Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FATFileSystem mbed-rtos
Dependents: USBHostC210_example USBHostC270_example GSwifi_ap_webcam n-bed-USBHostC270_example
Fork of USBHost by
USBHost.cpp
00001 /* mbed USBHost Library 00002 * Copyright (c) 2006-2013 ARM Limited 00003 * 00004 * Licensed under the Apache License, Version 2.0 (the "License"); 00005 * you may not use this file except in compliance with the License. 00006 * You may obtain a copy of the License at 00007 * 00008 * http://www.apache.org/licenses/LICENSE-2.0 00009 * 00010 * Unless required by applicable law or agreed to in writing, software 00011 * distributed under the License is distributed on an "AS IS" BASIS, 00012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00013 * See the License for the specific language governing permissions and 00014 * limitations under the License. 00015 */ 00016 00017 00018 #include "USBHost.h" 00019 #include "USBHostHub.h" 00020 #include "USBIsochronous.h" 00021 00022 USBHost * USBHost::instHost = NULL; 00023 00024 #define DEVICE_CONNECTED_EVENT (1 << 0) 00025 #define DEVICE_DISCONNECTED_EVENT (1 << 1) 00026 #define TD_PROCESSED_EVENT (1 << 2) 00027 00028 #define MAX_TRY_ENUMERATE_HUB 3 00029 00030 #define MIN(a, b) ((a > b) ? b : a) 00031 00032 DigitalOut l4(LED4); 00033 00034 /** 00035 * How interrupts are processed: 00036 * - new device connected: 00037 * - a message is queued in queue_usb_event with the id DEVICE_CONNECTED_EVENT 00038 * - when the usb_thread receives the event, it: 00039 * - resets the device 00040 * - reads the device descriptor 00041 * - sets the address of the device 00042 * - if it is a hub, enumerates it 00043 * - device disconnected: 00044 * - a message is queued in queue_usb_event with the id DEVICE_DISCONNECTED_EVENT 00045 * - when the usb_thread receives the event, it: 00046 * - free the device and all its children (hub) 00047 * - td processed 00048 * - a message is queued in queue_usb_event with the id TD_PROCESSED_EVENT 00049 * - when the usb_thread receives the event, it: 00050 * - call the callback attached to the endpoint where the td is attached 00051 */ 00052 void USBHost::usb_process() { 00053 00054 bool controlListState; 00055 bool bulkListState; 00056 bool interruptListState; 00057 USBEndpoint * ep; 00058 uint8_t i, j, res, timeout_set_addr = 10; 00059 uint8_t buf[8]; 00060 bool too_many_hub; 00061 int idx; 00062 00063 #if DEBUG_TRANSFER 00064 uint8_t * buf_transfer; 00065 #endif 00066 00067 #if MAX_HUB_NB 00068 uint8_t k; 00069 #endif 00070 00071 while(1) { 00072 osEvent evt = mail_usb_event.get(); 00073 00074 if (evt.status == osEventMail) { 00075 00076 l4 = !l4; 00077 message_t * usb_msg = (message_t*)evt.value.p; 00078 00079 switch (usb_msg->event_id) { 00080 00081 // a new device has been connected 00082 case DEVICE_CONNECTED_EVENT: 00083 too_many_hub = false; 00084 buf[4] = 0; 00085 00086 usb_mutex.lock(); 00087 00088 for (i = 0; i < MAX_DEVICE_CONNECTED; i++) { 00089 if (!deviceInUse[i]) { 00090 USB_DBG_EVENT("new device connected: %p\r\n", &devices[i]); 00091 devices[i].init(usb_msg->hub, usb_msg->port, usb_msg->lowSpeed); 00092 deviceReset[i] = false; 00093 deviceInited[i] = true; 00094 break; 00095 } 00096 } 00097 00098 if (i == MAX_DEVICE_CONNECTED) { 00099 USB_ERR("Too many device connected!!