wolf SSL / wolfSSL-TLS13-Beta

Fork of wolfSSL by wolf SSL

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers sha.c Source File

sha.c

00001 /* sha.c
00002  *
00003  * Copyright (C) 2006-2016 wolfSSL Inc.
00004  *
00005  * This file is part of wolfSSL.
00006  *
00007  * wolfSSL is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 2 of the License, or
00010  * (at your option) any later version.
00011  *
00012  * wolfSSL is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU General Public License
00018  * along with this program; if not, write to the Free Software
00019  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
00020  */
00021 
00022 
00023 #ifdef HAVE_CONFIG_H
00024     #include <config.h>
00025 #endif
00026 
00027 #include <wolfssl/wolfcrypt/settings.h>
00028 
00029 #if !defined(NO_SHA)
00030 
00031 #include <wolfssl/wolfcrypt/sha.h>
00032 #include <wolfssl/wolfcrypt/error-crypt.h>
00033 
00034 /* fips wrapper calls, user can call direct */
00035 #ifdef HAVE_FIPS
00036     int wc_InitSha(Sha* sha)
00037     {
00038         return InitSha_fips(sha);
00039     }
00040     int wc_InitSha_ex(Sha* sha, void* heap, int devId)
00041     {
00042         (void)heap;
00043         (void)devId;
00044         return InitSha_fips(sha);
00045     }
00046 
00047     int wc_ShaUpdate(Sha* sha, const byte* data, word32 len)
00048     {
00049         return ShaUpdate_fips(sha, data, len);
00050     }
00051 
00052     int wc_ShaFinal(Sha* sha, byte* out)
00053     {
00054         return ShaFinal_fips(sha,out);
00055     }
00056     void wc_ShaFree(Sha* sha)
00057     {
00058         (void)sha;
00059         /* Not supported in FIPS */
00060     }
00061 
00062 #else /* else build without fips */
00063 
00064 
00065 #if defined(WOLFSSL_TI_HASH)
00066     /* #include <wolfcrypt/src/port/ti/ti-hash.c> included by wc_port.c */
00067 
00068 #else
00069 
00070 #include <wolfssl/wolfcrypt/logging.h>
00071 #ifdef NO_INLINE
00072     #include <wolfssl/wolfcrypt/misc.h>
00073 #else
00074     #define WOLFSSL_MISC_INCLUDED
00075     #include <wolfcrypt/src/misc.c>
00076 #endif
00077 
00078 
00079 /* Hardware Acceleration */
00080 #if defined(WOLFSSL_PIC32MZ_HASH)
00081     #define USE_SHA_SOFTWARE_IMPL
00082     #define wc_InitSha   wc_InitSha_sw
00083     #define wc_ShaUpdate wc_ShaUpdate_sw
00084     #define wc_ShaFinal  wc_ShaFinal_sw
00085 
00086 #elif defined(STM32F2_HASH) || defined(STM32F4_HASH)
00087 
00088     /*
00089      * STM32F2/F4 hardware SHA1 support through the standard peripheral
00090      * library. (See note in README).
