Shadow Robot Distance Measurement with Bluetooth Code

Dependencies:   4DGL-uLCD-SE HALLFX_ENCODER Motor mbed-rtos mbed

Fork of rtos_mutex by mbed official

Committer:
vikram3
Date:
Tue Mar 14 14:51:26 2017 +0000
Revision:
9:8e1702463051
Parent:
8:0a2509a0b871
Shadow Robot Code

Who changed what in which revision?

UserRevisionLine numberNew contents of line
vikram3 8:0a2509a0b871 1 /******************************************************************************
vikram3 8:0a2509a0b871 2 SFE_LSM9DS1.cpp
vikram3 8:0a2509a0b871 3 SFE_LSM9DS1 Library Source File
vikram3 8:0a2509a0b871 4 Jim Lindblom @ SparkFun Electronics
vikram3 8:0a2509a0b871 5 Original Creation Date: February 27, 2015
vikram3 8:0a2509a0b871 6 https://github.com/sparkfun/LSM9DS1_Breakout
vikram3 8:0a2509a0b871 7
vikram3 8:0a2509a0b871 8 This file implements all functions of the LSM9DS1 class. Functions here range
vikram3 8:0a2509a0b871 9 from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
vikram3 8:0a2509a0b871 10 hardware reads and writes. Both SPI and I2C handler functions can be found
vikram3 8:0a2509a0b871 11 towards the bottom of this file.
vikram3 8:0a2509a0b871 12
vikram3 8:0a2509a0b871 13 Development environment specifics:
vikram3 8:0a2509a0b871 14 IDE: Arduino 1.6
vikram3 8:0a2509a0b871 15 Hardware Platform: Arduino Uno
vikram3 8:0a2509a0b871 16 LSM9DS1 Breakout Version: 1.0
vikram3 8:0a2509a0b871 17
vikram3 8:0a2509a0b871 18 This code is beerware; if you see me (or any other SparkFun employee) at the
vikram3 8:0a2509a0b871 19 local, and you've found our code helpful, please buy us a round!
vikram3 8:0a2509a0b871 20
vikram3 8:0a2509a0b871 21 Distributed as-is; no warranty is given.
vikram3 8:0a2509a0b871 22 ******************************************************************************/
vikram3 8:0a2509a0b871 23
vikram3 8:0a2509a0b871 24 #include "LSM9DS1.h"
vikram3 8:0a2509a0b871 25 #include "LSM9DS1_Registers.h"
vikram3 8:0a2509a0b871 26 #include "LSM9DS1_Types.h"
vikram3 8:0a2509a0b871 27 //#include <Wire.h> // Wire library is used for I2C
vikram3 8:0a2509a0b871 28 //#include <SPI.h> // SPI library is used for...SPI.
vikram3 8:0a2509a0b871 29
vikram3 8:0a2509a0b871 30 //#if defined(ARDUINO) && ARDUINO >= 100
vikram3 8:0a2509a0b871 31 // #include "Arduino.h"
vikram3 8:0a2509a0b871 32 //#else
vikram3 8:0a2509a0b871 33 // #include "WProgram.h"
vikram3 8:0a2509a0b871 34 //#endif
vikram3 8:0a2509a0b871 35
vikram3 8:0a2509a0b871 36 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000
vikram3 8:0a2509a0b871 37
vikram3 8:0a2509a0b871 38 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
vikram3 8:0a2509a0b871 39 extern Serial pc;
vikram3 8:0a2509a0b871 40
vikram3 8:0a2509a0b871 41 LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr)
vikram3 8:0a2509a0b871 42 :i2c(sda, scl)
vikram3 8:0a2509a0b871 43 {
vikram3 8:0a2509a0b871 44 init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B
vikram3 8:0a2509a0b871 45 }
vikram3 8:0a2509a0b871 46 /*
vikram3 8:0a2509a0b871 47 LSM9DS1::LSM9DS1()
vikram3 8:0a2509a0b871 48 {
vikram3 8:0a2509a0b871 49 init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
vikram3 8:0a2509a0b871 50 }
vikram3 8:0a2509a0b871 51
vikram3 8:0a2509a0b871 52 LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
vikram3 8:0a2509a0b871 53 {
vikram3 8:0a2509a0b871 54 init(interface, xgAddr, mAddr);
vikram3 8:0a2509a0b871 55 }
vikram3 8:0a2509a0b871 56 */
vikram3 8:0a2509a0b871 57
vikram3 8:0a2509a0b871 58 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
vikram3 8:0a2509a0b871 59 {
vikram3 8:0a2509a0b871 60 settings.device.commInterface = interface;
vikram3 8:0a2509a0b871 61 settings.device.agAddress = xgAddr;
vikram3 8:0a2509a0b871 62 settings.device.mAddress = mAddr;
vikram3 8:0a2509a0b871 63
vikram3 8:0a2509a0b871 64 settings.gyro.enabled = true;
vikram3 8:0a2509a0b871 65 settings.gyro.enableX = true;
vikram3 8:0a2509a0b871 66 settings.gyro.enableY = true;
vikram3 8:0a2509a0b871 67 settings.gyro.enableZ = true;
vikram3 8:0a2509a0b871 68 // gyro scale can be 245, 500, or 2000
vikram3 8:0a2509a0b871 69 settings.gyro.scale = 245;
vikram3 8:0a2509a0b871 70 // gyro sample rate: value between 1-6
vikram3 8:0a2509a0b871 71 // 1 = 14.9 4 = 238
vikram3 8:0a2509a0b871 72 // 2 = 59.5 5 = 476
vikram3 8:0a2509a0b871 73 // 3 = 119 6 = 952
vikram3 8:0a2509a0b871 74 settings.gyro.sampleRate = 6;
vikram3 8:0a2509a0b871 75 // gyro cutoff frequency: value between 0-3
vikram3 8:0a2509a0b871 76 // Actual value of cutoff frequency depends
vikram3 8:0a2509a0b871 77 // on sample rate.
vikram3 8:0a2509a0b871 78 settings.gyro.bandwidth = 0;
vikram3 8:0a2509a0b871 79 settings.gyro.lowPowerEnable = false;
vikram3 8:0a2509a0b871 80 settings.gyro.HPFEnable = false;
vikram3 8:0a2509a0b871 81 // Gyro HPF cutoff frequency: value between 0-9
vikram3 8:0a2509a0b871 82 // Actual value depends on sample rate. Only applies
vikram3 8:0a2509a0b871 83 // if gyroHPFEnable is true.
vikram3 8:0a2509a0b871 84 settings.gyro.HPFCutoff = 0;
vikram3 8:0a2509a0b871 85 settings.gyro.flipX = false;
vikram3 8:0a2509a0b871 86 settings.gyro.flipY = false;
vikram3 8:0a2509a0b871 87 settings.gyro.flipZ = false;
vikram3 8:0a2509a0b871 88 settings.gyro.orientation = 0;
vikram3 8:0a2509a0b871 89 settings.gyro.latchInterrupt = true;
vikram3 8:0a2509a0b871 90
vikram3 8:0a2509a0b871 91 settings.accel.enabled = true;
vikram3 8:0a2509a0b871 92 settings.accel.enableX = true;
vikram3 8:0a2509a0b871 93 settings.accel.enableY = true;
vikram3 8:0a2509a0b871 94 settings.accel.enableZ = true;
vikram3 8:0a2509a0b871 95 // accel scale can be 2, 4, 8, or 16
vikram3 8:0a2509a0b871 96 settings.accel.scale = 2;
vikram3 8:0a2509a0b871 97 // accel sample rate can be 1-6
vikram3 8:0a2509a0b871 98 // 1 = 10 Hz 4 = 238 Hz
vikram3 8:0a2509a0b871 99 // 2 = 50 Hz 5 = 476 Hz
vikram3 8:0a2509a0b871 100 // 3 = 119 Hz 6 = 952 Hz
vikram3 8:0a2509a0b871 101 settings.accel.sampleRate = 6;
vikram3 8:0a2509a0b871 102 // Accel cutoff freqeuncy can be any value between -1 - 3.
vikram3 8:0a2509a0b871 103 // -1 = bandwidth determined by sample rate
vikram3 8:0a2509a0b871 104 // 0 = 408 Hz 2 = 105 Hz
vikram3 8:0a2509a0b871 105 // 1 = 211 Hz 3 = 50 Hz
vikram3 8:0a2509a0b871 106 settings.accel.bandwidth = -1;
vikram3 8:0a2509a0b871 107 settings.accel.highResEnable = false;
vikram3 8:0a2509a0b871 108 // accelHighResBandwidth can be any value between 0-3
vikram3 8:0a2509a0b871 109 // LP cutoff is set to a factor of sample rate
vikram3 8:0a2509a0b871 110 // 0 = ODR/50 2 = ODR/9
vikram3 8:0a2509a0b871 111 // 1 = ODR/100 3 = ODR/400
vikram3 8:0a2509a0b871 112 settings.accel.highResBandwidth = 0;
vikram3 8:0a2509a0b871 113
vikram3 8:0a2509a0b871 114 settings.mag.enabled = true;
vikram3 8:0a2509a0b871 115 // mag scale can be 4, 8, 12, or 16
vikram3 8:0a2509a0b871 116 settings.mag.scale = 4;
vikram3 8:0a2509a0b871 117 // mag data rate can be 0-7
vikram3 8:0a2509a0b871 118 // 0 = 0.625 Hz 4 = 10 Hz
vikram3 8:0a2509a0b871 119 // 1 = 1.25 Hz 5 = 20 Hz
vikram3 8:0a2509a0b871 120 // 2 = 2.5 Hz 6 = 40 Hz
vikram3 8:0a2509a0b871 121 // 3 = 5 Hz 7 = 80 Hz
vikram3 8:0a2509a0b871 122 settings.mag.sampleRate = 7;
vikram3 8:0a2509a0b871 123 settings.mag.tempCompensationEnable = false;
vikram3 8:0a2509a0b871 124 // magPerformance can be any value between 0-3
vikram3 8:0a2509a0b871 125 // 0 = Low power mode 2 = high performance
vikram3 8:0a2509a0b871 126 // 1 = medium performance 3 = ultra-high performance
vikram3 8:0a2509a0b871 127 settings.mag.XYPerformance = 3;
vikram3 8:0a2509a0b871 128 settings.mag.ZPerformance = 3;
vikram3 8:0a2509a0b871 129 settings.mag.lowPowerEnable = false;
vikram3 8:0a2509a0b871 130 // magOperatingMode can be 0-2
vikram3 8:0a2509a0b871 131 // 0 = continuous conversion
vikram3 8:0a2509a0b871 132 // 1 = single-conversion
vikram3 8:0a2509a0b871 133 // 2 = power down
vikram3 8:0a2509a0b871 134 settings.mag.operatingMode = 0;
vikram3 8:0a2509a0b871 135
vikram3 8:0a2509a0b871 136 settings.temp.enabled = true;
vikram3 8:0a2509a0b871 137 for (int i=0; i<3; i++) {
vikram3 8:0a2509a0b871 138 gBias[i] = 0;
vikram3 8:0a2509a0b871 139 aBias[i] = 0;
vikram3 8:0a2509a0b871 140 mBias[i] = 0;
vikram3 8:0a2509a0b871 141 gBiasRaw[i] = 0;
vikram3 8:0a2509a0b871 142 aBiasRaw[i] = 0;
vikram3 8:0a2509a0b871 143 mBiasRaw[i] = 0;
vikram3 8:0a2509a0b871 144 }
vikram3 8:0a2509a0b871 145 _autoCalc = false;
vikram3 8:0a2509a0b871 146 }
vikram3 8:0a2509a0b871 147
vikram3 8:0a2509a0b871 148
vikram3 8:0a2509a0b871 149 uint16_t LSM9DS1::begin()
vikram3 8:0a2509a0b871 150 {
vikram3 8:0a2509a0b871 151 //! Todo: don't use _xgAddress or _mAddress, duplicating memory
vikram3 8:0a2509a0b871 152 _xgAddress = settings.device.agAddress;
vikram3 8:0a2509a0b871 153 _mAddress = settings.device.mAddress;
vikram3 8:0a2509a0b871 154
vikram3 8:0a2509a0b871 155 constrainScales();
vikram3 8:0a2509a0b871 156 // Once we have the scale values, we can calculate the resolution
vikram3 8:0a2509a0b871 157 // of each sensor. That's what these functions are for. One for each sensor
vikram3 8:0a2509a0b871 158 calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
vikram3 8:0a2509a0b871 159 calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
vikram3 8:0a2509a0b871 160 calcaRes(); // Calculate g / ADC tick, stored in aRes variable
vikram3 8:0a2509a0b871 161
vikram3 8:0a2509a0b871 162 // Now, initialize our hardware interface.