\r\n"); 00100 deviceInited[i] = false; 00101 usb_mutex.unlock(); 00102 continue; 00103 } 00104 00105 if (!controlEndpointAllocated) { 00106 control = newEndpoint(CONTROL_ENDPOINT, OUT, 0x08, 0x00); 00107 addEndpoint(NULL, 0, (USBEndpoint*)control); 00108 controlEndpointAllocated = true; 00109 } 00110 00111 #if MAX_HUB_NB 00112 if (usb_msg->hub_parent) 00113 devices[i].setHubParent((USBHostHub *)(usb_msg->hub_parent)); 00114 #endif 00115 00116 for (j = 0; j < timeout_set_addr; j++) { 00117 00118 resetDevice(&devices[i]); 00119 00120 // set size of control endpoint 00121 devices[i].setSizeControlEndpoint(8); 00122 00123 devices[i].activeAddress(false); 00124 00125 // get first 8 bit of device descriptor 00126 // and check if we deal with a hub 00127 USB_DBG("usb_thread read device descriptor on dev: %p\r\n", &devices[i]); 00128 res = getDeviceDescriptor(&devices[i], buf, 8); 00129 00130 if (res != USB_TYPE_OK) { 00131 USB_ERR("usb_thread could not read dev descr"); 00132 continue; 00133 } 00134 00135 // set size of control endpoint 00136 devices[i].setSizeControlEndpoint(buf[7]); 00137 00138 // second step: set an address to the device 00139 res = setAddress(&devices[i], devices[i].getAddress()); 00140 00141 if (res != USB_TYPE_OK) { 00142 USB_ERR("SET ADDR FAILED"); 00143 continue; 00144 } 00145 devices[i].activeAddress(true); 00146 USB_DBG("Address of %p: %d", &devices[i], devices[i].getAddress()); 00147 00148 // try to read again the device descriptor to check if the device 00149 // answers to its new address 00150 res = getDeviceDescriptor(&devices[i], buf, 8); 00151 00152 if (res == USB_TYPE_OK) { 00153 break; 00154 } 00155 00156 Thread::wait(100); 00157 } 00158 00159 USB_INFO("New device connected: %p [hub: %d - port: %d]", &devices[i], usb_msg->hub, usb_msg->port); 00160 00161 #if MAX_HUB_NB 00162 if (buf[4] == HUB_CLASS) { 00163 for (k = 0; k < MAX_HUB_NB; k++) { 00164 if (hub_in_use[k] == false) { 00165 for (uint8_t j = 0; j < MAX_TRY_ENUMERATE_HUB; j++) { 00166 if (hubs[k].connect(&devices[i])) { 00167 devices[i].hub = &hubs[k]; 00168 hub_in_use[k] = true; 00169 break; 00170 } 00171 } 00172 if (hub_in_use[k] == true) 00173 break; 00174 } 00175 } 00176 00177 if (k == MAX_HUB_NB) { 00178 USB_ERR("Too many hubs connected!!\r\n"); 00179 too_many_hub = true; 00180 } 00181 } 00182 00183 if (usb_msg->hub_parent) 00184 ((USBHostHub *)(usb_msg->hub_parent))->deviceConnected(&devices[i]); 00185 #endif 00186 00187 if ((i < MAX_DEVICE_CONNECTED) && !too_many_hub) { 00188 deviceInUse[i] = true; 00189 } 00190 00191 usb_mutex.unlock(); 00192 00193 break; 00194 00195 // a device has been disconnected 00196 case DEVICE_DISCONNECTED_EVENT: 00197 00198 usb_mutex.lock(); 00199 00200 controlListState = disableList(CONTROL_ENDPOINT); 00201 bulkListState = disableList(BULK_ENDPOINT); 00202 interruptListState = disableList(INTERRUPT_ENDPOINT); 00203 00204 idx = findDevice(usb_msg->hub, usb_msg->port, (USBHostHub *)(usb_msg->hub_parent)); 00205 if (idx != -1) { 00206 freeDevice((USBDeviceConnected*)&devices[idx]); 