00091      */
00092 
00093     static int InitSha(Sha* sha)
00094     {
00095         /* STM32 struct notes:
00096          * sha->buffer  = first 4 bytes used to hold partial block if needed
00097          * sha->buffLen = num bytes currently stored in sha->buffer
00098          * sha->loLen   = num bytes that have been written to STM32 FIFO
00099          */
00100         XMEMSET(sha->buffer, 0, SHA_REG_SIZE);
00101         sha->buffLen = 0;
00102         sha->loLen = 0;
00103 
00104         /* initialize HASH peripheral */
00105         HASH_DeInit();
00106 
00107         /* configure algo used, algo mode, datatype */
00108         HASH->CR &= ~ (HASH_CR_ALGO | HASH_CR_DATATYPE | HASH_CR_MODE);
00109         HASH->CR |= (HASH_AlgoSelection_SHA1 | HASH_AlgoMode_HASH
00110                      | HASH_DataType_8b);
00111 
00112         /* reset HASH processor */
00113         HASH->CR |= HASH_CR_INIT;
00114 
00115         return 0;
00116     }
00117 
00118     int wc_ShaUpdate(Sha* sha, const byte* data, word32 len)
00119     {
00120         word32 i = 0;
00121         word32 fill = 0;
00122         word32 diff = 0;
00123 
00124         /* if saved partial block is available */
00125         if (sha->buffLen) {
00126             fill = 4 - sha->buffLen;
00127 
00128             /* if enough data to fill, fill and push to FIFO */
00129             if (fill <= len) {
00130                 XMEMCPY((byte*)sha->buffer + sha->buffLen, data, fill);
00131                 HASH_DataIn(*(uint32_t*)sha->buffer);
00132 
00133                 data += fill;
00134                 len -= fill;
00135                 sha->loLen += 4;
00136                 sha->buffLen = 0;
00137             } else {
00138                 /* append partial to existing stored block */
00139                 XMEMCPY((byte*)sha->buffer + sha->buffLen, data, len);
00140                 sha->buffLen += len;
00141                 return 0;
00142             }
00143         }
00144 
00145         /* write input block in the IN FIFO */
00146         for(i = 0; i < len; i += 4)
00147         {
00148             diff = len - i;
00149             if ( diff < 4) {
00150                 /* store incomplete last block, not yet in FIFO */
00151                 XMEMSET(sha->buffer, 0, SHA_REG_SIZE);
00152                 XMEMCPY((byte*)sha->buffer, data, diff);
00153                 sha->buffLen = diff;
00154             } else {
00155                 HASH_DataIn(*(uint32_t*)data);
00156                 data+=4;
00157             }
00158         }
00159 
00160         /* keep track of total data length thus far */
00161         sha->loLen += (len - sha->buffLen);
00162 
00163         return 0;
00164     }
00165 
00166     int wc_ShaFinal(Sha* sha, byte* hash)
00167     {
00168         __IO uint16_t nbvalidbitsdata = 0;
00169 
00170         /* finish reading any trailing bytes into FIFO */
00171         if (sha->buffLen) {
00172             HASH_DataIn(*(uint32_t*)sha->buffer);
00173             sha->loLen += sha->buffLen;
00174         }
00175 
00176         /* calculate number of valid bits in last word of input data */
00177         nbvalidbitsdata = 8 * (sha->loLen % SHA_REG_SIZE);
00178 
00179         /* configure number of valid bits in last word of the data */
00180         HASH_SetLastWordValidBitsNbr(nbvalidbitsdata);
00181 
00182         /* start HASH processor */
00183         HASH_StartDigest();
00184 
00185         /* wait until Busy flag == RESET */
00186         while (HASH_GetFlagStatus(HASH_FLAG_BUSY) != RESET) {}
00187 
00188         /* read message digest */
00189         sha->digest[0] = HASH->HR[0];
00190         sha->digest[1] = HASH->HR[1];
00191         sha->digest[2] = HASH->HR[2];
00192         sha->digest[3] = HASH->HR[3];
00193         sha->digest[4] = HASH->HR[4];
00194 
00195         ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE);
00196 
00197         XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE);
00198 
00199         return wc_InitSha(sha);  /* reset state */
00200     }
00201 
00202 
00203 #elif defined(FREESCALE_LTC_SHA)
00204 
00205     #include "fsl_ltc.h"
00206     static int InitSha(Sha* sha)
00207     {
