Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: HTTPClient-SSL HTTPClient HTTPClient-SSL http_access ... more
rabbit.c
00001 /* rabbit.c 00002 * 00003 * Copyright (C) 2006-2014 wolfSSL Inc. 00004 * 00005 * This file is part of CyaSSL. 00006 * 00007 * CyaSSL is free software; you can redistribute it and/or modify 00008 * it under the terms of the GNU General Public License as published by 00009 * the Free Software Foundation; either version 2 of the License, or 00010 * (at your option) any later version. 00011 * 00012 * CyaSSL is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU General Public License 00018 * along with this program; if not, write to the Free Software 00019 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA 00020 */ 00021 00022 #ifdef HAVE_CONFIG_H 00023 #include <config.h> 00024 #endif 00025 00026 #include <cyassl/ctaocrypt/settings.h> 00027 00028 #ifndef NO_RABBIT 00029 00030 #include <cyassl/ctaocrypt/rabbit.h> 00031 #include <cyassl/ctaocrypt/error-crypt.h> 00032 #include <cyassl/ctaocrypt/logging.h> 00033 #ifdef NO_INLINE 00034 #include <cyassl/ctaocrypt/misc.h> 00035 #else 00036 #include <ctaocrypt/src/misc.c> 00037 #endif 00038 00039 00040 #ifdef BIG_ENDIAN_ORDER 00041 #define LITTLE32(x) ByteReverseWord32(x) 00042 #else 00043 #define LITTLE32(x) (x) 00044 #endif 00045 00046 #define U32V(x) ((word32)(x) & 0xFFFFFFFFU) 00047 00048 00049 /* Square a 32-bit unsigned integer to obtain the 64-bit result and return */ 00050 /* the upper 32 bits XOR the lower 32 bits */ 00051 static word32 RABBIT_g_func(word32 x) 00052 { 00053 /* Temporary variables */ 00054 word32 a, b, h, l; 00055 00056 /* Construct high and low argument for squaring */ 00057 a = x&0xFFFF; 00058 b = x>>16; 00059 00060 /* Calculate high and low result of squaring */ 00061 h = (((U32V(a*a)>>17) + U32V(a*b))>>15) + b*b; 00062 l = x*x; 00063 00064 /* Return high XOR low */ 00065 return U32V(h^l); 00066 } 00067 00068 00069 /* Calculate the next internal state */ 00070 static void RABBIT_next_state(RabbitCtx* ctx) 00071 { 00072 /* Temporary variables */ 00073 word32 g[8], c_old[8], i; 00074 00075 /* Save old counter values */ 00076 for (i=0; i<8; i++) 00077 c_old[i] = ctx->c[i]; 00078 00079 /* Calculate new counter values */ 00080 ctx->c[0] = U32V(ctx->c[0] + 0x4D34D34D + ctx->carry); 00081 ctx->c[1] = U32V(ctx->c[1] + 0xD34D34D3 + (ctx->c[0] < c_old[0])); 00082 ctx->c[2] = U32V(ctx->c[2] + 0x34D34D34 + (ctx->c[1] < c_old[1])); 00083 ctx->c[3] = U32V(ctx->c[3] + 0x4D34D34D + (ctx->c[2] < c_old[2])); 00084 ctx->c[4] = U32V(ctx->c[4] + 0xD34D34D3 + (ctx->c[3] < c_old[3])); 00085 ctx->c[5] = U32V(ctx->c[5] + 0x34D34D34 + (ctx->c[4] < c_old[4])); 00086 ctx->c[6] = U32V(ctx->c[6] + 0x4D34D34D + (ctx->c[5] < c_old[5])); 00087 ctx->c[7] = U32V(ctx->c[7] + 0xD34D34D3 + (ctx->c[6] < c_old[6])); 00088 ctx->carry = (ctx->c[7] < c_old[7]); 00089 00090 /* Calculate the g-values */ 00091 for (i=0;i<8;i++) 00092 g[i] = RABBIT_g_func(U32V(ctx->x[i] + ctx->c[i])); 00093 00094 /* Calculate new state values */ 00095 ctx->x[0] = U32V(g[0] + rotlFixed(g[7],16) + rotlFixed(g[6], 16)); 00096 ctx->x[1] = U32V(g[1] + rotlFixed(g[0], 8) + g[7]); 00097 ctx->x[2] = U32V(g[2] + rotlFixed(g[1],16) + rotlFixed(g[0], 16)); 00098 ctx->x[3] = U32V(g[3] + rotlFixed(g[2], 8) + g[1]); 00099 ctx->x[4] = U32V(g[4] + rotlFixed(g[3],16) + rotlFixed(g[2], 