00207 } 00208 00209 if (controlListState) enableList(CONTROL_ENDPOINT); 00210 if (bulkListState) enableList(BULK_ENDPOINT); 00211 if (interruptListState) enableList(INTERRUPT_ENDPOINT); 00212 00213 usb_mutex.unlock(); 00214 00215 break; 00216 00217 // a td has been processed 00218 // call callback on the ed associated to the td 00219 // we are not in ISR -> users can use printf in their callback method 00220 case TD_PROCESSED_EVENT: 00221 ep = (USBEndpoint *) ((HCTD *)usb_msg->td_addr)->ep; 00222 if (usb_msg->td_state == USB_TYPE_IDLE) { 00223 USB_DBG_EVENT("call callback on td %p [ep: %p state: %s - dev: %p - %s]", usb_msg->td_addr, ep, ep->getStateString(), ep->dev, ep->dev->getName(ep->getIntfNb())); 00224 00225 #if DEBUG_TRANSFER 00226 if (ep->getDir() == IN) { 00227 buf_transfer = ep->getBufStart(); 00228 printf("READ SUCCESS [%d bytes transferred - td: 0x%08X] on ep: [%p - addr: %02X]: ", ep->getLengthTransferred(), usb_msg->td_addr, ep, ep->getAddress()); 00229 for (int i = 0; i < ep->getLengthTransferred(); i++) 00230 printf("%02X ", buf_transfer[i]); 00231 printf("\r\n\r\n"); 00232 } 00233 #endif 00234 ep->call(); 00235 } else { 00236 idx = findDevice(ep->dev); 00237 if (idx != -1) { 00238 if (deviceInUse[idx]) { 00239 USB_WARN("td %p processed but not in idle state: %s [ep: %p - dev: %p - %s]", usb_msg->td_addr, ep->getStateString(), ep, ep->dev, ep->dev->getName(ep->getIntfNb())); 00240 ep->setState(USB_TYPE_IDLE); 00241 } 00242 } 00243 } 00244 break; 00245 } 00246 00247 mail_usb_event.free(usb_msg); 00248 } 00249 } 00250 } 00251 00252 /* static */void USBHost::usb_process_static(void const * arg) { 00253 ((USBHost *)arg)->usb_process(); 00254 } 00255 00256 USBHost::USBHost() : usbThread(USBHost::usb_process_static, (void *)this, osPriorityNormal, USB_THREAD_STACK) 00257 { 00258 headControlEndpoint = NULL; 00259 headBulkEndpoint = NULL; 00260 headInterruptEndpoint = NULL; 00261 tailControlEndpoint = NULL; 00262 tailBulkEndpoint = NULL; 00263 tailInterruptEndpoint = NULL; 00264 00265 lenReportDescr = 0; 00266 00267 controlEndpointAllocated = false; 00268 00269 for (uint8_t i = 0; i < MAX_DEVICE_CONNECTED; i++) { 00270 deviceInUse[i] = false; 00271 devices[i].setAddress(i + 1); 00272 deviceReset[i] = false; 00273 deviceInited[i] = false; 00274 for (uint8_t j = 0; j < MAX_INTF; j++) 00275 deviceAttachedDriver[i][j] = false; 00276 } 00277 00278 #if MAX_HUB_NB 00279 for (uint8_t i = 0; i < MAX_HUB_NB; i++) { 00280 hubs[i].setHost(this); 00281 hub_in_use[i] = false; 00282 } 00283 #endif 00284 } 00285 00286 00287 void USBHost::transferCompleted(volatile uint32_t addr) 00288 { 00289 uint8_t state; 00290 00291 if(addr == NULL) 00292 return; 00293 00294 volatile HCTD* tdList = NULL; 00295 00296 //First we must reverse the list order and dequeue each TD 00297 do { 00298 volatile HCTD* td = (volatile HCTD*)addr; 00299 addr = (uint32_t)td->nextTD; //Dequeue from physical list 00300 td->nextTD = tdList; //Enqueue into reversed list 00301 tdList = td; 00302 } while(addr); 00303 00304 while(tdList != NULL) { 00305 volatile HCTD* td = tdList; 00306 tdList = (volatile HCTD*)td->nextTD; //Dequeue element now