vikram3 8:0a2509a0b871 163 if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
vikram3 8:0a2509a0b871 164 initI2C(); // Initialize I2C
vikram3 8:0a2509a0b871 165 else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
vikram3 8:0a2509a0b871 166 initSPI(); // Initialize SPI
vikram3 8:0a2509a0b871 167
vikram3 8:0a2509a0b871 168 // To verify communication, we can read from the WHO_AM_I register of
vikram3 8:0a2509a0b871 169 // each device. Store those in a variable so we can return them.
vikram3 8:0a2509a0b871 170 uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
vikram3 8:0a2509a0b871 171 uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
vikram3 8:0a2509a0b871 172 pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
vikram3 8:0a2509a0b871 173 uint16_t whoAmICombined = (xgTest << 8) | mTest;
vikram3 8:0a2509a0b871 174
vikram3 8:0a2509a0b871 175 if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
vikram3 8:0a2509a0b871 176 return 0;
vikram3 8:0a2509a0b871 177
vikram3 8:0a2509a0b871 178 // Gyro initialization stuff:
vikram3 8:0a2509a0b871 179 initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
vikram3 8:0a2509a0b871 180
vikram3 8:0a2509a0b871 181 // Accelerometer initialization stuff:
vikram3 8:0a2509a0b871 182 initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
vikram3 8:0a2509a0b871 183
vikram3 8:0a2509a0b871 184 // Magnetometer initialization stuff:
vikram3 8:0a2509a0b871 185 initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
vikram3 8:0a2509a0b871 186
vikram3 8:0a2509a0b871 187 // Once everything is initialized, return the WHO_AM_I registers we read:
vikram3 8:0a2509a0b871 188 return whoAmICombined;
vikram3 8:0a2509a0b871 189 }
vikram3 8:0a2509a0b871 190
vikram3 8:0a2509a0b871 191 void LSM9DS1::initGyro()
vikram3 8:0a2509a0b871 192 {
vikram3 8:0a2509a0b871 193 uint8_t tempRegValue = 0;
vikram3 8:0a2509a0b871 194
vikram3 8:0a2509a0b871 195 // CTRL_REG1_G (Default value: 0x00)
vikram3 8:0a2509a0b871 196 // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
vikram3 8:0a2509a0b871 197 // ODR_G[2:0] - Output data rate selection
vikram3 8:0a2509a0b871 198 // FS_G[1:0] - Gyroscope full-scale selection
vikram3 8:0a2509a0b871 199 // BW_G[1:0] - Gyroscope bandwidth selection
vikram3 8:0a2509a0b871 200
vikram3 8:0a2509a0b871 201 // To disable gyro, set sample rate bits to 0. We'll only set sample
vikram3 8:0a2509a0b871 202 // rate if the gyro is enabled.
vikram3 8:0a2509a0b871 203 if (settings.gyro.enabled) {
vikram3 8:0a2509a0b871 204 tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
vikram3 8:0a2509a0b871 205 }
vikram3 8:0a2509a0b871 206 switch (settings.gyro.scale) {
vikram3 8:0a2509a0b871 207 case 500:
vikram3 8:0a2509a0b871 208 tempRegValue |= (0x1 << 3);
vikram3 8:0a2509a0b871 209 break;
vikram3 8:0a2509a0b871 210 case 2000:
vikram3 8:0a2509a0b871 211 tempRegValue |= (0x3 << 3);
vikram3 8:0a2509a0b871 212 break;
vikram3 8:0a2509a0b871 213 // Otherwise we'll set it to 245 dps (0x0 << 4)
vikram3 8:0a2509a0b871 214 }
vikram3 8:0a2509a0b871 215 tempRegValue |= (settings.gyro.bandwidth & 0x3);
vikram3 8:0a2509a0b871 216 xgWriteByte(CTRL_REG1_G, tempRegValue);
vikram3 8:0a2509a0b871 217
vikram3 8:0a2509a0b871 218 // CTRL_REG2_G (Default value: 0x00)
vikram3 8:0a2509a0b871 219 // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
vikram3 8:0a2509a0b871 220 // INT_SEL[1:0] - INT selection configuration
vikram3 8:0a2509a0b871 221 // OUT_SEL[1:0] - Out selection configuration
vikram3 8:0a2509a0b871 222 xgWriteByte(CTRL_REG2_G, 0x00);
vikram3 8:0a2509a0b871 223
vikram3 8:0a2509a0b871 224 // CTRL_REG3_G (Default value: 0x00)
vikram3 8:0a2509a0b871 225 // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
vikram3 8:0a2509a0b871 226 // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
vikram3 8:0a2509a0b871 227 // HP_EN - HPF enable (0:disabled, 1: enabled)
vikram3 8:0a2509a0b871 228 // HPCF_G[3:0] - HPF cutoff frequency
vikram3 8:0a2509a0b871 229 tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
vikram3 8:0a2509a0b871 230 if (settings.gyro.HPFEnable) {
vikram3 8:0a2509a0b871 231 tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
vikram3 8:0a2509a0b871 232 }
vikram3 8:0a2509a0b871 233 xgWriteByte(CTRL_REG3_G, tempRegValue);
vikram3 8:0a2509a0b871 234
vikram3 8:0a2509a0b871 235 // CTRL_REG4 (Default value: 0x38)
vikram3 8:0a2509a0b871 236 // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
vikram3 8:0a2509a0b871 237 // Zen_G - Z-axis output enable (0:disable, 1:enable)
vikram3 8:0a2509a0b871 238 // Yen_G - Y-axis output enable (0:disable, 1:enable)
vikram3 8:0a2509a0b871 239 // Xen_G - X-axis output enable (0:disable, 1:enable)
vikram3 8:0a2509a0b871 240 // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
vikram3 8:0a2509a0b871 241 // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
vikram3 8:0a2509a0b871 242 tempRegValue = 0;
vikram3 8:0a2509a0b871 243 if (settings.gyro.enableZ) tempRegValue |= (1<<5);
vikram3 8:0a2509a0b871 244 if (settings.gyro.enableY) tempRegValue |= (1<<4);
vikram3 8:0a2509a0b871 245 if (settings.gyro.enableX) tempRegValue |= (1<<3);
vikram3 8:0a2509a0b871 246 if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
vikram3 8:0a2509a0b871 247 xgWriteByte(CTRL_REG4, tempRegValue);
vikram3 8:0a2509a0b871 248
vikram3 8:0a2509a0b871 249 // ORIENT_CFG_G (Default value: 0x00)
vikram3 8:0a2509a0b871 250 // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
vikram3 8:0a2509a0b871 251 // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
vikram3 8:0a2509a0b871 252 // Orient [2:0] - Directional user orientation selection
vikram3 8:0a2509a0b871 253 tempRegValue = 0;
vikram3 8:0a2509a0b871 254 if (settings.gyro.flipX) tempRegValue |= (1<<5);
vikram3 8:0a2509a0b871 255 if (settings.gyro.flipY) tempRegValue |= (1<<4);
vikram3 8:0a2509a0b871 256 if (settings.gyro.flipZ) tempRegValue |= (1<<3);
vikram3 8:0a2509a0b871 257 xgWriteByte(ORIENT_CFG_G, tempRegValue);
vikram3 8:0a2509a0b871 258 }
vikram3 8:0a2509a0b871 259
vikram3 8:0a2509a0b871 260 void LSM9DS1::initAccel()
vikram3 8:0a2509a0b871 261 {
vikram3 8:0a2509a0b871 262 uint8_t tempRegValue = 0;
vikram3 8:0a2509a0b871 263
vikram3 8:0a2509a0b871 264 // CTRL_REG5_XL (0x1F) (Default value: 0x38)
vikram3 8:0a2509a0b871 265 // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
vikram3 8:0a2509a0b871 266 // DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
vikram3 8:0a2509a0b871 267 // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
vikram3 8:0a2509a0b871 268 // Zen_XL - Z-axis output enabled
vikram3 8:0a2509a0b871 269 // Yen_XL - Y-axis output enabled
vikram3 8:0a2509a0b871 270 // Xen_XL - X-axis output enabled
vikram3 8:0a2509a0b871 271 if (settings.accel.enableZ) tempRegValue |= (1<<5);
vikram3 8:0a2509a0b871 272 if (settings.accel.enableY) tempRegValue |= (1<<4);
vikram3 8:0a2509a0b871 273 if (settings.accel.enableX) tempRegValue |= (1<<3);
vikram3 8:0a2509a0b871 274
vikram3 8:0a2509a0b871 275 xgWriteByte(CTRL_REG5_XL, tempRegValue);
vikram3 8:0a2509a0b871 276
vikram3 8:0a2509a0b871 277 // CTRL_REG6_XL (0x20) (Default value: 0x00)
vikram3 8:0a2509a0b871 278 // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
vikram3 8:0a2509a0b871 279 // ODR_XL[2:0] - Output data rate & power mode selection
vikram3 8:0a2509a0b871 280 // FS_XL[1:0] - Full-scale selection
vikram3 8:0a2509a0b871 281 // BW_SCAL_ODR - Bandwidth selection
vikram3 8:0a2509a0b871 282 // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
vikram3 8:0a2509a0b871 283 tempRegValue = 0;
vikram3 8:0a2509a0b871 284 // To disable the accel, set the sampleRate bits to 0.
