Denislam Valeev / Mbed OS Nucleo_rtos_basic
Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers Thread.cpp Source File

Thread.cpp

00001 /* mbed Microcontroller Library
00002  * Copyright (c) 2006-2012 ARM Limited
00003  *
00004  * Permission is hereby granted, free of charge, to any person obtaining a copy
00005  * of this software and associated documentation files (the "Software"), to deal
00006  * in the Software without restriction, including without limitation the rights
00007  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
00008  * copies of the Software, and to permit persons to whom the Software is
00009  * furnished to do so, subject to the following conditions:
00010  *
00011  * The above copyright notice and this permission notice shall be included in
00012  * all copies or substantial portions of the Software.
00013  *
00014  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
00015  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
00016  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
00017  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
00018  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
00019  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
00020  * SOFTWARE.
00021  */
00022 #include "rtos/Thread.h"
00023 
00024 #include "mbed.h"
00025 #include "rtos/rtos_idle.h"
00026 #include "mbed_assert.h"
00027 
00028 #define ALIGN_UP(pos, align) ((pos) % (align) ? (pos) +  ((align) - (pos) % (align)) : (pos))
00029 MBED_STATIC_ASSERT(ALIGN_UP(0, 8) == 0, "ALIGN_UP macro error");
00030 MBED_STATIC_ASSERT(ALIGN_UP(1, 8) == 8, "ALIGN_UP macro error");
00031 
00032 #define ALIGN_DOWN(pos, align) ((pos) - ((pos) % (align)))
00033 MBED_STATIC_ASSERT(ALIGN_DOWN(7, 8) == 0, "ALIGN_DOWN macro error");
00034 MBED_STATIC_ASSERT(ALIGN_DOWN(8, 8) == 8, "ALIGN_DOWN macro error");
00035 
00036 static void (*terminate_hook)(osThreadId_t id) = 0;
00037 extern "C" void thread_terminate_hook(osThreadId_t id)
00038 {
00039     if (terminate_hook != (void (*)(osThreadId_t))NULL) {
00040         terminate_hook(id);
00041     }
00042 }
00043 
00044 namespace rtos {
00045 
00046 void Thread::constructor(osPriority priority,
00047         uint32_t stack_size, unsigned char *stack_mem, const char *name) {
00048 
00049     const uintptr_t unaligned_mem = reinterpret_cast<uintptr_t>(stack_mem);
00050     const uintptr_t aligned_mem = ALIGN_UP(unaligned_mem, 8);
00051     const uint32_t offset = aligned_mem - unaligned_mem;
00052     const uint32_t aligned_size = ALIGN_DOWN(stack_size - offset, 8);
00053 
00054     _tid = 0;
00055     _dynamic_stack = (stack_mem == NULL);
00056     _finished = false;
00057     memset(&_obj_mem, 0, sizeof(_obj_mem));
00058     memset(&_attr, 0, sizeof(_attr));
00059     _attr.priority = priority;
00060     _attr.stack_size = aligned_size;
00061     _attr.name = name ? name : "application_unnamed_thread";
00062     _attr.stack_mem = reinterpret_cast<uint32_t*>(aligned_mem);
00063 }
00064 
00065 void Thread::constructor(Callback<void()> task,
00066         osPriority priority, uint32_t stack_size, unsigned char *stack_mem, const char *name) {
00067     constructor(priority, stack_size, stack_mem, name);
00068 
00069     switch (start(task)) {
00070         case osErrorResource:
00071             error("OS ran out of threads!\n");
00072             break;
00073         case osErrorParameter:
00074             error("Thread already running!\n");
00075             break;
00076         case osErrorNoMemory:
00077             error("Error allocating the stack memory\n");
00078         default:
00079             break;
00080     }
00081 }
00082 
00083 osStatus Thread::start(Callback<void()> task) {
00084     _mutex.lock();
00085 
00086     if ((_tid != 0) || _finished) {
00087         _mutex.unlock();
00088         return osErrorParameter;
00089     }
00090 
00091     if (_attr.stack_mem == NULL) {
00092         _attr.stack_mem = new uint32_t[_attr.stack_size/sizeof(uint32_t)];
00093         MBED_ASSERT(_attr.stack_mem != NULL);
00094     }
00095 
00096     //Fill the stack with a magic word for maximum usage checking
00097     for (uint32_t i = 0; i < (_attr.stack_size / sizeof(uint32_t)); i++) {
00098         ((uint32_t *)_attr.stack_mem)[i] = 0xE25A2EA5;
00099     }
00100 
00101     memset(&_obj_mem, 0, sizeof(_obj_mem));
00102     _attr.cb_size = sizeof(_obj_mem);
00103     _attr.cb_mem = &_obj_mem;
00104     _task = task;
00105     _tid = osThreadNew(Thread::_thunk, this, &_attr);
00106     if (_tid == NULL) {
00107         if (_dynamic_stack) {
00108             delete[] (uint32_t *)(_attr.stack_mem);
00109             _attr.stack_mem = (uint32_t*)NULL;
00110         }
00111         _mutex.unlock();
00112         _join_sem.release();
00113         return osErrorResource;
00114     }
00115 
00116     _mutex.unlock();
00117     return osOK;
00118 }
00119 
00120 osStatus Thread::terminate() {
00121     osStatus_t ret = osOK;
00122     _mutex.lock();
00123 
00124     // Set the Thread's tid to NULL and
00125     // release the semaphore before terminating
00126     // since this thread could be terminating itself
00127     osThreadId_t local_id = _tid;
00128     _join_sem.release();
00129     _tid = (osThreadId_t)NULL;
00130     if (!_finished) {
00131         _finished = true;
00132         // if local_id == 0 Thread was not started in first place
00133         // and does not have to be terminated
00134         if (local_id != 0) {
00135             ret = osThreadTerminate(local_id);
00136         }
00137     }
00138     _mutex.unlock();
00139     return ret;
00140 }
00141 
00142 osStatus Thread::join() {
00143     int32_t ret = _join_sem.wait();
00144     if (ret < 0) {
00145         return osError;
00146     }
00147 
00148     // The semaphore has been released so this thread is being
00149     // terminated or has been terminated. Once the mutex has
00150     // been locked it is ensured that the thread is deleted.