00208         LTC_HASH_Init(LTC_BASE, &sha->ctx, kLTC_Sha1, NULL, 0);
00209         return 0;
00210     }
00211 
00212     int wc_ShaUpdate(Sha* sha, const byte* data, word32 len)
00213     {
00214         LTC_HASH_Update(&sha->ctx, data, len);
00215         return 0;
00216     }
00217 
00218     int wc_ShaFinal(Sha* sha, byte* hash)
00219     {
00220         uint32_t hashlen = SHA_DIGEST_SIZE;
00221         LTC_HASH_Finish(&sha->ctx, hash, &hashlen);
00222         return wc_InitSha(sha);  /* reset state */
00223     }
00224 
00225 
00226 #elif defined(FREESCALE_MMCAU_SHA)
00227 
00228     #include "fsl_mmcau.h"
00229     #define USE_SHA_SOFTWARE_IMPL /* Only for API's, actual transform is here */
00230     #define XSHATRANSFORM   ShaTransform
00231 
00232     static int InitSha(Sha* sha)
00233     {
00234         int ret = 0;
00235         ret = wolfSSL_CryptHwMutexLock();
00236         if(ret != 0) {
00237             return ret;
00238         }
00239         MMCAU_SHA1_InitializeOutput((uint32_t*)sha->digest);
00240         wolfSSL_CryptHwMutexUnLock();
00241 
00242         sha->buffLen = 0;
00243         sha->loLen   = 0;
00244         sha->hiLen   = 0;
00245 
00246         return ret;
00247     }
00248 
00249     static int ShaTransform(Sha* sha, byte* data)
00250     {
00251         int ret = wolfSSL_CryptHwMutexLock();
00252         if(ret == 0) {
00253             MMCAU_SHA1_HashN(data, 1, (uint32_t*)sha->digest);
00254             wolfSSL_CryptHwMutexUnLock();
00255         }
00256         return ret;
00257     }
00258 
00259 #else
00260 
00261     /* Software implementation */
00262     #define USE_SHA_SOFTWARE_IMPL
00263 
00264     static int InitSha(Sha* sha)
00265     {
00266         int ret = 0;
00267 
00268         sha->digest[0] = 0x67452301L;
00269         sha->digest[1] = 0xEFCDAB89L;
00270         sha->digest[2] = 0x98BADCFEL;
00271         sha->digest[3] = 0x10325476L;
00272         sha->digest[4] = 0xC3D2E1F0L;
00273 
00274         sha->buffLen = 0;
00275         sha->loLen   = 0;
00276         sha->hiLen   = 0;
00277 
00278         return ret;
00279     }
00280 
00281 #endif /* End Hardware Acceleration */
00282 
00283 
00284 /* Software implementation */
00285 #ifdef USE_SHA_SOFTWARE_IMPL
00286 
00287 /* Check if custom Sha transform is used */
00288 #ifndef XSHATRANSFORM
00289     #define XSHATRANSFORM   ShaTransform
00290 
00291     #define blk0(i) (W[i] = sha->buffer[i])
00292     #define blk1(i) (W[(i)&15] = \
00293         rotlFixed(W[((i)+13)&15]^W[((i)+8)&15]^W[((i)+2)&15]^W[(i)&15],1))
00294 
00295     #define f1(x,y,z) ((z)^((x) &((y)^(z))))
00296     #define f2(x,y,z) ((x)^(y)^(z))
00297     #define f3(x,y,z) (((x)&(y))|((z)&((x)|(y))))
00298     #define f4(x,y,z) ((x)^(y)^(z))
00299 
00300     /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
00301     #define R0(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk0((i)) + 0x5A827999+ \
00302         rotlFixed((v),5); (w) = rotlFixed((w),30);
00303     #define R1(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk1((i)) + 0x5A827999+ \
00304         rotlFixed((v),5); (w) = rotlFixed((w),30);
00305     #define R2(v,w,x,y,z,i) (z)+= f2((w),(x),(y)) + blk1((i)) + 0x6ED9EBA1+ \
00306         rotlFixed((v),5); (w) = rotlFixed((w),30);
00307     #define R3(v,w,x,y,z,i) (z)+= f3((w),(x),(y)) + blk1((i)) + 0x8F1BBCDC+ \
00308         rotlFixed((v),5); (w) = rotlFixed((w),30);
00309     #define R4(v,w,x,y,z,i) (z)+= f4((w),(x),(y)) + blk1((i)) + 0xCA62C1D6+ \
00310         rotlFixed((v),5); (w) = rotlFixed((w),30);
00311 
00312     static void ShaTransform(Sha* sha, byte* data)
00313     {
00314         word32 W[SHA_BLOCK_SIZE / sizeof(word32)];
00315 
00316         /* Copy context->state[] to working vars */
00317         word32 a = sha->digest[0];
00318         word32 b = sha->digest[1];
00319         word32 c = sha->digest[2];
00320         word32 d = sha->digest[3];
00321         word32 e = sha->digest[4];
00322 
00323     #ifdef USE_SLOW_SHA
00324         word32 t, i;
00325 
00326         for (i = 0; i < 16; i++) {
00327             R0(a, b, c, d, e, i);
00328             t = e; e = d; d = c; c = b; b = a; a = t;