vikram3 8:0a2509a0b871 285 if (settings.accel.enabled) {
vikram3 8:0a2509a0b871 286 tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
vikram3 8:0a2509a0b871 287 }
vikram3 8:0a2509a0b871 288 switch (settings.accel.scale) {
vikram3 8:0a2509a0b871 289 case 4:
vikram3 8:0a2509a0b871 290 tempRegValue |= (0x2 << 3);
vikram3 8:0a2509a0b871 291 break;
vikram3 8:0a2509a0b871 292 case 8:
vikram3 8:0a2509a0b871 293 tempRegValue |= (0x3 << 3);
vikram3 8:0a2509a0b871 294 break;
vikram3 8:0a2509a0b871 295 case 16:
vikram3 8:0a2509a0b871 296 tempRegValue |= (0x1 << 3);
vikram3 8:0a2509a0b871 297 break;
vikram3 8:0a2509a0b871 298 // Otherwise it'll be set to 2g (0x0 << 3)
vikram3 8:0a2509a0b871 299 }
vikram3 8:0a2509a0b871 300 if (settings.accel.bandwidth >= 0) {
vikram3 8:0a2509a0b871 301 tempRegValue |= (1<<2); // Set BW_SCAL_ODR
vikram3 8:0a2509a0b871 302 tempRegValue |= (settings.accel.bandwidth & 0x03);
vikram3 8:0a2509a0b871 303 }
vikram3 8:0a2509a0b871 304 xgWriteByte(CTRL_REG6_XL, tempRegValue);
vikram3 8:0a2509a0b871 305
vikram3 8:0a2509a0b871 306 // CTRL_REG7_XL (0x21) (Default value: 0x00)
vikram3 8:0a2509a0b871 307 // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
vikram3 8:0a2509a0b871 308 // HR - High resolution mode (0: disable, 1: enable)
vikram3 8:0a2509a0b871 309 // DCF[1:0] - Digital filter cutoff frequency
vikram3 8:0a2509a0b871 310 // FDS - Filtered data selection
vikram3 8:0a2509a0b871 311 // HPIS1 - HPF enabled for interrupt function
vikram3 8:0a2509a0b871 312 tempRegValue = 0;
vikram3 8:0a2509a0b871 313 if (settings.accel.highResEnable) {
vikram3 8:0a2509a0b871 314 tempRegValue |= (1<<7); // Set HR bit
vikram3 8:0a2509a0b871 315 tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
vikram3 8:0a2509a0b871 316 }
vikram3 8:0a2509a0b871 317 xgWriteByte(CTRL_REG7_XL, tempRegValue);
vikram3 8:0a2509a0b871 318 }
vikram3 8:0a2509a0b871 319
vikram3 8:0a2509a0b871 320 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
vikram3 8:0a2509a0b871 321 // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
vikram3 8:0a2509a0b871 322 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
vikram3 8:0a2509a0b871 323 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
vikram3 8:0a2509a0b871 324 // subtract the biases ourselves. This results in a more accurate measurement in general and can
vikram3 8:0a2509a0b871 325 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
vikram3 8:0a2509a0b871 326 // is good practice.
vikram3 8:0a2509a0b871 327 void LSM9DS1::calibrate(bool autoCalc)
vikram3 8:0a2509a0b871 328 {
vikram3 8:0a2509a0b871 329 uint8_t data[6] = {0, 0, 0, 0, 0, 0};
vikram3 8:0a2509a0b871 330 uint8_t samples = 0;
vikram3 8:0a2509a0b871 331 int ii;
vikram3 8:0a2509a0b871 332 int32_t aBiasRawTemp[3] = {0, 0, 0};
vikram3 8:0a2509a0b871 333 int32_t gBiasRawTemp[3] = {0, 0, 0};
vikram3 8:0a2509a0b871 334 pc.printf("\n\rPlace IMU on level surface and do not move it for gyro and accel calibration.\n\r");
vikram3 8:0a2509a0b871 335 wait(1);
vikram3 8:0a2509a0b871 336 // Turn on FIFO and set threshold to 32 samples
vikram3 8:0a2509a0b871 337 enableFIFO(true);
vikram3 8:0a2509a0b871 338 setFIFO(FIFO_THS, 0x1F);
vikram3 8:0a2509a0b871 339 while (samples < 0x1F) {
vikram3 8:0a2509a0b871 340 samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
vikram3 8:0a2509a0b871 341 }
vikram3 8:0a2509a0b871 342 for(ii = 0; ii < samples ; ii++) {
vikram3 8:0a2509a0b871 343 // Read the gyro data stored in the FIFO
vikram3 8:0a2509a0b871 344 readGyro();
vikram3 8:0a2509a0b871 345 gBiasRawTemp[0] += gx;
vikram3 8:0a2509a0b871 346 gBiasRawTemp[1] += gy;
vikram3 8:0a2509a0b871 347 gBiasRawTemp[2] += gz;
vikram3 8:0a2509a0b871 348 readAccel();
vikram3 8:0a2509a0b871 349 aBiasRawTemp[0] += ax;
vikram3 8:0a2509a0b871 350 aBiasRawTemp[1] += ay;
vikram3 8:0a2509a0b871 351 aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
vikram3 8:0a2509a0b871 352 }
vikram3 8:0a2509a0b871 353 for (ii = 0; ii < 3; ii++) {
vikram3 8:0a2509a0b871 354 gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
vikram3 8:0a2509a0b871 355 gBias[ii] = calcGyro(gBiasRaw[ii]);
vikram3 8:0a2509a0b871 356 aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
vikram3 8:0a2509a0b871 357 aBias[ii] = calcAccel(aBiasRaw[ii]);
vikram3 8:0a2509a0b871 358 }
vikram3 8:0a2509a0b871 359
vikram3 8:0a2509a0b871 360 enableFIFO(false);
vikram3 8:0a2509a0b871 361 setFIFO(FIFO_OFF, 0x00);
vikram3 8:0a2509a0b871 362
vikram3 8:0a2509a0b871 363 if (autoCalc) _autoCalc = true;
vikram3 8:0a2509a0b871 364 }
vikram3 8:0a2509a0b871 365
vikram3 8:0a2509a0b871 366 void LSM9DS1::calibrateMag(bool loadIn)
vikram3 8:0a2509a0b871 367 {
vikram3 8:0a2509a0b871 368 int i, j;
vikram3 8:0a2509a0b871 369 int16_t magMin[3] = {0, 0, 0};
vikram3 8:0a2509a0b871 370 int16_t magMax[3] = {0, 0, 0}; // The road warrior
vikram3 8:0a2509a0b871 371 pc.printf("\n\n\r Rotate IMU device at least 360 in horizontal plane for magnetometer calibration\n\r");
vikram3 8:0a2509a0b871 372 wait(0.5);
vikram3 8:0a2509a0b871 373 for (i=0; i<1000; i++) {
vikram3 8:0a2509a0b871 374 while (!magAvailable(ALL_AXIS));
vikram3 8:0a2509a0b871 375 readMag();
vikram3 8:0a2509a0b871 376 int16_t magTemp[3] = {0, 0, 0};
vikram3 8:0a2509a0b871 377 magTemp[0] = mx;
vikram3 8:0a2509a0b871 378 magTemp[1] = my;
vikram3 8:0a2509a0b871 379 magTemp[2] = mz;
vikram3 8:0a2509a0b871 380 for (j = 0; j < 3; j++) {
vikram3 8:0a2509a0b871 381 if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
vikram3 8:0a2509a0b871 382 if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
vikram3 8:0a2509a0b871 383 }
vikram3 8:0a2509a0b871 384 }
vikram3 8:0a2509a0b871 385 for (j = 0; j < 3; j++) {
vikram3 8:0a2509a0b871 386 mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
vikram3 8:0a2509a0b871 387 mBias[j] = calcMag(mBiasRaw[j]);
vikram3 8:0a2509a0b871 388 pc.printf("%f ",mBias[j]);
vikram3 8:0a2509a0b871 389 if (loadIn)
vikram3 8:0a2509a0b871 390 magOffset(j, mBiasRaw[j]);
vikram3 8:0a2509a0b871 391 }
vikram3 8:0a2509a0b871 392 pc.printf("\n\rMAG calibration done\n\r");
vikram3 8:0a2509a0b871 393 }
vikram3 8:0a2509a0b871 394 void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
vikram3 8:0a2509a0b871 395 {
vikram3 8:0a2509a0b871 396 if (axis > 2)
vikram3 8:0a2509a0b871 397 return;
vikram3 8:0a2509a0b871 398 uint8_t msb, lsb;
vikram3 8:0a2509a0b871 399 msb = (offset & 0xFF00) >> 8;
vikram3 8:0a2509a0b871 400 lsb = offset & 0x00FF;
vikram3 8:0a2509a0b871 401 mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
vikram3 8:0a2509a0b871 402 mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
vikram3 8:0a2509a0b871 403 }
vikram3 8:0a2509a0b871 404
vikram3 8:0a2509a0b871 405 void LSM9DS1::initMag()
vikram3 8:0a2509a0b871 406 {
vikram3 8:0a2509a0b871 407 uint8_t tempRegValue = 0;
vikram3 8:0a2509a0b871 408
vikram3 8:0a2509a0b871 409 // CTRL_REG1_M (Default value: 0x10)
vikram3 8:0a2509a0b871 410 // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
vikram3 8:0a2509a0b871 411 // TEMP_COMP - Temperature compensation
vikram3 8:0a2509a0b871 412 // OM[1:0] - X & Y axes op mode selection
vikram3 8:0a2509a0b871 413 // 00:low-power, 01:medium performance
vikram3 8:0a2509a0b871 414 // 10: high performance, 11:ultra-high performance
vikram3 8:0a2509a0b871 415 // DO[2:0] - Output data rate selection
vikram3 8:0a2509a0b871 416 // ST - Self-test enable
vikram3 8:0a2509a0b871 417 if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
vikram3 8:0a2509a0b871 418 tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
vikram3 8:0a2509a0b871 419 tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
vikram3 8:0a2509a0b871 420 mWriteByte(CTRL_REG1_M, tempRegValue);
vikram3 8:0a2509a0b871 421
vikram3 8:0a2509a0b871 422 // CTRL_REG2_M (Default value 0x00)
vikram3 8:0a2509a0b871 423 // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
vikram3 8:0a2509a0b871 424 // FS[1:0] - Full-scale configuration
vikram3 8:0a2509a0b871 425 // REBOOT - Reboot memory content (0:normal, 1:reboot)
vikram3 8:0a2509a0b871 426 // SOFT_RST - Reset config and user registers (0:default, 1:reset)
vikram3 8:0a2509a0b871 427 tempRegValue = 0;
vikram3 8:0a2509a0b871 428 switch (settings.mag.scale) {
vikram3 8:0a2509a0b871 429 case 8:
vikram3 8:0a2509a0b871 430 tempRegValue |= (0x1 << 5);
vikram3 8:0a2509a0b871 431 break;
vikram3 8:0a2509a0b871 432 case 12:
vikram3 8:0a2509a0b871 433 tempRegValue |= (0x2 << 5);
vikram3 8:0a2509a0b871 434 break;
vikram3 8:0a2509a0b871 435 case 16:
vikram3 8:0a2509a0b871 436 tempRegValue |= (0x3 << 5);