00151     _mutex.lock();
00152     MBED_ASSERT(NULL == _tid);
00153     _mutex.unlock();
00154 
00155     // Release sem so any other threads joining this thread wake up
00156     _join_sem.release();
00157     return osOK;
00158 }
00159 
00160 osStatus Thread::set_priority(osPriority priority) {
00161     osStatus_t ret;
00162     _mutex.lock();
00163 
00164     ret = osThreadSetPriority(_tid, priority);
00165 
00166     _mutex.unlock();
00167     return ret;
00168 }
00169 
00170 osPriority Thread::get_priority() {
00171     osPriority_t ret;
00172     _mutex.lock();
00173 
00174     ret = osThreadGetPriority(_tid);
00175 
00176     _mutex.unlock();
00177     return ret;
00178 }
00179 
00180 int32_t Thread::signal_set(int32_t flags) {
00181     return osThreadFlagsSet(_tid, flags);
00182 }
00183 
00184 Thread::State Thread::get_state() {
00185     uint8_t state = osThreadTerminated;
00186 
00187     _mutex.lock();
00188 
00189     if (_tid != NULL) {
00190 #if defined(MBED_OS_BACKEND_RTX5)
00191         state = _obj_mem.state;
00192 #else
00193         state = osThreadGetState(_tid);
00194 #endif
00195     }
00196 
00197     _mutex.unlock();
00198 
00199     State user_state;
00200 
00201     switch(state) {
00202         case osThreadInactive:
00203             user_state = Inactive;
00204             break;
00205         case osThreadReady:
00206             user_state = Ready;
00207             break;
00208         case osThreadRunning:
00209             user_state = Running;
00210             break;
00211 #if defined(MBED_OS_BACKEND_RTX5)
00212         case osRtxThreadWaitingDelay:
00213             user_state = WaitingDelay;
00214             break;
00215         case osRtxThreadWaitingJoin:
00216             user_state = WaitingJoin;
00217             break;
00218         case osRtxThreadWaitingThreadFlags:
00219             user_state = WaitingThreadFlag;
00220             break;
00221         case osRtxThreadWaitingEventFlags:
00222             user_state = WaitingEventFlag;
00223             break;
00224         case osRtxThreadWaitingMutex:
00225             user_state = WaitingMutex;
00226             break;
00227         case osRtxThreadWaitingSemaphore:
00228             user_state = WaitingSemaphore;
00229             break;
00230         case osRtxThreadWaitingMemoryPool:
00231             user_state = WaitingMemoryPool;
00232             break;
00233         case osRtxThreadWaitingMessageGet:
00234             user_state = WaitingMessageGet;
00235             break;
00236         case osRtxThreadWaitingMessagePut:
00237             user_state = WaitingMessagePut;
00238             break;
00239 #endif
00240         case osThreadTerminated:
00241         default:
00242             user_state = Deleted;
00243             break;
00244     }
00245 
00246     return user_state;
00247 }
00248 
00249 uint32_t Thread::stack_size() {
00250     uint32_t size = 0;
00251     _mutex.lock();
00252 
00253     if (_tid != NULL) {
00254         size = osThreadGetStackSize(_tid);
00255     }
00256 
00257     _mutex.unlock();
00258     return size;
00259 }
00260 
00261 uint32_t Thread::free_stack() {
00262     uint32_t size = 0;
00263     _mutex.lock();
00264 
00265 #if defined(MBED_OS_BACKEND_RTX5)
00266     if (_tid != NULL) {
00267         os_thread_t *thread = (os_thread_t *)_tid;
00268         size = (uint32_t)thread->sp - (uint32_t)thread->stack_mem;
00269     }
00270 #endif
00271 
00272     _mutex.unlock();
00273     return size;
00274 }
00275 
00276 uint32_t Thread::used_stack() {
00277     uint32_t size = 0;
00278     _mutex.lock();
00279 
00280 #if defined(MBED_OS_BACKEND_RTX5)
00281     if (_tid != NULL) {
00282         os_thread_t *thread = (os_thread_t *)_tid;
00283         size = ((uint32_t)thread->stack_mem + thread->stack_size) - thread->sp;
00284     }
00285 #endif
00286 
00287     _mutex.unlock();
00288     return size;
00289 }
00290 
00291 uint32_t Thread::max_stack() {
00292     uint32_t size = 0;
00293     _mutex.lock();
00294 
00295     if (_tid != NULL) {
00296 #if defined(MBED_OS_BACKEND_RTX5)
00297         os_thread_t *thread = (os_thread_t *)_tid;
00298         uint32_t high_mark = 0;
00299         while (((uint32_t *)(thread->stack_mem))[high_mark] == 0xE25A2EA5)
