wolf SSL / CyaSSL-2.9.4

Dependents:  

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers sha.c Source File

sha.c

00001 /* sha.c
00002  *
00003  * Copyright (C) 2006-2013 wolfSSL Inc.
00004  *
00005  * This file is part of CyaSSL.
00006  *
00007  * CyaSSL is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 2 of the License, or
00010  * (at your option) any later version.
00011  *
00012  * CyaSSL is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU General Public License
00018  * along with this program; if not, write to the Free Software
00019  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
00020  */
00021 
00022 
00023 #ifdef HAVE_CONFIG_H
00024     #include <config.h>
00025 #endif
00026 
00027 #include <cyassl/ctaocrypt/settings.h>
00028 
00029 #if !defined(NO_SHA)
00030 
00031 #ifdef CYASSL_PIC32MZ_HASH
00032 #define InitSha   InitSha_sw
00033 #define ShaUpdate ShaUpdate_sw
00034 #define ShaFinal  ShaFinal_sw
00035 #endif
00036 
00037 #ifdef HAVE_FIPS
00038     /* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
00039     #define FIPS_NO_WRAPPERS
00040 #endif
00041 
00042 #include <cyassl/ctaocrypt/sha.h>
00043 #ifdef NO_INLINE
00044     #include <cyassl/ctaocrypt/misc.h>
00045 #else
00046     #include <ctaocrypt/src/misc.c>
00047 #endif
00048 
00049 #ifdef FREESCALE_MMCAU
00050     #include "cau_api.h"
00051     #define XTRANSFORM(S,B)  cau_sha1_hash_n((B), 1, ((S))->digest)
00052 #else
00053     #define XTRANSFORM(S,B)  Transform((S))
00054 #endif
00055 
00056 
00057 #ifdef STM32F2_HASH
00058     /*
00059      * STM32F2 hardware SHA1 support through the STM32F2 standard peripheral
00060      * library. Documentation located in STM32F2xx Standard Peripheral Library
00061      * document (See note in README).
00062      */
00063     #include "stm32f2xx.h"
00064     #include "stm32f2xx_hash.h"
00065 
00066     int InitSha(Sha* sha)
00067     {
00068         /* STM32F2 struct notes:
00069          * sha->buffer  = first 4 bytes used to hold partial block if needed 
00070          * sha->buffLen = num bytes currently stored in sha->buffer
00071          * sha->loLen   = num bytes that have been written to STM32 FIFO
00072          */
00073         XMEMSET(sha->buffer, 0, SHA_REG_SIZE);
00074         sha->buffLen = 0;
00075         sha->loLen = 0;
00076 
00077         /* initialize HASH peripheral */
00078         HASH_DeInit();
00079 
00080         /* configure algo used, algo mode, datatype */
00081         HASH->CR &= ~ (HASH_CR_ALGO | HASH_CR_DATATYPE | HASH_CR_MODE);
00082         HASH->CR |= (HASH_AlgoSelection_SHA1 | HASH_AlgoMode_HASH 
00083                  | HASH_DataType_8b);
00084 
00085         /* reset HASH processor */
00086         HASH->CR |= HASH_CR_INIT;
00087 
00088         return 0;
00089     }
00090 
00091     int ShaUpdate(Sha* sha, const byte* data, word32 len)
00092     {
00093         word32 i = 0;
00094         word32 fill = 0;
00095         word32 diff = 0;
00096 
00097         /* if saved partial block is available */
00098         if (sha->buffLen) {
00099             fill = 4 - sha->buffLen;
00100 
00101             /* if enough data to fill, fill and push to FIFO */
00102             if (fill <= len) {
00103                 XMEMCPY((byte*)sha->buffer + sha->buffLen, data, fill);
00104                 HASH_DataIn(*(uint32_t*)sha->buffer);
00105 
00106                 data += fill;
00107                 len -= fill;
00108                 sha->loLen += 4;
00109                 sha->buffLen = 0;
00110             } else {
00111                 /* append partial to existing stored block */
00112                 XMEMCPY((byte*)sha->buffer + sha->buffLen, data, len);
00113                 sha->buffLen += len;
00114                 return;
00115             }
00116         }
00117        
00118         /* write input block in the IN FIFO */
00119         for(i = 0; i < len; i += 4)
00120         {
00121             diff = len - i;
00122             if ( diff < 4) {
00123                 /* store incomplete last block, not yet in FIFO */
00124                 XMEMSET(sha->buffer, 0, SHA_REG_SIZE);
00125                 XMEMCPY((byte*)sha->buffer, data, diff);
00126                 sha->buffLen = diff;
00127             } else {
00128                 HASH_DataIn(*(uint32_t*)data);
00129                 data+=4;
00130             }
00131         }
00132 
00133         /* keep track of total data length thus far */ 
00134         sha->loLen += (len - sha->buffLen);
00135 
00136         return 0;
00137     }
00138 
00139     int ShaFinal(Sha* sha, byte* hash)
00140     {