vikram3 8:0a2509a0b871 437 break;
vikram3 8:0a2509a0b871 438 // Otherwise we'll default to 4 gauss (00)
vikram3 8:0a2509a0b871 439 }
vikram3 8:0a2509a0b871 440 mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
vikram3 8:0a2509a0b871 441
vikram3 8:0a2509a0b871 442 // CTRL_REG3_M (Default value: 0x03)
vikram3 8:0a2509a0b871 443 // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
vikram3 8:0a2509a0b871 444 // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
vikram3 8:0a2509a0b871 445 // LP - Low-power mode cofiguration (1:enable)
vikram3 8:0a2509a0b871 446 // SIM - SPI mode selection (0:write-only, 1:read/write enable)
vikram3 8:0a2509a0b871 447 // MD[1:0] - Operating mode
vikram3 8:0a2509a0b871 448 // 00:continuous conversion, 01:single-conversion,
vikram3 8:0a2509a0b871 449 // 10,11: Power-down
vikram3 8:0a2509a0b871 450 tempRegValue = 0;
vikram3 8:0a2509a0b871 451 if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
vikram3 8:0a2509a0b871 452 tempRegValue |= (settings.mag.operatingMode & 0x3);
vikram3 8:0a2509a0b871 453 mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
vikram3 8:0a2509a0b871 454
vikram3 8:0a2509a0b871 455 // CTRL_REG4_M (Default value: 0x00)
vikram3 8:0a2509a0b871 456 // [0][0][0][0][OMZ1][OMZ0][BLE][0]
vikram3 8:0a2509a0b871 457 // OMZ[1:0] - Z-axis operative mode selection
vikram3 8:0a2509a0b871 458 // 00:low-power mode, 01:medium performance
vikram3 8:0a2509a0b871 459 // 10:high performance, 10:ultra-high performance
vikram3 8:0a2509a0b871 460 // BLE - Big/little endian data
vikram3 8:0a2509a0b871 461 tempRegValue = 0;
vikram3 8:0a2509a0b871 462 tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
vikram3 8:0a2509a0b871 463 mWriteByte(CTRL_REG4_M, tempRegValue);
vikram3 8:0a2509a0b871 464
vikram3 8:0a2509a0b871 465 // CTRL_REG5_M (Default value: 0x00)
vikram3 8:0a2509a0b871 466 // [0][BDU][0][0][0][0][0][0]
vikram3 8:0a2509a0b871 467 // BDU - Block data update for magnetic data
vikram3 8:0a2509a0b871 468 // 0:continuous, 1:not updated until MSB/LSB are read
vikram3 8:0a2509a0b871 469 tempRegValue = 0;
vikram3 8:0a2509a0b871 470 mWriteByte(CTRL_REG5_M, tempRegValue);
vikram3 8:0a2509a0b871 471 }
vikram3 8:0a2509a0b871 472
vikram3 8:0a2509a0b871 473 uint8_t LSM9DS1::accelAvailable()
vikram3 8:0a2509a0b871 474 {
vikram3 8:0a2509a0b871 475 uint8_t status = xgReadByte(STATUS_REG_1);
vikram3 8:0a2509a0b871 476
vikram3 8:0a2509a0b871 477 return (status & (1<<0));
vikram3 8:0a2509a0b871 478 }
vikram3 8:0a2509a0b871 479
vikram3 8:0a2509a0b871 480 uint8_t LSM9DS1::gyroAvailable()
vikram3 8:0a2509a0b871 481 {
vikram3 8:0a2509a0b871 482 uint8_t status = xgReadByte(STATUS_REG_1);
vikram3 8:0a2509a0b871 483
vikram3 8:0a2509a0b871 484 return ((status & (1<<1)) >> 1);
vikram3 8:0a2509a0b871 485 }
vikram3 8:0a2509a0b871 486
vikram3 8:0a2509a0b871 487 uint8_t LSM9DS1::tempAvailable()
vikram3 8:0a2509a0b871 488 {
vikram3 8:0a2509a0b871 489 uint8_t status = xgReadByte(STATUS_REG_1);
vikram3 8:0a2509a0b871 490
vikram3 8:0a2509a0b871 491 return ((status & (1<<2)) >> 2);
vikram3 8:0a2509a0b871 492 }
vikram3 8:0a2509a0b871 493
vikram3 8:0a2509a0b871 494 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
vikram3 8:0a2509a0b871 495 {
vikram3 8:0a2509a0b871 496 uint8_t status;
vikram3 8:0a2509a0b871 497 status = mReadByte(STATUS_REG_M);
vikram3 8:0a2509a0b871 498
vikram3 8:0a2509a0b871 499 return ((status & (1<<axis)) >> axis);
vikram3 8:0a2509a0b871 500 }
vikram3 8:0a2509a0b871 501
vikram3 8:0a2509a0b871 502 void LSM9DS1::readAccel()
vikram3 8:0a2509a0b871 503 {
vikram3 8:0a2509a0b871 504 uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
vikram3 8:0a2509a0b871 505 xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
vikram3 8:0a2509a0b871 506 ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
vikram3 8:0a2509a0b871 507 ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
vikram3 8:0a2509a0b871 508 az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
vikram3 8:0a2509a0b871 509 if (_autoCalc) {
vikram3 8:0a2509a0b871 510 ax -= aBiasRaw[X_AXIS];
vikram3 8:0a2509a0b871 511 ay -= aBiasRaw[Y_AXIS];
vikram3 8:0a2509a0b871 512 az -= aBiasRaw[Z_AXIS];
vikram3 8:0a2509a0b871 513 }
vikram3 8:0a2509a0b871 514 }
vikram3 8:0a2509a0b871 515
vikram3 8:0a2509a0b871 516 int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
vikram3 8:0a2509a0b871 517 {
vikram3 8:0a2509a0b871 518 uint8_t temp[2];
vikram3 8:0a2509a0b871 519 int16_t value;
vikram3 8:0a2509a0b871 520 xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
vikram3 8:0a2509a0b871 521 value = (temp[1] << 8) | temp[0];
vikram3 8:0a2509a0b871 522
vikram3 8:0a2509a0b871 523 if (_autoCalc)
vikram3 8:0a2509a0b871 524 value -= aBiasRaw[axis];
vikram3 8:0a2509a0b871 525
vikram3 8:0a2509a0b871 526 return value;
vikram3 8:0a2509a0b871 527 }
vikram3 8:0a2509a0b871 528
vikram3 8:0a2509a0b871 529 void LSM9DS1::readMag()
vikram3 8:0a2509a0b871 530 {
vikram3 8:0a2509a0b871 531 uint8_t temp[6]; // We'll read six bytes from the mag into temp
vikram3 8:0a2509a0b871 532 mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
vikram3 8:0a2509a0b871 533 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
vikram3 8:0a2509a0b871 534 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
vikram3 8:0a2509a0b871 535 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
vikram3 8:0a2509a0b871 536 mx = mx - mBiasRaw[0];
vikram3 8:0a2509a0b871 537 my = my - mBiasRaw[1];
vikram3 8:0a2509a0b871 538 mz = mz - mBiasRaw[2];
vikram3 8:0a2509a0b871 539 }
vikram3 8:0a2509a0b871 540
vikram3 8:0a2509a0b871 541 int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
vikram3 8:0a2509a0b871 542 {
vikram3 8:0a2509a0b871 543 uint8_t temp[2];
vikram3 8:0a2509a0b871 544 mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
vikram3 8:0a2509a0b871 545 return (temp[1] << 8) | temp[0];
vikram3 8:0a2509a0b871 546 }
vikram3 8:0a2509a0b871 547
vikram3 8:0a2509a0b871 548 void LSM9DS1::readTemp()
vikram3 8:0a2509a0b871 549 {
vikram3 8:0a2509a0b871 550 uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
vikram3 8:0a2509a0b871 551 xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
vikram3 8:0a2509a0b871 552 temperature = (int16_t)((temp[1] << 8) | temp[0]);
vikram3 8:0a2509a0b871 553 }
vikram3 8:0a2509a0b871 554
vikram3 8:0a2509a0b871 555 void LSM9DS1::readGyro()
vikram3 8:0a2509a0b871 556 {
vikram3 8:0a2509a0b871 557 uint8_t temp[6]; // We'll read six bytes from the gyro into temp
vikram3 8:0a2509a0b871 558 xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
vikram3 8:0a2509a0b871 559 gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
vikram3 8:0a2509a0b871 560 gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
vikram3 8:0a2509a0b871 561 gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
vikram3 8:0a2509a0b871 562 if (_autoCalc) {
vikram3 8:0a2509a0b871 563 gx -= gBiasRaw[X_AXIS];
vikram3 8:0a2509a0b871 564 gy -= gBiasRaw[Y_AXIS];
vikram3 8:0a2509a0b871 565 gz -= gBiasRaw[Z_AXIS];
vikram3 8:0a2509a0b871 566 }
vikram3 8:0a2509a0b871 567 }
vikram3 8:0a2509a0b871 568
vikram3 8:0a2509a0b871 569 int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
vikram3 8:0a2509a0b871 570 {
vikram3 8:0a2509a0b871 571 uint8_t temp[2];
vikram3 8:0a2509a0b871 572 int16_t value;
vikram3 8:0a2509a0b871 573
vikram3 8:0a2509a0b871 574 xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
vikram3 8:0a2509a0b871 575
vikram3 8:0a2509a0b871 576 value = (temp[1] << 8) | temp[0];
vikram3 8:0a2509a0b871 577
vikram3 8:0a2509a0b871 578 if (_autoCalc)
vikram3 8:0a2509a0b871 579 value -= gBiasRaw[axis];
vikram3 8:0a2509a0b871 580
vikram3 8:0a2509a0b871 581 return value;
vikram3 8:0a2509a0b871 582 }
vikram3 8:0a2509a0b871 583
vikram3 8:0a2509a0b871 584 float LSM9DS1::calcGyro(int16_t gyro)
vikram3 8:0a2509a0b871 585 {
vikram3 8:0a2509a0b871 586 // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
vikram3 8:0a2509a0b871 587 return gRes * gyro;
vikram3 8:0a2509a0b871 588 }
vikram3 8:0a2509a0b871 589
vikram3 8:0a2509a0b871 590 float LSM9DS1::calcAccel(int16_t accel)
vikram3 8:0a2509a0b871 591 {
vikram3 8:0a2509a0b871 592 // Return the accel raw reading times our pre-calculated g's / (ADC tick):
vikram3 8:0a2509a0b871 593 return aRes * accel;
vikram3 8:0a2509a0b871 594 }
vikram3 8:0a2509a0b871 595
vikram3 8:0a2509a0b871 596 float LSM9DS1::calcMag(int16_t mag)
vikram3 8:0a2509a0b871 597 {
vikram3 8:0a2509a0b871 598 // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
vikram3 8:0a2509a0b871 599 return mRes * mag;
vikram3 8:0a2509a0b871 600 }