as it could be modified below 00307 if (!isTD((uint8_t*)td)) { // ITD? 00308 HCITD* itd = (HCITD*)td; 00309 IsochronousEp* ep = itd->ep; 00310 if (ep) { 00311 ep->irqWdhHandler(itd); 00312 } 00313 continue; 00314 } 00315 if (td->ep != NULL) { 00316 USBEndpoint * ep = (USBEndpoint *)(td->ep); 00317 00318 if (((HCTD *)td)->control >> 28) { 00319 state = ((HCTD *)td)->control >> 28; 00320 } else { 00321 if (td->currBufPtr) 00322 ep->setLengthTransferred((uint32_t)td->currBufPtr - (uint32_t)ep->getBufStart()); 00323 state = 16 /*USB_TYPE_IDLE*/; 00324 } 00325 00326 ep->unqueueTransfer(td); 00327 00328 if (ep->getType() != CONTROL_ENDPOINT) { 00329 // callback on the processed td will be called from the usb_thread (not in ISR) 00330 message_t * usb_msg = mail_usb_event.alloc(); 00331 usb_msg->event_id = TD_PROCESSED_EVENT; 00332 usb_msg->td_addr = (void *)td; 00333 usb_msg->td_state = state; 00334 mail_usb_event.put(usb_msg); 00335 } 00336 ep->setState(state); 00337 ep->ep_queue.put((uint8_t*)1); 00338 } 00339 } 00340 } 00341 00342 USBHost * USBHost::getHostInst() 00343 { 00344 if (instHost == NULL) { 00345 instHost = new USBHost(); 00346 instHost->init(); 00347 } 00348 return instHost; 00349 } 00350 00351 00352 /* 00353 * Called when a device has been connected 00354 * Called in ISR!!!! (no printf) 00355 */ 00356 /* virtual */ void USBHost::deviceConnected(int hub, int port, bool lowSpeed, USBHostHub * hub_parent) 00357 { 00358 // be sure that the new device connected is not already connected... 00359 int idx = findDevice(hub, port, hub_parent); 00360 if (idx != -1) { 00361 if (deviceInited[idx]) 00362 return; 00363 } 00364 00365 message_t * usb_msg = mail_usb_event.alloc(); 00366 usb_msg->event_id = DEVICE_CONNECTED_EVENT; 00367 usb_msg->hub = hub; 00368 usb_msg->port = port; 00369 usb_msg->lowSpeed = lowSpeed; 00370 usb_msg->hub_parent = hub_parent; 00371 mail_usb_event.put(usb_msg); 00372 } 00373 00374 /* 00375 * Called when a device has been disconnected 00376 * Called in ISR!!!! (no printf) 00377 */ 00378 /* virtual */ void USBHost::deviceDisconnected(int hub, int port, USBHostHub * hub_parent, volatile uint32_t addr) 00379 { 00380 // be sure that the device disconnected is connected... 00381 int idx = findDevice(hub, port, hub_parent); 00382 if (idx != -1) { 00383 if (!deviceInUse[idx]) 00384 return; 00385 } else { 00386 return; 00387 } 00388 00389 message_t * usb_msg = mail_usb_event.alloc(); 00390 usb_msg->event_id = DEVICE_DISCONNECTED_EVENT; 00391 usb_msg->hub = hub; 00392 usb_msg->port = port; 00393 usb_msg->hub_parent = hub_parent; 00394 mail_usb_event.put(usb_msg); 00395 } 00396 00397 void USBHost::freeDevice(USBDeviceConnected * dev) 00398 { 00399 USBEndpoint * ep = NULL; 00400 HCED * ed = NULL; 00401 00402 #if MAX_HUB_NB 00403 if (dev->getClass() == HUB_CLASS) { 00404 if (dev->hub == NULL) { 00405 USB_ERR("HUB NULL!!!!!