00141         __IO uint16_t nbvalidbitsdata = 0;
00142         
00143         /* finish reading any trailing bytes into FIFO */
00144         if (sha->buffLen) {
00145             HASH_DataIn(*(uint32_t*)sha->buffer);
00146             sha->loLen += sha->buffLen;
00147         }
00148 
00149         /* calculate number of valid bits in last word of input data */
00150         nbvalidbitsdata = 8 * (sha->loLen % SHA_REG_SIZE);
00151 
00152         /* configure number of valid bits in last word of the data */
00153         HASH_SetLastWordValidBitsNbr(nbvalidbitsdata);
00154 
00155         /* start HASH processor */
00156         HASH_StartDigest();
00157 
00158         /* wait until Busy flag == RESET */
00159         while (HASH_GetFlagStatus(HASH_FLAG_BUSY) != RESET) {}
00160 
00161         /* read message digest */
00162         sha->digest[0] = HASH->HR[0];
00163         sha->digest[1] = HASH->HR[1];
00164         sha->digest[2] = HASH->HR[2];
00165         sha->digest[3] = HASH->HR[3];
00166         sha->digest[4] = HASH->HR[4];
00167         
00168         ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE);
00169 
00170         XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE);
00171 
00172         return InitSha(sha);  /* reset state */
00173     }
00174 
00175 #else /* CTaoCrypt software implementation */
00176 
00177 #ifndef min
00178 
00179     static INLINE word32 min(word32 a, word32 b)
00180     {
00181         return a > b ? b : a;
00182     }
00183 
00184 #endif /* min */
00185 
00186 
00187 int InitSha(Sha* sha)
00188 {
00189     #ifdef FREESCALE_MMCAU
00190         cau_sha1_initialize_output(sha->digest);
00191     #else
00192         sha->digest[0] = 0x67452301L;
00193         sha->digest[1] = 0xEFCDAB89L;
00194         sha->digest[2] = 0x98BADCFEL;
00195         sha->digest[3] = 0x10325476L;
00196         sha->digest[4] = 0xC3D2E1F0L;
00197     #endif
00198 
00199     sha->buffLen = 0;
00200     sha->loLen   = 0;
00201     sha->hiLen   = 0;
00202 
00203     return 0;
00204 }
00205 
00206 #ifndef FREESCALE_MMCAU
00207 
00208 #define blk0(i) (W[i] = sha->buffer[i])
00209 #define blk1(i) (W[i&15] = \
00210                    rotlFixed(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15],1))
00211 
00212 #define f1(x,y,z) (z^(x &(y^z)))
00213 #define f2(x,y,z) (x^y^z)
00214 #define f3(x,y,z) ((x&y)|(z&(x|y)))
00215 #define f4(x,y,z) (x^y^z)
00216 
00217 /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
00218 #define R0(v,w,x,y,z,i) z+= f1(w,x,y) + blk0(i) + 0x5A827999+ \
00219                         rotlFixed(v,5); w = rotlFixed(w,30);
00220 #define R1(v,w,x,y,z,i) z+= f1(w,x,y) + blk1(i) + 0x5A827999+ \
00221                         rotlFixed(v,5); w = rotlFixed(w,30);
00222 #define R2(v,w,x,y,z,i) z+= f2(w,x,y) + blk1(i) + 0x6ED9EBA1+ \
00223                         rotlFixed(v,5); w = rotlFixed(w,30);
00224 #define R3(v,w,x,y,z,i) z+= f3(w,x,y) + blk1(i) + 0x8F1BBCDC+ \
00225                         rotlFixed(v,5); w = rotlFixed(w,30);
00226 #define R4(v,w,x,y,z,i) z+= f4(w,x,y) + blk1(i) + 0xCA62C1D6+ \
00227                         rotlFixed(v,5); w = rotlFixed(w,30);
00228 
00229 
00230 static void Transform(Sha* sha)
00231 {
00232     word32 W[SHA_BLOCK_SIZE / sizeof(word32)];
00233 
00234     /* Copy context->state[] to working vars */ 
00235     word32 a = sha->digest[0];
00236     word32 b = sha->digest[1];
00237     word32 c = sha->digest[2];
00238     word32 d = sha->digest[3];
00239     word32 e = sha->digest[4];
00240 
00241 #ifdef USE_SLOW_SHA
00242     word32 t, i;
00243 
00244     for (i = 0; i < 16; i++) {
00245         R0(a, b, c, d, e, i);
00246         t = e; e = d; d = c; c = b; b = a; a = t;
00247     }
00248 
00249     for (; i < 20; i++) {
00250         R1(a, b, c, d, e, i);
00251         t = e; e = d; d = c; c = b; b = a; a = t;
00252     }
00253 
00254     for (; i < 40; i++) {
00255         R2(a, b, c, d, e, i);
00256         t = e; e = d; d = c; c = b; b = a; a = t;
00257     }
00258 
00259     for (; i < 60; i++) {
00260         R3(a, b, c, d, e, i);
00261         t = e; e = d; d = c; c = b; b = a; a = t;
00262     }
00263 
00264     for (; i < 80; i++) {
00265         R4(a, b, c, d, e, i);
00266         t = e; e = d; d = c; c = b; b = a; a = t;
00267     }
00268 #else
00269     /* nearly 1 K bigger in code size but 25% faster  */
00270     /* 4 rounds of 20 operations each. Loop unrolled. */
00271     R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
00272     R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
00273     R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
