wolf SSL / wolfSSL-TLS13-Beta

Fork of wolfSSL by wolf SSL

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers rabbit.c Source File

rabbit.c

00001 /* rabbit.c
00002  *
00003  * Copyright (C) 2006-2016 wolfSSL Inc.
00004  *
00005  * This file is part of wolfSSL.
00006  *
00007  * wolfSSL is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 2 of the License, or
00010  * (at your option) any later version.
00011  *
00012  * wolfSSL is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU General Public License
00018  * along with this program; if not, write to the Free Software
00019  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
00020  */
00021 
00022 
00023 #ifdef HAVE_CONFIG_H
00024     #include <config.h>
00025 #endif
00026 
00027 #include <wolfssl/wolfcrypt/settings.h>
00028 
00029 #ifndef NO_RABBIT
00030 
00031 #include <wolfssl/wolfcrypt/rabbit.h>
00032 #include <wolfssl/wolfcrypt/error-crypt.h>
00033 #include <wolfssl/wolfcrypt/logging.h>
00034 #ifdef NO_INLINE
00035     #include <wolfssl/wolfcrypt/misc.h>
00036 #else
00037     #define WOLFSSL_MISC_INCLUDED
00038     #include <wolfcrypt/src/misc.c>
00039 #endif
00040 
00041 
00042 #ifdef BIG_ENDIAN_ORDER
00043     #define LITTLE32(x) ByteReverseWord32(x)
00044 #else
00045     #define LITTLE32(x) (x)
00046 #endif
00047 
00048 #define U32V(x) ((word32)(x) & 0xFFFFFFFFU)
00049 
00050 
00051 /* Square a 32-bit unsigned integer to obtain the 64-bit result and return */
00052 /* the upper 32 bits XOR the lower 32 bits */
00053 static word32 RABBIT_g_func(word32 x)
00054 {
00055     /* Temporary variables */
00056     word32 a, b, h, l;
00057 
00058     /* Construct high and low argument for squaring */
00059     a = x&0xFFFF;
00060     b = x>>16;
00061 
00062     /* Calculate high and low result of squaring */
00063     h = (((U32V(a*a)>>17) + U32V(a*b))>>15) + b*b;
00064     l = x*x;
00065 
00066     /* Return high XOR low */
00067     return U32V(h^l);
00068 }
00069 
00070 
00071 /* Calculate the next internal state */
00072 static void RABBIT_next_state(RabbitCtx* ctx)
00073 {
00074     /* Temporary variables */
00075     word32 g[8], c_old[8], i;
00076 
00077     /* Save old counter values */
00078     for (i=0; i<8; i++)
00079         c_old[i] = ctx->c[i];
00080 
00081     /* Calculate new counter values */
00082     ctx->c[0] = U32V(ctx->c[0] + 0x4D34D34D + ctx->carry);
00083     ctx->c[1] = U32V(ctx->c[1] + 0xD34D34D3 + (ctx->c[0] < c_old[0]));
00084     ctx->c[2] = U32V(ctx->c[2] + 0x34D34D34 + (ctx->c[1] < c_old[1]));
00085     ctx->c[3] = U32V(ctx->c[3] + 0x4D34D34D + (ctx->c[2] < c_old[2]));
00086     ctx->c[4] = U32V(ctx->c[4] + 0xD34D34D3 + (ctx->c[3] < c_old[3]));
00087     ctx->c[5] = U32V(ctx->c[5] + 0x34D34D34 + (ctx->c[4] < c_old[4]));
00088     ctx->c[6] = U32V(ctx->c[6] + 0x4D34D34D + (ctx->c[5] < c_old[5]));
00089     ctx->c[7] = U32V(ctx->c[7] + 0xD34D34D3 + (ctx->c[6] < c_old[6]));
00090     ctx->carry = (ctx->c[7] < c_old[7]);
