. */ 00220 acc0 = __SSAT((acc0 >> 7U), 8); 00221 *pDst++ = acc0; 00222 acc1 = __SSAT((acc1 >> 7U), 8); 00223 *pDst++ = acc1; 00224 acc2 = __SSAT((acc2 >> 7U), 8); 00225 *pDst++ = acc2; 00226 acc3 = __SSAT((acc3 >> 7U), 8); 00227 *pDst++ = acc3; 00228 00229 /* Decrement the samples loop counter */ 00230 blkCnt--; 00231 } 00232 00233 00234 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00235 ** No loop unrolling is used. */ 00236 blkCnt = blockSize % 4U; 00237 00238 while (blkCnt > 0U) 00239 { 00240 /* Copy one sample at a time into state buffer */ 00241 *pStateCurnt++ = *pSrc++; 00242 00243 /* Set the accumulator to zero */ 00244 acc0 = 0; 00245 00246 /* Initialize state pointer */ 00247 px = pState; 00248 00249 /* Initialize Coefficient pointer */ 00250 pb = (pCoeffs); 00251 00252 i = numTaps; 00253 00254 /* Perform the multiply-accumulates */ 00255 do 00256 { 00257 acc0 += (q15_t) * (px++) * (*(pb++)); 00258 i--; 00259 } while (i > 0U); 00260 00261 /* The result is in 2.14 format. Convert to 1.7 00262 ** Then store the output in the destination buffer. */ 00263 *pDst++ = __SSAT((acc0 >> 7U), 8); 00264 00265 /* Advance state pointer by 1 for the next sample */ 00266 pState = pState + 1; 00267 00268 /* Decrement the samples loop counter */ 00269 blkCnt--; 00270 } 00271 00272 /* Processing is complete. 00273 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. 00274 ** This prepares the state buffer for the next function call. */ 00275 00276 /* Points to the start of the state buffer */ 00277 pStateCurnt = S->pState; 00278 00279 tapCnt = (numTaps - 1U) >> 2U; 00280 00281 /* copy data */ 00282 while (tapCnt > 0U) 00283 { 00284 *pStateCurnt++ = *pState++; 00285 *pStateCurnt++ = *pState++; 00286 *pStateCurnt++ = *pState++; 00287 *pStateCurnt++ = *pState++; 00288 00289 /* Decrement the loop counter */ 00290 tapCnt--; 00291 } 00292 00293 /* Calculate remaining number of copies */ 00294 tapCnt = (numTaps - 1U) % 0x4U; 00295 00296 /* Copy the remaining q31_t data */ 00297 while (tapCnt > 0U) 00298 { 00299 *pStateCurnt++ = *pState++; 00300 00301 /* Decrement the loop counter */ 00302 tapCnt--; 00303 } 00304 00305 #else 00306 00307 /* Run the below code for Cortex-M0 */ 00308 00309 uint32_t numTaps = S->numTaps; /* Number of taps in the filter */ 00310 uint32_t i, blkCnt; /* Loop counters */ 00311 q7_t *pState = S->pState; /* State pointer */ 00312 q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00313 q7_t *px, *pb; /* Temporary pointers to state and coeff */ 00314 q31_t acc = 0; /* Accumlator */ 00315 q7_t *pStateCurnt; /* Points to the current sample of the state */ 00316 00317 00318 /* S->pState points to state array which contains previous frame (numTaps - 1) samples */ 00319 /* pStateCurnt points to the location where the new input data should be written */ 00320 pStateCurnt = S->pState + (numTaps - 1U); 00321 00322 /* Initialize blkCnt with blockSize */ 00323 blkCnt = blockSize; 00324 00325 /* Perform filtering upto BlockSize - BlockSize%4 */ 00326 while (blkCnt > 0U) 00327 { 00328 /* Copy one sample at a time into state buffer */ 00329 *pStateCurnt++ = *pSrc++; 00330 00331 /* Set accumulator to zero */ 00332 acc = 0; 00333 00334 /* Initialize state pointer of type q7 */ 00335 px = pState; 00336 00337 /* Initialize coeff pointer of type q7 */ 00338 pb = pCoeffs; 00339 00340 00341 i = numTaps; 00342 00343 while (i > 0U) 00344 { 00345 /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */ 00346 acc += (q15_t) * px++ * *pb++; 00347 i--; 00348 } 00349 00350 /* Store the 1.7 format filter output in destination buffer */ 00351 *pDst++ = (q7_t) __SSAT((acc >> 7), 8); 00352 00353 /* Advance the state pointer by 1 to process the next sample */ 00354 pState = pState + 1; 00355 00356 /* Decrement the loop counter */ 00357 blkCnt--; 00358 } 00359 00360 /* Processing is complete. 00361 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. 00362 ** This prepares the state buffer for the next function call. */ 00363 00364 00365 /* Points to the start of the state buffer */ 00366 pStateCurnt = S->pState; 00367 00368 00369 /* Copy numTaps number of values */ 00370 i = (numTaps - 1U); 00371 00372 /* Copy q7_t data */ 00373 while (i > 0U) 00374 { 00375 *pStateCurnt++ = *pState++; 00376 i--; 00377 } 00378 00379 #endif /* #if defined (ARM_MATH_DSP) */ 00380 00381 } 00382 00383 /** 00384 * @} end of FIR group 00385 */
Generated on Tue Jul 12 2022 21:02:35 by