00274     R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
00275 
00276     R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
00277 
00278     R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
00279     R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
00280     R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
00281     R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
00282     R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
00283 
00284     R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
00285     R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
00286     R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
00287     R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
00288     R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
00289 
00290     R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
00291     R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
00292     R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
00293     R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
00294     R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
00295 #endif
00296 
00297     /* Add the working vars back into digest state[] */
00298     sha->digest[0] += a;
00299     sha->digest[1] += b;
00300     sha->digest[2] += c;
00301     sha->digest[3] += d;
00302     sha->digest[4] += e;
00303 }
00304 
00305 #endif /* FREESCALE_MMCAU */
00306 
00307 
00308 static INLINE void AddLength(Sha* sha, word32 len)
00309 {
00310     word32 tmp = sha->loLen;
00311     if ( (sha->loLen += len) < tmp)
00312         sha->hiLen++;                       /* carry low to high */
00313 }
00314 
00315 
00316 int ShaUpdate(Sha* sha, const byte* data, word32 len)
00317 {
00318     /* do block size increments */
00319     byte* local = (byte*)sha->buffer;
00320 
00321     while (len) {
00322         word32 add = min(len, SHA_BLOCK_SIZE - sha->buffLen);
00323         XMEMCPY(&local[sha->buffLen], data, add);
00324 
00325         sha->buffLen += add;
00326         data         += add;
00327         len          -= add;
00328 
00329         if (sha->buffLen == SHA_BLOCK_SIZE) {
00330             #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU)
00331                 ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
00332             #endif
00333             XTRANSFORM(sha, local);
00334             AddLength(sha, SHA_BLOCK_SIZE);
00335             sha->buffLen = 0;
00336         }
00337     }
00338 
00339     return 0;
00340 }
00341 
00342 
00343 int ShaFinal(Sha* sha, byte* hash)
00344 {
00345     byte* local = (byte*)sha->buffer;
00346 
00347     AddLength(sha, sha->buffLen);  /* before adding pads */
00348 
00349     local[sha->buffLen++] = 0x80;  /* add 1 */
00350 
00351     /* pad with zeros */
00352     if (sha->buffLen > SHA_PAD_SIZE) {
00353         XMEMSET(&local[sha->buffLen], 0, SHA_BLOCK_SIZE - sha->buffLen);
00354         sha->buffLen += SHA_BLOCK_SIZE - sha->buffLen;
00355 
00356         #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU)
00357             ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
00358         #endif
00359         XTRANSFORM(sha, local);
00360         sha->buffLen = 0;
00361     }
00362     XMEMSET(&local[sha->buffLen], 0, SHA_PAD_SIZE - sha->buffLen);
00363    
00364     /* put lengths in bits */
00365     sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) + 
00366                  (sha->hiLen << 3);
00367     sha->loLen = sha->loLen << 3;
00368 
00369     /* store lengths */
00370     #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU)
00371         ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
00372     #endif
00373     /* ! length ordering dependent on digest endian type ! */
00374     XMEMCPY(&local[SHA_PAD_SIZE], &sha->hiLen, sizeof(word32));
00375     XMEMCPY(&local[SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32));
00376 
00377     #ifdef FREESCALE_MMCAU
00378         /* Kinetis requires only these bytes reversed */
00379         ByteReverseWords(&sha->buffer[SHA_PAD_SIZE/sizeof(word32)],
00380                          &sha->buffer[SHA_PAD_SIZE/sizeof(word32)],
00381                          2 * sizeof(word32));
00382     #endif
00383 
00384     XTRANSFORM(sha, local);
00385     #ifdef LITTLE_ENDIAN_ORDER
00386         ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE);
00387     #endif
00388     XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE);
00389 
00390     return InitSha(sha);  /* reset state */
00391 }
00392 
00393 #endif /* STM32F2_HASH */
00394 
00395 #endif /* NO_SHA */