00091    
00092     /* Calculate the g-values */
00093     for (i=0;i<8;i++)
00094         g[i] = RABBIT_g_func(U32V(ctx->x[i] + ctx->c[i]));
00095 
00096     /* Calculate new state values */
00097     ctx->x[0] = U32V(g[0] + rotlFixed(g[7],16) + rotlFixed(g[6], 16));
00098     ctx->x[1] = U32V(g[1] + rotlFixed(g[0], 8) + g[7]);
00099     ctx->x[2] = U32V(g[2] + rotlFixed(g[1],16) + rotlFixed(g[0], 16));
00100     ctx->x[3] = U32V(g[3] + rotlFixed(g[2], 8) + g[1]);
00101     ctx->x[4] = U32V(g[4] + rotlFixed(g[3],16) + rotlFixed(g[2], 16));
00102     ctx->x[5] = U32V(g[5] + rotlFixed(g[4], 8) + g[3]);
00103     ctx->x[6] = U32V(g[6] + rotlFixed(g[5],16) + rotlFixed(g[4], 16));
00104     ctx->x[7] = U32V(g[7] + rotlFixed(g[6], 8) + g[5]);
00105 }
00106 
00107 
00108 /* IV setup */
00109 static void wc_RabbitSetIV(Rabbit* ctx, const byte* inIv)
00110 {
00111     /* Temporary variables */
00112     word32 i0, i1, i2, i3, i;
00113     word32 iv[2];
00114 
00115     if (inIv)
00116         XMEMCPY(iv, inIv, sizeof(iv));
00117     else
00118         XMEMSET(iv,    0, sizeof(iv));
00119       
00120     /* Generate four subvectors */
00121     i0 = LITTLE32(iv[0]);
00122     i2 = LITTLE32(iv[1]);
00123     i1 = (i0>>16) | (i2&0xFFFF0000);
00124     i3 = (i2<<16) | (i0&0x0000FFFF);
00125 
00126     /* Modify counter values */
00127     ctx->workCtx.c[0] = ctx->masterCtx.c[0] ^ i0;
00128     ctx->workCtx.c[1] = ctx->masterCtx.c[1] ^ i1;
00129     ctx->workCtx.c[2] = ctx->masterCtx.c[2] ^ i2;
00130     ctx->workCtx.c[3] = ctx->masterCtx.c[3] ^ i3;
00131     ctx->workCtx.c[4] = ctx->masterCtx.c[4] ^ i0;
00132     ctx->workCtx.c[5] = ctx->masterCtx.c[5] ^ i1;
00133     ctx->workCtx.c[6] = ctx->masterCtx.c[6] ^ i2;
00134     ctx->workCtx.c[7] = ctx->masterCtx.c[7] ^ i3;
00135 
00136     /* Copy state variables */
00137     for (i=0; i<8; i++)
00138         ctx->workCtx.x[i] = ctx->masterCtx.x[i];
00139     ctx->workCtx.carry = ctx->masterCtx.carry;
00140 
00141     /* Iterate the system four times */
00142     for (i=0; i<4; i++)
00143         RABBIT_next_state(&(ctx->workCtx));
00144 }
00145 
00146 
00147 /* Key setup */
00148 static INLINE int DoKey(Rabbit* ctx, const byte* key, const byte* iv)
00149 {
00150     /* Temporary variables */
00151     word32 k0, k1, k2, k3, i;
00152 
00153     /* Generate four subkeys */
00154     k0 = LITTLE32(*(word32*)(key+ 0));
00155     k1 = LITTLE32(*(word32*)(key+ 4));
00156     k2 = LITTLE32(*(word32*)(key+ 8));
00157     k3 = LITTLE32(*(word32*)(key+12));
00158 
00159     /* Generate initial state variables */
00160     ctx->masterCtx.x[0] = k0;
00161     ctx->masterCtx.x[2] = k1;
00162     ctx->masterCtx.x[4] = k2;
00163     ctx->masterCtx.x[6] = k3;
00164     ctx->masterCtx.x[1] = U32V(k3<<16) | (k2>>16);
00165     ctx->masterCtx.x[3] = U32V(k0<<16) | (k3>>16);
00166     ctx->masterCtx.x[5] = U32V(k1<<16) | (k0>>16);