vikram3 8:0a2509a0b871 601
vikram3 8:0a2509a0b871 602 void LSM9DS1::setGyroScale(uint16_t gScl)
vikram3 8:0a2509a0b871 603 {
vikram3 8:0a2509a0b871 604 // Read current value of CTRL_REG1_G:
vikram3 8:0a2509a0b871 605 uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
vikram3 8:0a2509a0b871 606 // Mask out scale bits (3 & 4):
vikram3 8:0a2509a0b871 607 ctrl1RegValue &= 0xE7;
vikram3 8:0a2509a0b871 608 switch (gScl) {
vikram3 8:0a2509a0b871 609 case 500:
vikram3 8:0a2509a0b871 610 ctrl1RegValue |= (0x1 << 3);
vikram3 8:0a2509a0b871 611 settings.gyro.scale = 500;
vikram3 8:0a2509a0b871 612 break;
vikram3 8:0a2509a0b871 613 case 2000:
vikram3 8:0a2509a0b871 614 ctrl1RegValue |= (0x3 << 3);
vikram3 8:0a2509a0b871 615 settings.gyro.scale = 2000;
vikram3 8:0a2509a0b871 616 break;
vikram3 8:0a2509a0b871 617 default: // Otherwise we'll set it to 245 dps (0x0 << 4)
vikram3 8:0a2509a0b871 618 settings.gyro.scale = 245;
vikram3 8:0a2509a0b871 619 break;
vikram3 8:0a2509a0b871 620 }
vikram3 8:0a2509a0b871 621 xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
vikram3 8:0a2509a0b871 622
vikram3 8:0a2509a0b871 623 calcgRes();
vikram3 8:0a2509a0b871 624 }
vikram3 8:0a2509a0b871 625
vikram3 8:0a2509a0b871 626 void LSM9DS1::setAccelScale(uint8_t aScl)
vikram3 8:0a2509a0b871 627 {
vikram3 8:0a2509a0b871 628 // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
vikram3 8:0a2509a0b871 629 uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
vikram3 8:0a2509a0b871 630 // Mask out accel scale bits:
vikram3 8:0a2509a0b871 631 tempRegValue &= 0xE7;
vikram3 8:0a2509a0b871 632
vikram3 8:0a2509a0b871 633 switch (aScl) {
vikram3 8:0a2509a0b871 634 case 4:
vikram3 8:0a2509a0b871 635 tempRegValue |= (0x2 << 3);
vikram3 8:0a2509a0b871 636 settings.accel.scale = 4;
vikram3 8:0a2509a0b871 637 break;
vikram3 8:0a2509a0b871 638 case 8:
vikram3 8:0a2509a0b871 639 tempRegValue |= (0x3 << 3);
vikram3 8:0a2509a0b871 640 settings.accel.scale = 8;
vikram3 8:0a2509a0b871 641 break;
vikram3 8:0a2509a0b871 642 case 16:
vikram3 8:0a2509a0b871 643 tempRegValue |= (0x1 << 3);
vikram3 8:0a2509a0b871 644 settings.accel.scale = 16;
vikram3 8:0a2509a0b871 645 break;
vikram3 8:0a2509a0b871 646 default: // Otherwise it'll be set to 2g (0x0 << 3)
vikram3 8:0a2509a0b871 647 settings.accel.scale = 2;
vikram3 8:0a2509a0b871 648 break;
vikram3 8:0a2509a0b871 649 }
vikram3 8:0a2509a0b871 650 xgWriteByte(CTRL_REG6_XL, tempRegValue);
vikram3 8:0a2509a0b871 651
vikram3 8:0a2509a0b871 652 // Then calculate a new aRes, which relies on aScale being set correctly:
vikram3 8:0a2509a0b871 653 calcaRes();
vikram3 8:0a2509a0b871 654 }
vikram3 8:0a2509a0b871 655
vikram3 8:0a2509a0b871 656 void LSM9DS1::setMagScale(uint8_t mScl)
vikram3 8:0a2509a0b871 657 {
vikram3 8:0a2509a0b871 658 // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
vikram3 8:0a2509a0b871 659 uint8_t temp = mReadByte(CTRL_REG2_M);
vikram3 8:0a2509a0b871 660 // Then mask out the mag scale bits:
vikram3 8:0a2509a0b871 661 temp &= 0xFF^(0x3 << 5);
vikram3 8:0a2509a0b871 662
vikram3 8:0a2509a0b871 663 switch (mScl) {
vikram3 8:0a2509a0b871 664 case 8:
vikram3 8:0a2509a0b871 665 temp |= (0x1 << 5);
vikram3 8:0a2509a0b871 666 settings.mag.scale = 8;
vikram3 8:0a2509a0b871 667 break;
vikram3 8:0a2509a0b871 668 case 12:
vikram3 8:0a2509a0b871 669 temp |= (0x2 << 5);
vikram3 8:0a2509a0b871 670 settings.mag.scale = 12;
vikram3 8:0a2509a0b871 671 break;
vikram3 8:0a2509a0b871 672 case 16:
vikram3 8:0a2509a0b871 673 temp |= (0x3 << 5);
vikram3 8:0a2509a0b871 674 settings.mag.scale = 16;
vikram3 8:0a2509a0b871 675 break;
vikram3 8:0a2509a0b871 676 default: // Otherwise we'll default to 4 gauss (00)
vikram3 8:0a2509a0b871 677 settings.mag.scale = 4;
vikram3 8:0a2509a0b871 678 break;
vikram3 8:0a2509a0b871 679 }
vikram3 8:0a2509a0b871 680
vikram3 8:0a2509a0b871 681 // And write the new register value back into CTRL_REG6_XM:
vikram3 8:0a2509a0b871 682 mWriteByte(CTRL_REG2_M, temp);
vikram3 8:0a2509a0b871 683
vikram3 8:0a2509a0b871 684 // We've updated the sensor, but we also need to update our class variables
vikram3 8:0a2509a0b871 685 // First update mScale:
vikram3 8:0a2509a0b871 686 //mScale = mScl;
vikram3 8:0a2509a0b871 687 // Then calculate a new mRes, which relies on mScale being set correctly:
vikram3 8:0a2509a0b871 688 calcmRes();
vikram3 8:0a2509a0b871 689 }
vikram3 8:0a2509a0b871 690
vikram3 8:0a2509a0b871 691 void LSM9DS1::setGyroODR(uint8_t gRate)
vikram3 8:0a2509a0b871 692 {
vikram3 8:0a2509a0b871 693 // Only do this if gRate is not 0 (which would disable the gyro)
vikram3 8:0a2509a0b871 694 if ((gRate & 0x07) != 0) {
vikram3 8:0a2509a0b871 695 // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
vikram3 8:0a2509a0b871 696 uint8_t temp = xgReadByte(CTRL_REG1_G);
vikram3 8:0a2509a0b871 697 // Then mask out the gyro ODR bits:
vikram3 8:0a2509a0b871 698 temp &= 0xFF^(0x7 << 5);
vikram3 8:0a2509a0b871 699 temp |= (gRate & 0x07) << 5;
vikram3 8:0a2509a0b871 700 // Update our settings struct
vikram3 8:0a2509a0b871 701 settings.gyro.sampleRate = gRate & 0x07;
vikram3 8:0a2509a0b871 702 // And write the new register value back into CTRL_REG1_G:
vikram3 8:0a2509a0b871 703 xgWriteByte(CTRL_REG1_G, temp);
vikram3 8:0a2509a0b871 704 }
vikram3 8:0a2509a0b871 705 }
vikram3 8:0a2509a0b871 706
vikram3 8:0a2509a0b871 707 void LSM9DS1::setAccelODR(uint8_t aRate)
vikram3 8:0a2509a0b871 708 {
vikram3 8:0a2509a0b871 709 // Only do this if aRate is not 0 (which would disable the accel)
vikram3 8:0a2509a0b871 710 if ((aRate & 0x07) != 0) {
vikram3 8:0a2509a0b871 711 // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
vikram3 8:0a2509a0b871 712 uint8_t temp = xgReadByte(CTRL_REG6_XL);
vikram3 8:0a2509a0b871 713 // Then mask out the accel ODR bits:
vikram3 8:0a2509a0b871 714 temp &= 0x1F;
vikram3 8:0a2509a0b871 715 // Then shift in our new ODR bits:
vikram3 8:0a2509a0b871 716 temp |= ((aRate & 0x07) << 5);
vikram3 8:0a2509a0b871 717 settings.accel.sampleRate = aRate & 0x07;
vikram3 8:0a2509a0b871 718 // And write the new register value back into CTRL_REG1_XM:
vikram3 8:0a2509a0b871 719 xgWriteByte(CTRL_REG6_XL, temp);
vikram3 8:0a2509a0b871 720 }
vikram3 8:0a2509a0b871 721 }
vikram3 8:0a2509a0b871 722
vikram3 8:0a2509a0b871 723 void LSM9DS1::setMagODR(uint8_t mRate)
vikram3 8:0a2509a0b871 724 {
vikram3 8:0a2509a0b871 725 // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
vikram3 8:0a2509a0b871 726 uint8_t temp = mReadByte(CTRL_REG1_M);
vikram3 8:0a2509a0b871 727 // Then mask out the mag ODR bits:
vikram3 8:0a2509a0b871 728 temp &= 0xFF^(0x7 << 2);
vikram3 8:0a2509a0b871 729 // Then shift in our new ODR bits:
vikram3 8:0a2509a0b871 730 temp |= ((mRate & 0x07) << 2);
vikram3 8:0a2509a0b871 731 settings.mag.sampleRate = mRate & 0x07;
vikram3 8:0a2509a0b871 732 // And write the new register value back into CTRL_REG5_XM:
vikram3 8:0a2509a0b871 733 mWriteByte(CTRL_REG1_M, temp);
vikram3 8:0a2509a0b871 734 }
vikram3 8:0a2509a0b871 735
vikram3 8:0a2509a0b871 736 void LSM9DS1::calcgRes()
vikram3 8:0a2509a0b871 737 {
vikram3 8:0a2509a0b871 738 gRes = ((float) settings.gyro.scale) / 32768.0;
vikram3 8:0a2509a0b871 739 }
vikram3 8:0a2509a0b871 740
vikram3 8:0a2509a0b871 741 void LSM9DS1::calcaRes()
vikram3 8:0a2509a0b871 742 {
vikram3 8:0a2509a0b871 743 aRes = ((float) settings.accel.scale) / 32768.0;
vikram3 8:0a2509a0b871 744 }
vikram3 8:0a2509a0b871 745
vikram3 8:0a2509a0b871 746 void LSM9DS1::calcmRes()
vikram3 8:0a2509a0b871 747 {
vikram3 8:0a2509a0b871 748 //mRes = ((float) settings.mag.scale) / 32768.0;
vikram3 8:0a2509a0b871 749 switch (settings.mag.scale) {
vikram3 8:0a2509a0b871 750 case 4:
vikram3 8:0a2509a0b871 751 mRes = magSensitivity[0];
vikram3 8:0a2509a0b871 752 break;
vikram3 8:0a2509a0b871 753 case 8:
vikram3 8:0a2509a0b871 754 mRes = magSensitivity[1];
vikram3 8:0a2509a0b871 755 break;
vikram3 8:0a2509a0b871 756 case 12:
vikram3 8:0a2509a0b871 757 mRes = magSensitivity[2];
vikram3 8:0a2509a0b871 758 break;
vikram3 8:0a2509a0b871 759 case 16:
vikram3 8:0a2509a0b871 760 mRes = magSensitivity[3];
vikram3 8:0a2509a0b871 761 break;
vikram3 8:0a2509a0b871 762 }
vikram3 8:0a2509a0b871 763
vikram3 8:0a2509a0b871 764 }
vikram3 8:0a2509a0b871 765
vikram3 8:0a2509a0b871 766 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
vikram3 8:0a2509a0b871 767 h_lactive activeLow, pp_od pushPull)
vikram3 8:0a2509a0b871 768 {
vikram3 8:0a2509a0b871 769 // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
vikram3 8:0a2509a0b871 770 // those two values.