00300             high_mark++;
00301         size = thread->stack_size - (high_mark * sizeof(uint32_t));
00302 #else
00303         size = osThreadGetStackSize(_tid) - osThreadGetStackSpace(_tid);
00304 #endif
00305     }
00306 
00307     _mutex.unlock();
00308     return size;
00309 }
00310 
00311 const char *Thread::get_name() {
00312     return _attr.name;
00313 }
00314 
00315 int32_t Thread::signal_clr(int32_t flags) {
00316     return osThreadFlagsClear(flags);
00317 }
00318 
00319 osEvent Thread::signal_wait(int32_t signals, uint32_t millisec) {
00320     uint32_t res;
00321     osEvent evt;
00322     uint32_t options = osFlagsWaitAll;
00323     if (signals == 0) {
00324         options = osFlagsWaitAny;
00325         signals = 0x7FFFFFFF;
00326     }
00327     res = osThreadFlagsWait(signals, options, millisec);
00328     if (res & osFlagsError) {
00329         switch (res) {
00330             case osFlagsErrorISR:
00331                 evt.status = osErrorISR;
00332                 break;
00333             case osFlagsErrorResource:
00334                 evt.status = osOK;
00335                 break;
00336             case osFlagsErrorTimeout:
00337                 evt.status = (osStatus)osEventTimeout;
00338                 break;
00339             case osFlagsErrorParameter:
00340             default:
00341                 evt.status = (osStatus)osErrorValue;
00342                 break;
00343         }
00344     } else {
00345         evt.status = (osStatus)osEventSignal;
00346         evt.value.signals = res;
00347     }
00348 
00349     return evt;
00350 }
00351 
00352 osStatus Thread::wait(uint32_t millisec) {
00353     return osDelay(millisec);
00354 }
00355 
00356 osStatus Thread::wait_until(uint64_t millisec) {
00357     // CMSIS-RTOS 2.1.0 and 2.1.1 differ in the time type, which we determine
00358     // by looking at the return type of osKernelGetTickCount. We assume
00359     // our header at least matches the implementation, so we don't try looking
00360     // at the run-time version report. (There's no compile-time version report)
00361     if (sizeof osKernelGetTickCount() == sizeof(uint64_t)) {
00362         // CMSIS-RTOS 2.1.0 has a 64-bit API. The corresponding RTX 5.2.0 can't
00363         // delay more than 0xfffffffe ticks, but there's no limit stated for
00364         // the generic API.
00365         return osDelayUntil(millisec);
00366     } else {
00367         // 64-bit time doesn't wrap (for half a billion years, at last)
00368         uint64_t now = Kernel::get_ms_count();
00369         // Report being late on entry
00370         if (now >= millisec) {
00371             return osErrorParameter;
00372         }
00373         // We're about to make a 32-bit delay call, so have at least this limit
00374         if (millisec - now > 0xFFFFFFFF) {
00375             return osErrorParameter;
00376         }
00377         // And this may have its own internal limit - we'll find out.
00378         // We hope/assume there's no problem with passing
00379         // osWaitForever = 0xFFFFFFFF - that value is only specified to have
00380         // special meaning for osSomethingWait calls.
00381         return osDelay(millisec - now);
00382     }
00383 }
00384 
00385 osStatus Thread::yield() {
00386     return osThreadYield();
00387 }
00388 
00389 osThreadId Thread::gettid() {
00390     return osThreadGetId();
00391 }
00392 
00393 void Thread::attach_idle_hook(void (*fptr)(void)) {
00394     rtos_attach_idle_hook (fptr);
00395 }
00396 
00397 void Thread::attach_terminate_hook(void (*fptr)(osThreadId_t id)) {
00398     terminate_hook = fptr;
00399 }
00400 
00401 Thread::~Thread() {
00402     // terminate is thread safe
00403     terminate();
00404     if (_dynamic_stack) {
00405         delete[] (uint32_t*)(_attr.stack_mem);
00406         _attr.stack_mem = (uint32_t*)NULL;
00407     }
00408 }
00409 
00410 void Thread::_thunk(void * thread_ptr)
00411 {
00412     Thread *t = (Thread*)thread_ptr;
00413     t->_task();
00414     t->_mutex.lock();
00415     t->_tid = (osThreadId)NULL;
00416     t->_finished = true;
00417     t->_join_sem.release();
00418     // rtos will release the mutex automatically
00419 }
00420 
00421 }