00329         }
00330 
00331         for (; i < 20; i++) {
00332             R1(a, b, c, d, e, i);
00333             t = e; e = d; d = c; c = b; b = a; a = t;
00334         }
00335 
00336         for (; i < 40; i++) {
00337             R2(a, b, c, d, e, i);
00338             t = e; e = d; d = c; c = b; b = a; a = t;
00339         }
00340 
00341         for (; i < 60; i++) {
00342             R3(a, b, c, d, e, i);
00343             t = e; e = d; d = c; c = b; b = a; a = t;
00344         }
00345 
00346         for (; i < 80; i++) {
00347             R4(a, b, c, d, e, i);
00348             t = e; e = d; d = c; c = b; b = a; a = t;
00349         }
00350     #else
00351         /* nearly 1 K bigger in code size but 25% faster  */
00352         /* 4 rounds of 20 operations each. Loop unrolled. */
00353         R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
00354         R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
00355         R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
00356         R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
00357 
00358         R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
00359 
00360         R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
00361         R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
00362         R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
00363         R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
00364         R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
00365 
00366         R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
00367         R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
00368         R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
00369         R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
00370         R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
00371 
00372         R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
00373         R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
00374         R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
00375         R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
00376         R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
00377     #endif
00378 
00379         /* Add the working vars back into digest state[] */
00380         sha->digest[0] += a;
00381         sha->digest[1] += b;
00382         sha->digest[2] += c;
00383         sha->digest[3] += d;
00384         sha->digest[4] += e;
00385 
00386         (void)data; /* Not used */
00387     }
00388 #endif /* !USE_CUSTOM_SHA_TRANSFORM */
00389 
00390 
00391 static INLINE void AddLength(Sha* sha, word32 len)
00392 {
00393     word32 tmp = sha->loLen;
00394     if ( (sha->loLen += len) < tmp)
00395         sha->hiLen++;                       /* carry low to high */
00396 }
00397 
00398 int wc_InitSha_ex(Sha* sha, void* heap, int devId)
00399 {
00400     int ret = 0;
00401 
00402     if (sha == NULL)
00403         return BAD_FUNC_ARG;
00404 
00405     sha->heap = heap;
00406 
00407     ret = InitSha(sha);
00408     if (ret != 0)
00409         return ret;
00410 
00411 #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
00412     ret = wolfAsync_DevCtxInit(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA,
00413                                                             sha->heap, devId);
00414 #else
00415     (void)devId;
00416 #endif /* WOLFSSL_ASYNC_CRYPT */
00417 
00418     return ret;
00419 }
00420 
00421 int wc_ShaUpdate(Sha* sha, const byte* data, word32 len)
00422 {
00423     /* do block size increments */
00424     byte* local = (byte*)sha->buffer;
00425 
00426 #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
00427     if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) {
00428     #if defined(HAVE_INTEL_QA)
00429         return IntelQaSymSha(&sha->asyncDev, NULL, data, len);
00430     #endif
00431     }
00432 #endif /* WOLFSSL_ASYNC_CRYPT */
00433 
00434     /* check that internal buffLen is valid */
00435     if (sha->buffLen >= SHA_BLOCK_SIZE)
00436         return BUFFER_E;
00437 
00438     while (len) {
00439         word32 add = min(len, SHA_BLOCK_SIZE - sha->buffLen);