vikram3 8:0a2509a0b871 771 // [generator] should be an OR'd list of values from the interrupt_generators enum
vikram3 8:0a2509a0b871 772 xgWriteByte(interrupt, generator);
vikram3 8:0a2509a0b871 773
vikram3 8:0a2509a0b871 774 // Configure CTRL_REG8
vikram3 8:0a2509a0b871 775 uint8_t temp;
vikram3 8:0a2509a0b871 776 temp = xgReadByte(CTRL_REG8);
vikram3 8:0a2509a0b871 777
vikram3 8:0a2509a0b871 778 if (activeLow) temp |= (1<<5);
vikram3 8:0a2509a0b871 779 else temp &= ~(1<<5);
vikram3 8:0a2509a0b871 780
vikram3 8:0a2509a0b871 781 if (pushPull) temp &= ~(1<<4);
vikram3 8:0a2509a0b871 782 else temp |= (1<<4);
vikram3 8:0a2509a0b871 783
vikram3 8:0a2509a0b871 784 xgWriteByte(CTRL_REG8, temp);
vikram3 8:0a2509a0b871 785 }
vikram3 8:0a2509a0b871 786
vikram3 8:0a2509a0b871 787 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
vikram3 8:0a2509a0b871 788 {
vikram3 8:0a2509a0b871 789 uint8_t temp = 0;
vikram3 8:0a2509a0b871 790
vikram3 8:0a2509a0b871 791 temp = threshold & 0x7F;
vikram3 8:0a2509a0b871 792 if (sleepOn) temp |= (1<<7);
vikram3 8:0a2509a0b871 793 xgWriteByte(ACT_THS, temp);
vikram3 8:0a2509a0b871 794
vikram3 8:0a2509a0b871 795 xgWriteByte(ACT_DUR, duration);
vikram3 8:0a2509a0b871 796 }
vikram3 8:0a2509a0b871 797
vikram3 8:0a2509a0b871 798 uint8_t LSM9DS1::getInactivity()
vikram3 8:0a2509a0b871 799 {
vikram3 8:0a2509a0b871 800 uint8_t temp = xgReadByte(STATUS_REG_0);
vikram3 8:0a2509a0b871 801 temp &= (0x10);
vikram3 8:0a2509a0b871 802 return temp;
vikram3 8:0a2509a0b871 803 }
vikram3 8:0a2509a0b871 804
vikram3 8:0a2509a0b871 805 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
vikram3 8:0a2509a0b871 806 {
vikram3 8:0a2509a0b871 807 // Use variables from accel_interrupt_generator, OR'd together to create
vikram3 8:0a2509a0b871 808 // the [generator]value.
vikram3 8:0a2509a0b871 809 uint8_t temp = generator;
vikram3 8:0a2509a0b871 810 if (andInterrupts) temp |= 0x80;
vikram3 8:0a2509a0b871 811 xgWriteByte(INT_GEN_CFG_XL, temp);
vikram3 8:0a2509a0b871 812 }
vikram3 8:0a2509a0b871 813
vikram3 8:0a2509a0b871 814 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
vikram3 8:0a2509a0b871 815 {
vikram3 8:0a2509a0b871 816 // Write threshold value to INT_GEN_THS_?_XL.
vikram3 8:0a2509a0b871 817 // axis will be 0, 1, or 2 (x, y, z respectively)
vikram3 8:0a2509a0b871 818 xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
vikram3 8:0a2509a0b871 819
vikram3 8:0a2509a0b871 820 // Write duration and wait to INT_GEN_DUR_XL
vikram3 8:0a2509a0b871 821 uint8_t temp;
vikram3 8:0a2509a0b871 822 temp = (duration & 0x7F);
vikram3 8:0a2509a0b871 823 if (wait) temp |= 0x80;
vikram3 8:0a2509a0b871 824 xgWriteByte(INT_GEN_DUR_XL, temp);
vikram3 8:0a2509a0b871 825 }
vikram3 8:0a2509a0b871 826
vikram3 8:0a2509a0b871 827 uint8_t LSM9DS1::getAccelIntSrc()
vikram3 8:0a2509a0b871 828 {
vikram3 8:0a2509a0b871 829 uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
vikram3 8:0a2509a0b871 830
vikram3 8:0a2509a0b871 831 // Check if the IA_XL (interrupt active) bit is set
vikram3 8:0a2509a0b871 832 if (intSrc & (1<<6)) {
vikram3 8:0a2509a0b871 833 return (intSrc & 0x3F);
vikram3 8:0a2509a0b871 834 }
vikram3 8:0a2509a0b871 835
vikram3 8:0a2509a0b871 836 return 0;
vikram3 8:0a2509a0b871 837 }
vikram3 8:0a2509a0b871 838
vikram3 8:0a2509a0b871 839 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
vikram3 8:0a2509a0b871 840 {
vikram3 8:0a2509a0b871 841 // Use variables from accel_interrupt_generator, OR'd together to create
vikram3 8:0a2509a0b871 842 // the [generator]value.
vikram3 8:0a2509a0b871 843 uint8_t temp = generator;
vikram3 8:0a2509a0b871 844 if (aoi) temp |= 0x80;
vikram3 8:0a2509a0b871 845 if (latch) temp |= 0x40;
vikram3 8:0a2509a0b871 846 xgWriteByte(INT_GEN_CFG_G, temp);
vikram3 8:0a2509a0b871 847 }
vikram3 8:0a2509a0b871 848
vikram3 8:0a2509a0b871 849 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
vikram3 8:0a2509a0b871 850 {
vikram3 8:0a2509a0b871 851 uint8_t buffer[2];
vikram3 8:0a2509a0b871 852 buffer[0] = (threshold & 0x7F00) >> 8;
vikram3 8:0a2509a0b871 853 buffer[1] = (threshold & 0x00FF);
vikram3 8:0a2509a0b871 854 // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G.
vikram3 8:0a2509a0b871 855 // axis will be 0, 1, or 2 (x, y, z respectively)
vikram3 8:0a2509a0b871 856 xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
vikram3 8:0a2509a0b871 857 xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
vikram3 8:0a2509a0b871 858
vikram3 8:0a2509a0b871 859 // Write duration and wait to INT_GEN_DUR_XL
vikram3 8:0a2509a0b871 860 uint8_t temp;
vikram3 8:0a2509a0b871 861 temp = (duration & 0x7F);
vikram3 8:0a2509a0b871 862 if (wait) temp |= 0x80;
vikram3 8:0a2509a0b871 863 xgWriteByte(INT_GEN_DUR_G, temp);
vikram3 8:0a2509a0b871 864 }
vikram3 8:0a2509a0b871 865
vikram3 8:0a2509a0b871 866 uint8_t LSM9DS1::getGyroIntSrc()
vikram3 8:0a2509a0b871 867 {
vikram3 8:0a2509a0b871 868 uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
vikram3 8:0a2509a0b871 869
vikram3 8:0a2509a0b871 870 // Check if the IA_G (interrupt active) bit is set
vikram3 8:0a2509a0b871 871 if (intSrc & (1<<6)) {
vikram3 8:0a2509a0b871 872 return (intSrc & 0x3F);
vikram3 8:0a2509a0b871 873 }
vikram3 8:0a2509a0b871 874
vikram3 8:0a2509a0b871 875 return 0;
vikram3 8:0a2509a0b871 876 }
vikram3 8:0a2509a0b871 877
vikram3 8:0a2509a0b871 878 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
vikram3 8:0a2509a0b871 879 {
vikram3 8:0a2509a0b871 880 // Mask out non-generator bits (0-4)
vikram3 8:0a2509a0b871 881 uint8_t config = (generator & 0xE0);
vikram3 8:0a2509a0b871 882 // IEA bit is 0 for active-low, 1 for active-high.