00167     ctx->masterCtx.x[7] = U32V(k2<<16) | (k1>>16);
00168 
00169     /* Generate initial counter values */
00170     ctx->masterCtx.c[0] = rotlFixed(k2, 16);
00171     ctx->masterCtx.c[2] = rotlFixed(k3, 16);
00172     ctx->masterCtx.c[4] = rotlFixed(k0, 16);
00173     ctx->masterCtx.c[6] = rotlFixed(k1, 16);
00174     ctx->masterCtx.c[1] = (k0&0xFFFF0000) | (k1&0xFFFF);
00175     ctx->masterCtx.c[3] = (k1&0xFFFF0000) | (k2&0xFFFF);
00176     ctx->masterCtx.c[5] = (k2&0xFFFF0000) | (k3&0xFFFF);
00177     ctx->masterCtx.c[7] = (k3&0xFFFF0000) | (k0&0xFFFF);
00178 
00179     /* Clear carry bit */
00180     ctx->masterCtx.carry = 0;
00181 
00182     /* Iterate the system four times */
00183     for (i=0; i<4; i++)
00184         RABBIT_next_state(&(ctx->masterCtx));
00185 
00186     /* Modify the counters */
00187     for (i=0; i<8; i++)
00188         ctx->masterCtx.c[i] ^= ctx->masterCtx.x[(i+4)&0x7];
00189 
00190     /* Copy master instance to work instance */
00191     for (i=0; i<8; i++) {
00192         ctx->workCtx.x[i] = ctx->masterCtx.x[i];
00193         ctx->workCtx.c[i] = ctx->masterCtx.c[i];
00194     }
00195     ctx->workCtx.carry = ctx->masterCtx.carry;
00196 
00197     wc_RabbitSetIV(ctx, iv);
00198 
00199     return 0;
00200 }
00201 
00202 
00203 int wc_Rabbit_SetHeap(Rabbit* ctx, void* heap)
00204 {
00205     if (ctx == NULL) {
00206         return BAD_FUNC_ARG;
00207     }
00208 
00209 #ifdef XSTREAM_ALIGN
00210     ctx->heap = heap;
00211 #endif
00212 
00213     (void)heap;
00214     return 0;
00215 }
00216 
00217 
00218 /* Key setup */
00219 int wc_RabbitSetKey(Rabbit* ctx, const byte* key, const byte* iv)
00220 {
00221 #ifdef XSTREAM_ALIGN
00222     /* default heap to NULL or heap test value */
00223     #ifdef WOLFSSL_HEAP_TEST
00224         ctx->heap = (void*)WOLFSSL_HEAP_TEST;
00225     #else
00226         ctx->heap = NULL;
00227     #endif /* WOLFSSL_HEAP_TEST */
00228 
00229     if ((wolfssl_word)key % 4) {
00230         int alignKey[4];
00231 
00232         /* iv aligned in SetIV */
00233         WOLFSSL_MSG("wc_RabbitSetKey unaligned key");
00234 
00235         XMEMCPY(alignKey, key, sizeof(alignKey));
00236 
00237         return DoKey(ctx, (const byte*)alignKey, iv);
00238     }
00239 #endif /* XSTREAM_ALIGN */
00240 
00241     return DoKey(ctx, key, iv);
00242 }
00243 
00244 
00245 /* Encrypt/decrypt a message of any size */
00246 static INLINE int DoProcess(Rabbit* ctx, byte* output, const byte* input,
00247                             word32 msglen)
00248 {
00249     /* Encrypt/decrypt all full blocks */
00250     while (msglen >= 16) {
00251         /* Iterate the system */
00252         RABBIT_next_state(&(ctx->workCtx));
00253 
00254         /* Encrypt/decrypt 16 bytes of data */
00255         *(word32*)(output+ 0) = *(word32*)(input+ 0) ^
00256                    LITTLE32(ctx->workCtx.x[0] ^ (ctx->workCtx.x[5]>>16) ^
00257                    U32V(ctx->workCtx.x[3]<<16));