00440         XMEMCPY(&local[sha->buffLen], data, add);
00441 
00442         sha->buffLen += add;
00443         data         += add;
00444         len          -= add;
00445 
00446         if (sha->buffLen == SHA_BLOCK_SIZE) {
00447 #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
00448             ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
00449 #endif
00450             XSHATRANSFORM(sha, local);
00451             AddLength(sha, SHA_BLOCK_SIZE);
00452             sha->buffLen = 0;
00453         }
00454     }
00455 
00456     return 0;
00457 }
00458 
00459 int wc_ShaFinal(Sha* sha, byte* hash)
00460 {
00461     byte* local = (byte*)sha->buffer;
00462 
00463 #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
00464     if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) {
00465     #if defined(HAVE_INTEL_QA)
00466         return IntelQaSymSha(&sha->asyncDev, hash, NULL, SHA_DIGEST_SIZE);
00467     #endif
00468     }
00469 #endif /* WOLFSSL_ASYNC_CRYPT */
00470 
00471     AddLength(sha, sha->buffLen);  /* before adding pads */
00472 
00473     local[sha->buffLen++] = 0x80;  /* add 1 */
00474 
00475     /* pad with zeros */
00476     if (sha->buffLen > SHA_PAD_SIZE) {
00477         XMEMSET(&local[sha->buffLen], 0, SHA_BLOCK_SIZE - sha->buffLen);
00478         sha->buffLen += SHA_BLOCK_SIZE - sha->buffLen;
00479 
00480 #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
00481         ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
00482 #endif
00483         XSHATRANSFORM(sha, local);
00484         sha->buffLen = 0;
00485     }
00486     XMEMSET(&local[sha->buffLen], 0, SHA_PAD_SIZE - sha->buffLen);
00487 
00488     /* put lengths in bits */
00489     sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) +
00490     (sha->hiLen << 3);
00491     sha->loLen = sha->loLen << 3;
00492 
00493     /* store lengths */
00494 #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
00495     ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
00496 #endif
00497     /* ! length ordering dependent on digest endian type ! */
00498     XMEMCPY(&local[SHA_PAD_SIZE], &sha->hiLen, sizeof(word32));
00499     XMEMCPY(&local[SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32));
00500 
00501 #ifdef FREESCALE_MMCAU_SHA
00502     /* Kinetis requires only these bytes reversed */
00503     ByteReverseWords(&sha->buffer[SHA_PAD_SIZE/sizeof(word32)],
00504                      &sha->buffer[SHA_PAD_SIZE/sizeof(word32)],
00505                      2 * sizeof(word32));
00506 #endif
00507 
00508     XSHATRANSFORM(sha, local);
00509 #ifdef LITTLE_ENDIAN_ORDER
00510     ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE);
00511 #endif
00512     XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE);
00513 
00514     return InitSha(sha); /* reset state */
00515 }
00516 
00517 #endif /* USE_SHA_SOFTWARE_IMPL */
00518 
00519 
00520 int wc_InitSha(Sha* sha)
00521 {
00522     return wc_InitSha_ex(sha, NULL, INVALID_DEVID);
00523 }
00524 
00525 void wc_ShaFree(Sha* sha)
00526 {
00527     if (sha == NULL)
00528         return;
00529 
00530 #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
00531     wolfAsync_DevCtxFree(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA);
00532 #endif /* WOLFSSL_ASYNC_CRYPT */
00533 }
00534 
00535 #endif /* !WOLFSSL_TI_HASH */
00536 #endif /* HAVE_FIPS */
00537 
00538 #ifndef WOLFSSL_TI_HASH
00539 int wc_ShaGetHash(Sha* sha, byte* hash)
00540 {
00541     int ret;
00542     Sha tmpSha;
00543 
00544     if (sha == NULL || hash == NULL)
00545         return BAD_FUNC_ARG;
00546 
00547     ret = wc_ShaCopy(sha, &tmpSha);
00548     if (ret == 0) {
00549         ret = wc_ShaFinal(&tmpSha, hash);
00550     }
00551     return ret;
00552 }
00553 
00554 int wc_ShaCopy(Sha* src, Sha* dst)
00555 {
00556     int ret = 0;
00557 
00558     if (src == NULL || dst == NULL)
00559         return BAD_FUNC_ARG;
00560 
00561     XMEMCPY(dst, src, sizeof(Sha));
00562 
00563 #ifdef WOLFSSL_ASYNC_CRYPT
00564     ret = wolfAsync_DevCopy(&src->asyncDev, &dst->asyncDev);
00565 #endif
00566 
00567     return ret;
00568 }
00569 #endif /* !WOLFSSL_TI_HASH */
00570 
00571 #endif /* !NO_SHA */
00572