\r\n"); 00406 } else { 00407 dev->hub->hubDisconnected(); 00408 for (uint8_t i = 0; i < MAX_HUB_NB; i++) { 00409 if (dev->hub == &hubs[i]) { 00410 hub_in_use[i] = false; 00411 break; 00412 } 00413 } 00414 } 00415 } 00416 00417 // notify hub parent that this device has been disconnected 00418 if (dev->getHubParent()) 00419 dev->getHubParent()->deviceDisconnected(dev); 00420 00421 #endif 00422 00423 int idx = findDevice(dev); 00424 if (idx != -1) { 00425 deviceInUse[idx] = false; 00426 deviceReset[idx] = false; 00427 00428 for (uint8_t j = 0; j < MAX_INTF; j++) { 00429 deviceAttachedDriver[idx][j] = false; 00430 if (dev->getInterface(j) != NULL) { 00431 USB_DBG("FREE INTF %d on dev: %p, %p, nb_endpot: %d, %s", j, (void *)dev->getInterface(j), dev, dev->getInterface(j)->nb_endpoint, dev->getName(j)); 00432 for (int i = 0; i < dev->getInterface(j)->nb_endpoint; i++) { 00433 if ((ep = dev->getEndpoint(j, i)) != NULL) { 00434 ed = (HCED *)ep->getHCED(); 00435 ed->control |= (1 << 14); //sKip bit 00436 unqueueEndpoint(ep); 00437 00438 freeTD((volatile uint8_t*)ep->getTDList()[0]); 00439 freeTD((volatile uint8_t*)ep->getTDList()[1]); 00440 00441 freeED((uint8_t *)ep->getHCED()); 00442 } 00443 printList(BULK_ENDPOINT); 00444 printList(INTERRUPT_ENDPOINT); 00445 } 00446 USB_INFO("Device disconnected [%p - %s - hub: %d - port: %d]", dev, dev->getName(j), dev->getHub(), dev->getPort()); 00447 } 00448 } 00449 dev->disconnect(); 00450 } 00451 } 00452 00453 00454 void USBHost::unqueueEndpoint(USBEndpoint * ep) 00455 { 00456 USBEndpoint * prec = NULL; 00457 USBEndpoint * current = NULL; 00458 00459 for (int i = 0; i < 2; i++) { 00460 current = (i == 0) ? (USBEndpoint*)headBulkEndpoint : (USBEndpoint*)headInterruptEndpoint; 00461 prec = current; 00462 while (current != NULL) { 00463 if (current == ep) { 00464 if (current->nextEndpoint() != NULL) { 00465 prec->queueEndpoint(current->nextEndpoint()); 00466 if (current == headBulkEndpoint) { 00467 updateBulkHeadED((uint32_t)current->nextEndpoint()->getHCED()); 00468 headBulkEndpoint = current->nextEndpoint(); 00469 } else if (current == headInterruptEndpoint) { 00470 updateInterruptHeadED((uint32_t)current->nextEndpoint()->getHCED()); 00471 headInterruptEndpoint = current->nextEndpoint(); 00472 } 00473 } 00474 // here we are dequeuing the queue of ed 00475 // we need to update the tail pointer 00476 else { 00477 prec->queueEndpoint(NULL); 00478 if (current == headBulkEndpoint) { 00479 updateBulkHeadED(0); 00480 headBulkEndpoint = current->nextEndpoint(); 00481 } else if (current == headInterruptEndpoint) { 00482 updateInterruptHeadED(0); 00483 headInterruptEndpoint = current->nextEndpoint(); 00484 } 00485 00486 // modify tail 00487 switch (current->getType()) { 00488 case BULK_ENDPOINT: 00489 tailBulkEndpoint = prec; 00490 break; 00491 case INTERRUPT_ENDPOINT: 00492 tailInterruptEndpoint = prec; 00493 break; 00494 } 00495 } 00496 current->setState(USB_TYPE_FREE); 00497 return; 00498 } 00499 prec = current; 00500 current = current->nextEndpoint(); 00501 } 00502 } 00503 } 00504 00505 00506 USBDeviceConnected * USBHost::getDevice(uint8_t index) 00507 { 00508 if ((index >= MAX_DEVICE_CONNECTED) || (!deviceInUse[index])) { 00509 return NULL; 00510 } 00511 return (USBDeviceConnected*)&devices[index]; 00512 } 00513 00514 // create an USBEndpoint descriptor. the USBEndpoint is not linked 00515 USBEndpoint * USBHost::newEndpoint(ENDPOINT_TYPE type, ENDPOINT_DIRECTION dir, uint32_t