16)); 00100 ctx->x[5] = U32V(g[5] + rotlFixed(g[4], 8) + g[3]); 00101 ctx->x[6] = U32V(g[6] + rotlFixed(g[5],16) + rotlFixed(g[4], 16)); 00102 ctx->x[7] = U32V(g[7] + rotlFixed(g[6], 8) + g[5]); 00103 } 00104 00105 00106 /* IV setup */ 00107 static void RabbitSetIV(Rabbit* ctx, const byte* inIv) 00108 { 00109 /* Temporary variables */ 00110 word32 i0, i1, i2, i3, i; 00111 word32 iv[2]; 00112 00113 if (inIv) 00114 XMEMCPY(iv, inIv, sizeof(iv)); 00115 else 00116 XMEMSET(iv, 0, sizeof(iv)); 00117 00118 /* Generate four subvectors */ 00119 i0 = LITTLE32(iv[0]); 00120 i2 = LITTLE32(iv[1]); 00121 i1 = (i0>>16) | (i2&0xFFFF0000); 00122 i3 = (i2<<16) | (i0&0x0000FFFF); 00123 00124 /* Modify counter values */ 00125 ctx->workCtx.c[0] = ctx->masterCtx.c[0] ^ i0; 00126 ctx->workCtx.c[1] = ctx->masterCtx.c[1] ^ i1; 00127 ctx->workCtx.c[2] = ctx->masterCtx.c[2] ^ i2; 00128 ctx->workCtx.c[3] = ctx->masterCtx.c[3] ^ i3; 00129 ctx->workCtx.c[4] = ctx->masterCtx.c[4] ^ i0; 00130 ctx->workCtx.c[5] = ctx->masterCtx.c[5] ^ i1; 00131 ctx->workCtx.c[6] = ctx->masterCtx.c[6] ^ i2; 00132 ctx->workCtx.c[7] = ctx->masterCtx.c[7] ^ i3; 00133 00134 /* Copy state variables */ 00135 for (i=0; i<8; i++) 00136 ctx->workCtx.x[i] = ctx->masterCtx.x[i]; 00137 ctx->workCtx.carry = ctx->masterCtx.carry; 00138 00139 /* Iterate the system four times */ 00140 for (i=0; i<4; i++) 00141 RABBIT_next_state(&(ctx->workCtx)); 00142 } 00143 00144 00145 /* Key setup */ 00146 static INLINE int DoKey(Rabbit* ctx, const byte* key, const byte* iv) 00147 { 00148 /* Temporary variables */ 00149 word32 k0, k1, k2, k3, i; 00150 00151 /* Generate four subkeys */ 00152 k0 = LITTLE32(*(word32*)(key+ 0)); 00153 k1 = LITTLE32(*(word32*)(key+ 4)); 00154 k2 = LITTLE32(*(word32*)(key+ 8)); 00155 k3 = LITTLE32(*(word32*)(key+12)); 00156 00157 /* Generate initial state variables */ 00158 ctx->masterCtx.x[0] = k0; 00159 ctx->masterCtx.x[2] = k1; 00160 ctx->masterCtx.x[4] = k2; 00161 ctx->masterCtx.x[6] = k3; 00162 ctx->masterCtx.x[1] = U32V(k3<<16) | (k2>>16); 00163 ctx->masterCtx.x[3] = U32V(k0<<16) | (k3>>16); 00164 ctx->masterCtx.x[5] = U32V(k1<<16) | (k0>>16); 00165 ctx->masterCtx.x[7] = U32V(k2<<16) | (k1>>16); 00166 00167 /* Generate initial counter values */ 00168 ctx->masterCtx.c[0] = rotlFixed(k2, 16); 00169 ctx->masterCtx.c[2] = rotlFixed(k3, 16); 00170 ctx->masterCtx.c[4] = rotlFixed(k0, 16); 00171 ctx->masterCtx.c[6] = rotlFixed(k1, 16); 00172 ctx->masterCtx.c[1] = (k0&0xFFFF0000) | (k1&0xFFFF); 00173 ctx->masterCtx.c[3] = (k1&0xFFFF0000) | (k2&0xFFFF); 00174 ctx->masterCtx.c[5] = (k2&0xFFFF0000) | (k3&0xFFFF); 00175 ctx->masterCtx.c[7] = (k3&0xFFFF0000) | (k0&0xFFFF); 00176 00177 /* Clear carry bit */ 00178 ctx->masterCtx.carry = 0; 00179 00180 /* Iterate the system four times */ 00181 for (i=0; i<4; i++) 00182 RABBIT_next_state(&(ctx->masterCtx)); 00183 00184 /* Modify the counters */ 00185 for (i=0; i<8; i++) 00186 ctx->masterCtx.c[i] ^= ctx->masterCtx.x[(i+4)&0x7]; 00187 00188 /* Copy master instance to work instance */ 00189 for (i=0; i<8; i++) { 00190 ctx->workCtx.x[i] = ctx->masterCtx.x[i]; 00191 ctx->workCtx.c[i] = ctx->masterCtx.c[i]; 00192 } 00193 ctx->workCtx.carry = ctx->masterCtx.carry; 00194 00195 RabbitSetIV(ctx, iv); 00196 00197 return 0; 00198 } 00199 00200 00201 /* Key setup */ 00202 int RabbitSetKey(Rabbit* ctx, const