vikram3 8:0a2509a0b871 883 if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
vikram3 8:0a2509a0b871 884 // IEL bit is 0 for latched, 1 for not-latched
vikram3 8:0a2509a0b871 885 if (!latch) config |= (1<<1);
vikram3 8:0a2509a0b871 886 // As long as we have at least 1 generator, enable the interrupt
vikram3 8:0a2509a0b871 887 if (generator != 0) config |= (1<<0);
vikram3 8:0a2509a0b871 888
vikram3 8:0a2509a0b871 889 mWriteByte(INT_CFG_M, config);
vikram3 8:0a2509a0b871 890 }
vikram3 8:0a2509a0b871 891
vikram3 8:0a2509a0b871 892 void LSM9DS1::configMagThs(uint16_t threshold)
vikram3 8:0a2509a0b871 893 {
vikram3 8:0a2509a0b871 894 // Write high eight bits of [threshold] to INT_THS_H_M
vikram3 8:0a2509a0b871 895 mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
vikram3 8:0a2509a0b871 896 // Write low eight bits of [threshold] to INT_THS_L_M
vikram3 8:0a2509a0b871 897 mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
vikram3 8:0a2509a0b871 898 }
vikram3 8:0a2509a0b871 899
vikram3 8:0a2509a0b871 900 uint8_t LSM9DS1::getMagIntSrc()
vikram3 8:0a2509a0b871 901 {
vikram3 8:0a2509a0b871 902 uint8_t intSrc = mReadByte(INT_SRC_M);
vikram3 8:0a2509a0b871 903
vikram3 8:0a2509a0b871 904 // Check if the INT (interrupt active) bit is set
vikram3 8:0a2509a0b871 905 if (intSrc & (1<<0)) {
vikram3 8:0a2509a0b871 906 return (intSrc & 0xFE);
vikram3 8:0a2509a0b871 907 }
vikram3 8:0a2509a0b871 908
vikram3 8:0a2509a0b871 909 return 0;
vikram3 8:0a2509a0b871 910 }
vikram3 8:0a2509a0b871 911
vikram3 8:0a2509a0b871 912 void LSM9DS1::sleepGyro(bool enable)
vikram3 8:0a2509a0b871 913 {
vikram3 8:0a2509a0b871 914 uint8_t temp = xgReadByte(CTRL_REG9);
vikram3 8:0a2509a0b871 915 if (enable) temp |= (1<<6);
vikram3 8:0a2509a0b871 916 else temp &= ~(1<<6);
vikram3 8:0a2509a0b871 917 xgWriteByte(CTRL_REG9, temp);
vikram3 8:0a2509a0b871 918 }
vikram3 8:0a2509a0b871 919
vikram3 8:0a2509a0b871 920 void LSM9DS1::enableFIFO(bool enable)
vikram3 8:0a2509a0b871 921 {
vikram3 8:0a2509a0b871 922 uint8_t temp = xgReadByte(CTRL_REG9);
vikram3 8:0a2509a0b871 923 if (enable) temp |= (1<<1);
vikram3 8:0a2509a0b871 924 else temp &= ~(1<<1);
vikram3 8:0a2509a0b871 925 xgWriteByte(CTRL_REG9, temp);
vikram3 8:0a2509a0b871 926 }
vikram3 8:0a2509a0b871 927
vikram3 8:0a2509a0b871 928 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
vikram3 8:0a2509a0b871 929 {
vikram3 8:0a2509a0b871 930 // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
vikram3 8:0a2509a0b871 931 // limit it to the maximum.
vikram3 8:0a2509a0b871 932 uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
vikram3 8:0a2509a0b871 933 xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
vikram3 8:0a2509a0b871 934 }
vikram3 8:0a2509a0b871 935
vikram3 8:0a2509a0b871 936 uint8_t LSM9DS1::getFIFOSamples()
vikram3 8:0a2509a0b871 937 {
vikram3 8:0a2509a0b871 938 return (xgReadByte(FIFO_SRC) & 0x3F);
vikram3 8:0a2509a0b871 939 }
vikram3 8:0a2509a0b871 940
vikram3 8:0a2509a0b871 941 void LSM9DS1::constrainScales()
vikram3 8:0a2509a0b871 942 {
vikram3 8:0a2509a0b871 943 if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
vikram3 8:0a2509a0b871 944 (settings.gyro.scale != 2000)) {
vikram3 8:0a2509a0b871 945 settings.gyro.scale = 245;
vikram3 8:0a2509a0b871 946 }
vikram3 8:0a2509a0b871 947
vikram3 8:0a2509a0b871 948 if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
vikram3 8:0a2509a0b871 949 (settings.accel.scale != 8) && (settings.accel.scale != 16)) {
vikram3 8:0a2509a0b871 950 settings.accel.scale = 2;
vikram3 8:0a2509a0b871 951 }
vikram3 8:0a2509a0b871 952
vikram3 8:0a2509a0b871 953 if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
vikram3 8:0a2509a0b871 954 (settings.mag.scale != 12) && (settings.mag.scale != 16)) {
vikram3 8:0a2509a0b871 955 settings.mag.scale = 4;
vikram3 8:0a2509a0b871 956 }
vikram3 8:0a2509a0b871 957 }
vikram3 8:0a2509a0b871 958
vikram3 8:0a2509a0b871 959 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
vikram3 8:0a2509a0b871 960 {
vikram3 8:0a2509a0b871 961 // Whether we're using I2C or SPI, write a byte using the
vikram3 8:0a2509a0b871 962 // gyro-specific I2C address or SPI CS pin.
vikram3 8:0a2509a0b871 963 if (settings.device.commInterface == IMU_MODE_I2C) {
vikram3 8:0a2509a0b871 964 pc.printf("yo");
vikram3 8:0a2509a0b871 965 I2CwriteByte(_xgAddress, subAddress, data);
vikram3 8:0a2509a0b871 966 } else if (settings.device.commInterface == IMU_MODE_SPI) {
vikram3 8:0a2509a0b871 967 SPIwriteByte(_xgAddress, subAddress, data);
vikram3 8:0a2509a0b871 968 }
vikram3 8:0a2509a0b871 969 }
vikram3 8:0a2509a0b871 970
vikram3 8:0a2509a0b871 971 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
vikram3 8:0a2509a0b871 972 {
vikram3 8:0a2509a0b871 973 // Whether we're using I2C or SPI, write a byte using the
vikram3 8:0a2509a0b871 974 // accelerometer-specific I2C address or SPI CS pin.
vikram3 8:0a2509a0b871 975 if (settings.device.commInterface == IMU_MODE_I2C) {
vikram3 8:0a2509a0b871 976 pc.printf("mo");
vikram3 8:0a2509a0b871 977 return I2CwriteByte(_mAddress, subAddress, data);
vikram3 8:0a2509a0b871 978 } else if (settings.device.commInterface == IMU_MODE_SPI)
vikram3 8:0a2509a0b871 979 return SPIwriteByte(_mAddress, subAddress, data);
vikram3 8:0a2509a0b871 980 }
vikram3 8:0a2509a0b871 981
vikram3 8:0a2509a0b871 982 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
vikram3 8:0a2509a0b871 983 {
vikram3 8:0a2509a0b871 984 // Whether we're using I2C or SPI, read a byte using the
vikram3 8:0a2509a0b871 985 // gyro-specific I2C address or SPI CS pin.
vikram3 8:0a2509a0b871 986 if (settings.device.commInterface == IMU_MODE_I2C)
vikram3 8:0a2509a0b871 987 return I2CreadByte(_xgAddress, subAddress);
vikram3 8:0a2509a0b871 988 else if (settings.device.commInterface == IMU_MODE_SPI)
vikram3 8:0a2509a0b871 989 return SPIreadByte(_xgAddress, subAddress);
vikram3 8:0a2509a0b871 990 }
vikram3 8:0a2509a0b871 991
vikram3 8:0a2509a0b871 992 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
vikram3 8:0a2509a0b871 993 {
vikram3 8:0a2509a0b871 994 // Whether we're using I2C or SPI, read multiple bytes using the
vikram3 8:0a2509a0b871 995 // gyro-specific I2C address or SPI CS pin.
vikram3 8:0a2509a0b871 996 if (settings.device.commInterface == IMU_MODE_I2C) {
vikram3 8:0a2509a0b871 997 I2CreadBytes(_xgAddress, subAddress, dest, count);
vikram3 8:0a2509a0b871 998 } else if (settings.device.commInterface == IMU_MODE_SPI) {
vikram3 8:0a2509a0b871 999 SPIreadBytes(_xgAddress, subAddress, dest, count);
vikram3 8:0a2509a0b871 1000 }
vikram3 8:0a2509a0b871 1001 }
vikram3 8:0a2509a0b871 1002
vikram3 8:0a2509a0b871 1003 uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
vikram3 8:0a2509a0b871 1004 {
vikram3 8:0a2509a0b871 1005 // Whether we're using I2C or SPI, read a byte using the
vikram3 8:0a2509a0b871 1006 // accelerometer-specific I2C address or SPI CS pin.
vikram3 8:0a2509a0b871 1007 if (settings.device.commInterface == IMU_MODE_I2C)
vikram3 8:0a2509a0b871 1008 return I2CreadByte(_mAddress, subAddress);
vikram3 8:0a2509a0b871 1009 else if (settings.device.commInterface == IMU_MODE_SPI)
vikram3 8:0a2509a0b871 1010 return SPIreadByte(_mAddress, subAddress);
vikram3 8:0a2509a0b871 1011 }
vikram3 8:0a2509a0b871 1012
vikram3 8:0a2509a0b871 1013 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
vikram3 8:0a2509a0b871 1014 {
vikram3 8:0a2509a0b871 1015 // Whether we're using I2C or SPI, read multiple bytes using the
vikram3 8:0a2509a0b871 1016 // accelerometer-specific I2C address or SPI CS pin.
vikram3 8:0a2509a0b871 1017 if (settings.device.commInterface == IMU_MODE_I2C)
vikram3 8:0a2509a0b871 1018 I2CreadBytes(_mAddress, subAddress, dest, count);
vikram3 8:0a2509a0b871 1019 else if (settings.device.commInterface == IMU_MODE_SPI)
vikram3 8:0a2509a0b871 1020 SPIreadBytes(_mAddress, subAddress, dest, count);
vikram3 8:0a2509a0b871 1021 }
vikram3 8:0a2509a0b871 1022
vikram3 8:0a2509a0b871 1023 void LSM9DS1::initSPI()
vikram3 8:0a2509a0b871 1024 {
vikram3 8:0a2509a0b871 1025 /*
vikram3 8:0a2509a0b871 1026 pinMode(_xgAddress, OUTPUT);
vikram3 8:0a2509a0b871 1027 digitalWrite(_xgAddress, HIGH);
vikram3 8:0a2509a0b871 1028 pinMode(_mAddress, OUTPUT);
vikram3 8:0a2509a0b871 1029 digitalWrite(_mAddress, HIGH);
vikram3 8:0a2509a0b871 1030
vikram3 8:0a2509a0b871 1031 SPI.begin();
vikram3 8:0a2509a0b871 1032 // Maximum SPI frequency is 10MHz, could divide by 2 here:
vikram3 8:0a2509a0b871 1033 SPI.setClockDivider(SPI_CLOCK_DIV2);
vikram3 8:0a2509a0b871 1034 // Data is read and written MSb first.