00258         *(word32*)(output+ 4) = *(word32*)(input+ 4) ^
00259                    LITTLE32(ctx->workCtx.x[2] ^ (ctx->workCtx.x[7]>>16) ^
00260                    U32V(ctx->workCtx.x[5]<<16));
00261         *(word32*)(output+ 8) = *(word32*)(input+ 8) ^
00262                    LITTLE32(ctx->workCtx.x[4] ^ (ctx->workCtx.x[1]>>16) ^
00263                    U32V(ctx->workCtx.x[7]<<16));
00264         *(word32*)(output+12) = *(word32*)(input+12) ^
00265                    LITTLE32(ctx->workCtx.x[6] ^ (ctx->workCtx.x[3]>>16) ^
00266                    U32V(ctx->workCtx.x[1]<<16));
00267 
00268         /* Increment pointers and decrement length */
00269         input  += 16;
00270         output += 16;
00271         msglen -= 16;
00272     }
00273 
00274     /* Encrypt/decrypt remaining data */
00275     if (msglen) {
00276 
00277         word32 i;
00278         word32 tmp[4];
00279         byte*  buffer = (byte*)tmp;
00280 
00281         XMEMSET(tmp, 0, sizeof(tmp));   /* help static analysis */
00282 
00283         /* Iterate the system */
00284         RABBIT_next_state(&(ctx->workCtx));
00285 
00286         /* Generate 16 bytes of pseudo-random data */
00287         tmp[0] = LITTLE32(ctx->workCtx.x[0] ^
00288                   (ctx->workCtx.x[5]>>16) ^ U32V(ctx->workCtx.x[3]<<16));
00289         tmp[1] = LITTLE32(ctx->workCtx.x[2] ^ 
00290                   (ctx->workCtx.x[7]>>16) ^ U32V(ctx->workCtx.x[5]<<16));
00291         tmp[2] = LITTLE32(ctx->workCtx.x[4] ^ 
00292                   (ctx->workCtx.x[1]>>16) ^ U32V(ctx->workCtx.x[7]<<16));
00293         tmp[3] = LITTLE32(ctx->workCtx.x[6] ^ 
00294                   (ctx->workCtx.x[3]>>16) ^ U32V(ctx->workCtx.x[1]<<16));
00295 
00296         /* Encrypt/decrypt the data */
00297         for (i=0; i<msglen; i++)
00298             output[i] = input[i] ^ buffer[i];
00299     }
00300 
00301     return 0;
00302 }
00303 
00304 
00305 /* Encrypt/decrypt a message of any size */
00306 int wc_RabbitProcess(Rabbit* ctx, byte* output, const byte* input, word32 msglen)
00307 {
00308 #ifdef XSTREAM_ALIGN
00309     if ((wolfssl_word)input % 4 || (wolfssl_word)output % 4) {
00310         #ifndef NO_WOLFSSL_ALLOC_ALIGN
00311             byte* tmp;
00312             WOLFSSL_MSG("wc_RabbitProcess unaligned");
00313 
00314             tmp = (byte*)XMALLOC(msglen, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
00315             if (tmp == NULL) return MEMORY_E;
00316 
00317             XMEMCPY(tmp, input, msglen);
00318             DoProcess(ctx, tmp, tmp, msglen);
00319             XMEMCPY(output, tmp, msglen);
00320 
00321             XFREE(tmp, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
00322 
00323             return 0;
00324         #else
00325             return BAD_ALIGN_E;
00326         #endif
00327     }
00328 #endif /* XSTREAM_ALIGN */
00329 
00330     return DoProcess(ctx, output, input, msglen);
00331 }
00332 
00333 
00334 #endif /* NO_RABBIT */
00335