byte* key, const byte* iv) 00203 { 00204 #ifdef XSTREAM_ALIGN 00205 if ((word)key % 4) { 00206 int alignKey[4]; 00207 00208 /* iv aligned in SetIV */ 00209 CYASSL_MSG("RabbitSetKey unaligned key"); 00210 00211 XMEMCPY(alignKey, key, sizeof(alignKey)); 00212 00213 return DoKey(ctx, (const byte*)alignKey, iv); 00214 } 00215 #endif /* XSTREAM_ALIGN */ 00216 00217 return DoKey(ctx, key, iv); 00218 } 00219 00220 00221 /* Encrypt/decrypt a message of any size */ 00222 static INLINE int DoProcess(Rabbit* ctx, byte* output, const byte* input, 00223 word32 msglen) 00224 { 00225 /* Encrypt/decrypt all full blocks */ 00226 while (msglen >= 16) { 00227 /* Iterate the system */ 00228 RABBIT_next_state(&(ctx->workCtx)); 00229 00230 /* Encrypt/decrypt 16 bytes of data */ 00231 *(word32*)(output+ 0) = *(word32*)(input+ 0) ^ 00232 LITTLE32(ctx->workCtx.x[0] ^ (ctx->workCtx.x[5]>>16) ^ 00233 U32V(ctx->workCtx.x[3]<<16)); 00234 *(word32*)(output+ 4) = *(word32*)(input+ 4) ^ 00235 LITTLE32(ctx->workCtx.x[2] ^ (ctx->workCtx.x[7]>>16) ^ 00236 U32V(ctx->workCtx.x[5]<<16)); 00237 *(word32*)(output+ 8) = *(word32*)(input+ 8) ^ 00238 LITTLE32(ctx->workCtx.x[4] ^ (ctx->workCtx.x[1]>>16) ^ 00239 U32V(ctx->workCtx.x[7]<<16)); 00240 *(word32*)(output+12) = *(word32*)(input+12) ^ 00241 LITTLE32(ctx->workCtx.x[6] ^ (ctx->workCtx.x[3]>>16) ^ 00242 U32V(ctx->workCtx.x[1]<<16)); 00243 00244 /* Increment pointers and decrement length */ 00245 input += 16; 00246 output += 16; 00247 msglen -= 16; 00248 } 00249 00250 /* Encrypt/decrypt remaining data */ 00251 if (msglen) { 00252 00253 word32 i; 00254 word32 tmp[4]; 00255 byte* buffer = (byte*)tmp; 00256 00257 XMEMSET(tmp, 0, sizeof(tmp)); /* help static analysis */ 00258 00259 /* Iterate the system */ 00260 RABBIT_next_state(&(ctx->workCtx)); 00261 00262 /* Generate 16 bytes of pseudo-random data */ 00263 tmp[0] = LITTLE32(ctx->workCtx.x[0] ^ 00264 (ctx->workCtx.x[5]>>16) ^ U32V(ctx->workCtx.x[3]<<16)); 00265 tmp[1] = LITTLE32(ctx->workCtx.x[2] ^ 00266 (ctx->workCtx.x[7]>>16) ^ U32V(ctx->workCtx.x[5]<<16)); 00267 tmp[2] = LITTLE32(ctx->workCtx.x[4] ^ 00268 (ctx->workCtx.x[1]>>16) ^ U32V(ctx->workCtx.x[7]<<16)); 00269 tmp[3] = LITTLE32(ctx->workCtx.x[6] ^ 00270 (ctx->workCtx.x[3]>>16) ^ U32V(ctx->workCtx.x[1]<<16)); 00271 00272 /* Encrypt/decrypt the data */ 00273 for (i=0; i<msglen; i++) 00274 output[i] = input[i] ^ buffer[i]; 00275 } 00276 00277 return 0; 00278 } 00279 00280 00281 /* Encrypt/decrypt a message of any size */ 00282 int RabbitProcess(Rabbit* ctx, byte* output, const byte* input, word32 msglen) 00283 { 00284 #ifdef XSTREAM_ALIGN 00285 if ((word)input % 4 || (word)output % 4) { 00286 #ifndef NO_CYASSL_ALLOC_ALIGN 00287 byte* tmp; 00288 CYASSL_MSG("RabbitProcess unaligned"); 00289 00290 tmp = (byte*)XMALLOC(msglen, NULL, DYNAMIC_TYPE_TMP_BUFFER); 00291 if (tmp == NULL) return MEMORY_E; 00292 00293 XMEMCPY(tmp, input, msglen); 00294 DoProcess(ctx, tmp, tmp, msglen); 00295 XMEMCPY(output, tmp, msglen); 00296 00297 XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER); 00298 00299 return 0; 00300 #else 00301 return BAD_ALIGN_E; 00302 #endif 00303 } 00304 #endif /* XSTREAM_ALIGN */ 00305 00306 return DoProcess(ctx, output, input, msglen); 00307 } 00308 00309 00310 #endif /* NO_RABBIT */ 00311
Generated on Wed Jul 13 2022 02:18:39 by
 1.7.2
 1.7.2 
    