vikram3 8:0a2509a0b871 1035 SPI.setBitOrder(MSBFIRST);
vikram3 8:0a2509a0b871 1036 // Data is captured on rising edge of clock (CPHA = 0)
vikram3 8:0a2509a0b871 1037 // Base value of the clock is HIGH (CPOL = 1)
vikram3 8:0a2509a0b871 1038 SPI.setDataMode(SPI_MODE0);
vikram3 8:0a2509a0b871 1039 */
vikram3 8:0a2509a0b871 1040 }
vikram3 8:0a2509a0b871 1041
vikram3 8:0a2509a0b871 1042 void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
vikram3 8:0a2509a0b871 1043 {
vikram3 8:0a2509a0b871 1044 /*
vikram3 8:0a2509a0b871 1045 digitalWrite(csPin, LOW); // Initiate communication
vikram3 8:0a2509a0b871 1046
vikram3 8:0a2509a0b871 1047 // If write, bit 0 (MSB) should be 0
vikram3 8:0a2509a0b871 1048 // If single write, bit 1 should be 0
vikram3 8:0a2509a0b871 1049 SPI.transfer(subAddress & 0x3F); // Send Address
vikram3 8:0a2509a0b871 1050 SPI.transfer(data); // Send data
vikram3 8:0a2509a0b871 1051
vikram3 8:0a2509a0b871 1052 digitalWrite(csPin, HIGH); // Close communication
vikram3 8:0a2509a0b871 1053 */
vikram3 8:0a2509a0b871 1054 }
vikram3 8:0a2509a0b871 1055
vikram3 8:0a2509a0b871 1056 uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
vikram3 8:0a2509a0b871 1057 {
vikram3 8:0a2509a0b871 1058 uint8_t temp;
vikram3 8:0a2509a0b871 1059 // Use the multiple read function to read 1 byte.
vikram3 8:0a2509a0b871 1060 // Value is returned to `temp`.
vikram3 8:0a2509a0b871 1061 SPIreadBytes(csPin, subAddress, &temp, 1);
vikram3 8:0a2509a0b871 1062 return temp;
vikram3 8:0a2509a0b871 1063 }
vikram3 8:0a2509a0b871 1064
vikram3 8:0a2509a0b871 1065 void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
vikram3 8:0a2509a0b871 1066 uint8_t * dest, uint8_t count)
vikram3 8:0a2509a0b871 1067 {
vikram3 8:0a2509a0b871 1068 // To indicate a read, set bit 0 (msb) of first byte to 1
vikram3 8:0a2509a0b871 1069 uint8_t rAddress = 0x80 | (subAddress & 0x3F);
vikram3 8:0a2509a0b871 1070 // Mag SPI port is different. If we're reading multiple bytes,
vikram3 8:0a2509a0b871 1071 // set bit 1 to 1. The remaining six bytes are the address to be read
vikram3 8:0a2509a0b871 1072 if ((csPin == _mAddress) && count > 1)
vikram3 8:0a2509a0b871 1073 rAddress |= 0x40;
vikram3 8:0a2509a0b871 1074
vikram3 8:0a2509a0b871 1075 /*
vikram3 8:0a2509a0b871 1076 digitalWrite(csPin, LOW); // Initiate communication
vikram3 8:0a2509a0b871 1077 SPI.transfer(rAddress);
vikram3 8:0a2509a0b871 1078 for (int i=0; i<count; i++)
vikram3 8:0a2509a0b871 1079 {
vikram3 8:0a2509a0b871 1080 dest[i] = SPI.transfer(0x00); // Read into destination array
vikram3 8:0a2509a0b871 1081 }
vikram3 8:0a2509a0b871 1082 digitalWrite(csPin, HIGH); // Close communication
vikram3 8:0a2509a0b871 1083 */
vikram3 8:0a2509a0b871 1084 }
vikram3 8:0a2509a0b871 1085
vikram3 8:0a2509a0b871 1086 void LSM9DS1::initI2C()
vikram3 8:0a2509a0b871 1087 {
vikram3 8:0a2509a0b871 1088 /*
vikram3 8:0a2509a0b871 1089 Wire.begin(); // Initialize I2C library
vikram3 8:0a2509a0b871 1090 */
vikram3 8:0a2509a0b871 1091
vikram3 8:0a2509a0b871 1092 //already initialized in constructor!
vikram3 8:0a2509a0b871 1093 }
vikram3 8:0a2509a0b871 1094
vikram3 8:0a2509a0b871 1095 // Wire.h read and write protocols
vikram3 8:0a2509a0b871 1096 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
vikram3 8:0a2509a0b871 1097 {
vikram3 8:0a2509a0b871 1098 /*
vikram3 8:0a2509a0b871 1099 Wire.beginTransmission(address); // Initialize the Tx buffer
vikram3 8:0a2509a0b871 1100 Wire.write(subAddress); // Put slave register address in Tx buffer
vikram3 8:0a2509a0b871 1101 Wire.write(data); // Put data in Tx buffer
vikram3 8:0a2509a0b871 1102 Wire.endTransmission(); // Send the Tx buffer
vikram3 8:0a2509a0b871 1103 */
vikram3 8:0a2509a0b871 1104 char temp_data[2] = {subAddress, data};
vikram3 8:0a2509a0b871 1105 i2c.write(address, temp_data, 2);
vikram3 8:0a2509a0b871 1106 }
vikram3 8:0a2509a0b871 1107
vikram3 8:0a2509a0b871 1108 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
vikram3 8:0a2509a0b871 1109 {
vikram3 8:0a2509a0b871 1110 /*
vikram3 8:0a2509a0b871 1111 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
vikram3 8:0a2509a0b871 1112 uint8_t data; // `data` will store the register data
vikram3 8:0a2509a0b871 1113
vikram3 8:0a2509a0b871 1114 Wire.beginTransmission(address); // Initialize the Tx buffer
vikram3 8:0a2509a0b871 1115 Wire.write(subAddress); // Put slave register address in Tx buffer
vikram3 8:0a2509a0b871 1116 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
vikram3 8:0a2509a0b871 1117 Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
vikram3 8:0a2509a0b871 1118 while ((Wire.available() < 1) && (timeout-- > 0))
vikram3 8:0a2509a0b871 1119 delay(1);
vikram3 8:0a2509a0b871 1120
vikram3 8:0a2509a0b871 1121 if (timeout <= 0)
vikram3 8:0a2509a0b871 1122 return 255; //! Bad! 255 will be misinterpreted as a good value.
vikram3 8:0a2509a0b871 1123
vikram3 8:0a2509a0b871 1124 data = Wire.read(); // Fill Rx buffer with result
vikram3 8:0a2509a0b871 1125 return data; // Return data read from slave register
vikram3 8:0a2509a0b871 1126 */
vikram3 8:0a2509a0b871 1127 char data;
vikram3 8:0a2509a0b871 1128 char temp[2] = {subAddress};
vikram3 8:0a2509a0b871 1129
vikram3 8:0a2509a0b871 1130 i2c.write(address, temp, 1);
vikram3 8:0a2509a0b871 1131 //i2c.write(address & 0xFE);
vikram3 8:0a2509a0b871 1132 temp[1] = 0x00;
vikram3 8:0a2509a0b871 1133 i2c.write(address, temp, 1);
vikram3 8:0a2509a0b871 1134 //i2c.write( address | 0x01);
vikram3 8:0a2509a0b871 1135 int a = i2c.read(address, &data, 1);
vikram3 8:0a2509a0b871 1136 return data;
vikram3 8:0a2509a0b871 1137 }
vikram3 8:0a2509a0b871 1138
vikram3 8:0a2509a0b871 1139 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
vikram3 8:0a2509a0b871 1140 {
vikram3 8:0a2509a0b871 1141 /*
vikram3 8:0a2509a0b871 1142 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
vikram3 8:0a2509a0b871 1143 Wire.beginTransmission(address); // Initialize the Tx buffer
vikram3 8:0a2509a0b871 1144 // Next send the register to be read. OR with 0x80 to indicate multi-read.
vikram3 8:0a2509a0b871 1145 Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
vikram3 8:0a2509a0b871 1146
vikram3 8:0a2509a0b871 1147 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
vikram3 8:0a2509a0b871 1148 uint8_t i = 0;
vikram3 8:0a2509a0b871 1149 Wire.requestFrom(address, count); // Read bytes from slave register address
vikram3 8:0a2509a0b871 1150 while ((Wire.available() < count) && (timeout-- > 0))
vikram3 8:0a2509a0b871 1151 delay(1);
vikram3 8:0a2509a0b871 1152 if (timeout <= 0)
vikram3 8:0a2509a0b871 1153 return -1;
vikram3 8:0a2509a0b871 1154
vikram3 8:0a2509a0b871 1155 for (int i=0; i<count;)
vikram3 8:0a2509a0b871 1156 {
vikram3 8:0a2509a0b871 1157 if (Wire.available())
vikram3 8:0a2509a0b871 1158 {
vikram3 8:0a2509a0b871 1159 dest[i++] = Wire.read();
vikram3 8:0a2509a0b871 1160 }
vikram3 8:0a2509a0b871 1161 }
vikram3 8:0a2509a0b871 1162 return count;
vikram3 8:0a2509a0b871 1163 */
vikram3 8:0a2509a0b871 1164 int i;
vikram3 8:0a2509a0b871 1165 char temp_dest[count];
vikram3 8:0a2509a0b871 1166 char temp[1] = {subAddress};
vikram3 8:0a2509a0b871 1167 i2c.write(address, temp, 1);
vikram3 8:0a2509a0b871 1168 i2c.read(address, temp_dest, count);
vikram3 8:0a2509a0b871 1169
vikram3 8:0a2509a0b871 1170 //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
vikram3 8:0a2509a0b871 1171 for (i=0; i < count; i++) {
vikram3 8:0a2509a0b871 1172 dest[i] = temp_dest[i];
vikram3 8:0a2509a0b871 1173 }
vikram3 8:0a2509a0b871 1174 return count;
vikram3 8:0a2509a0b871 1175 }