size, uint8_t addr) 00516 { 00517 int i = 0; 00518 HCED * ed = (HCED *)getED(); 00519 HCTD* td_list[2] = { (HCTD*)getTD(), (HCTD*)getTD() }; 00520 00521 memset((void *)td_list[0], 0x00, sizeof(HCTD)); 00522 memset((void *)td_list[1], 0x00, sizeof(HCTD)); 00523 00524 // search a free USBEndpoint 00525 for (i = 0; i < MAX_ENDPOINT; i++) { 00526 if (endpoints[i].getState() == USB_TYPE_FREE) { 00527 endpoints[i].init(ed, type, dir, size, addr, td_list); 00528 USB_DBG("USBEndpoint created (%p): type: %d, dir: %d, size: %d, addr: %d, state: %s", &endpoints[i], type, dir, size, addr, endpoints[i].getStateString()); 00529 return &endpoints[i]; 00530 } 00531 } 00532 USB_ERR("could not allocate more endpoints!!!!"); 00533 return NULL; 00534 } 00535 00536 00537 USB_TYPE USBHost::resetDevice(USBDeviceConnected * dev) 00538 { 00539 int index = findDevice(dev); 00540 if (index != -1) { 00541 USB_DBG("Resetting hub %d, port %d\n", dev->getHub(), dev->getPort()); 00542 Thread::wait(100); 00543 if (dev->getHub() == 0) { 00544 resetRootHub(); 00545 } 00546 #if MAX_HUB_NB 00547 else { 00548 dev->getHubParent()->portReset(dev->getPort()); 00549 } 00550 #endif 00551 Thread::wait(100); 00552 deviceReset[index] = true; 00553 return USB_TYPE_OK; 00554 } 00555 00556 return USB_TYPE_ERROR; 00557 } 00558 00559 // link the USBEndpoint to the linked list and attach an USBEndpoint to a device 00560 bool USBHost::addEndpoint(USBDeviceConnected * dev, uint8_t intf_nb, USBEndpoint * ep) 00561 { 00562 00563 if (ep == NULL) { 00564 return false; 00565 } 00566 00567 HCED * prevEd; 00568 00569 // set device address in the USBEndpoint descriptor 00570 if (dev == NULL) { 00571 ep->setDeviceAddress(0); 00572 } else { 00573 ep->setDeviceAddress(dev->getAddress()); 00574 } 00575 00576 if ((dev != NULL) && dev->getSpeed()) { 00577 ep->setSpeed(dev->getSpeed()); 00578 } 00579 00580 ep->setIntfNb(intf_nb); 00581 00582 // queue the new USBEndpoint on the ED list 00583 switch (ep->getType()) { 00584 00585 case CONTROL_ENDPOINT: 00586 prevEd = ( HCED*) controlHeadED(); 00587 if (!prevEd) { 00588 updateControlHeadED((uint32_t) ep->getHCED()); 00589 USB_DBG_TRANSFER("First control USBEndpoint: %08X", (uint32_t) ep->getHCED()); 00590 headControlEndpoint = ep; 00591 tailControlEndpoint = ep; 00592 return true; 00593 } 00594 tailControlEndpoint->queueEndpoint(ep); 00595 tailControlEndpoint = ep; 00596 return true; 00597 00598 case BULK_ENDPOINT: 00599 prevEd = ( HCED*) bulkHeadED(); 00600 if (!prevEd) { 00601 updateBulkHeadED((uint32_t) ep->getHCED()); 00602 USB_DBG_TRANSFER("First bulk USBEndpoint: %08X\r\n", (uint32_t) ep->getHCED()); 00603 headBulkEndpoint = ep; 00604 tailBulkEndpoint = ep; 00605 break; 00606 } 00607 USB_DBG_TRANSFER("Queue BULK Ed %p after %p\r\n",ep->getHCED(), prevEd); 00608 tailBulkEndpoint->queueEndpoint(ep); 00609 tailBulkEndpoint = ep; 00610 break; 00611 00612 case INTERRUPT_ENDPOINT: 00613 prevEd = ( HCED*) interruptHeadED(); 00614 if (!prevEd) { 00615 updateInterruptHeadED((uint32_t) ep->getHCED()); 00616 USB_DBG_TRANSFER("First interrupt USBEndpoint: %08X\r\n", (uint32_t) ep->getHCED()); 00617 headInterruptEndpoint = ep; 00618 tailInterruptEndpoint = ep; 00619 break; 00620 } 00621 USB_DBG_TRANSFER("Queue INTERRUPT Ed %p after %p\r\n",ep->getHCED(), prevEd); 00622 tailInterruptEndpoint->queueEndpoint(ep); 00623 tailInterruptEndpoint = ep; 00624 break; 00625 default: 00626 return false; 00627 } 00628 00629 ep->dev = dev; 00630 dev->addEndpoint(intf_nb, ep); 00631 00632 return true; 00633 } 00634 00635 00636 int USBHost::findDevice(USBDeviceConnected * dev) 00637 { 00638 for (int i = 0; i < MAX_DEVICE_CONNECTED; i++) { 00639 if (dev == &devices[i]) { 00640 return i; 00641 } 00642 } 00643 return -1; 00644 } 00645 00646 int USBHost::findDevice(uint8_t hub, uint8_t port, USBHostHub * hub_parent) 00647 { 00648 for (int i = 0; i < MAX_DEVICE_CONNECTED; i++) { 00649 if (devices[i].getHub() == hub && devices[i].getPort() == port) { 00650 if (hub_parent != NULL) { 00651 if (hub_parent == devices[i].getHubParent()) 00652 return i; 00653 } else { 00654 return i; 00655 } 00656 } 00657 } 00658 return -1; 00659 } 00660 00661 void USBHost::printList(ENDPOINT_TYPE type) 00662 { 00663 #if DEBUG_EP_STATE 00664 volatile HCED * hced; 00665 switch(type) { 00666 case CONTROL_ENDPOINT: 00667 hced = (HCED *)controlHeadED(); 00668 break; 00669 case BULK_ENDPOINT: 00670 hced = (HCED *)bulkHeadED(); 00671 break; 00672 case INTERRUPT_ENDPOINT: 00673 hced = (HCED *)interruptHeadED(); 00674 break; 00675 } 00676 volatile HCTD * hctd = NULL; 00677 const char * type_str = (type == BULK_ENDPOINT) ? "BULK" : 00678 ((type == INTERRUPT_ENDPOINT) ? "INTERRUPT" : 00679 ((type == CONTROL_ENDPOINT) ? "CONTROL" : "ISOCHRONOUS")); 00680 printf("State of %s:\r\n", type_str); 00681 while (hced != NULL) { 00682 uint8_t dir = ((hced->control & (3 << 11)) >> 11); 00683 printf("hced: %p [ADDR: %d, DIR: %s, EP_NB: 0x%X]\r\n", hced, 00684 hced->control & 0x7f, 00685 (dir == 1) ? "OUT" : ((dir == 0) ? "FROM_TD":"IN"), 00686 (hced->control & (0xf << 7)) >> 7); 00687 hctd = (HCTD *)((uint32_t)(hced->headTD) & ~(0xf)); 00688 while (hctd != hced->tailTD) { 00689 printf("\thctd: %p [DIR: %s]\r\n", hctd, ((hctd->control & (3 << 19)) >> 19) == 1 ? "OUT" : "IN"); 00690 hctd = hctd->nextTD; 00691 } 00692 printf("\thctd: %p\r\n", hctd); 00693 hced = hced->nextED; 00694 } 00695 printf("\r\n\r\n"); 00696 #endif 00697 } 00698 00699 00700 // add a transfer on the TD linked list 00701 USB_TYPE USBHost::addTransfer(USBEndpoint * ed, uint8_t * buf, uint32_t len) 00702 { 00703 td_mutex.lock(); 00704 00705 // allocate a TD which will be freed in TDcompletion 00706 volatile HCTD * td = ed->getNextTD(); 00707 if (td == NULL) { 00708 return USB_TYPE_ERROR; 00709 } 00710 00711 uint32_t token = (ed->isSetup() ? TD_SETUP : ( (ed->getDir() == IN) ? TD_IN : TD_OUT )); 00712 00713 uint32_t td_toggle; 00714 00715 if (ed->getType() == CONTROL_ENDPOINT) { 00716 if (ed->isSetup()) { 00717 td_toggle = TD_TOGGLE_0; 00718 } else { 00719 td_toggle = TD_TOGGLE_1; 00720 } 00721 } else { 00722 td_toggle = 0; 00723 } 00724 00725 td->control = (TD_ROUNDING | token | TD_DELAY_INT(0) | td_toggle | TD_CC); 00726 td->currBufPtr = buf; 00727 td->bufEnd = (buf + (len - 1)); 00728 00729 ENDPOINT_TYPE type = ed->getType(); 00730 00731 disableList(type); 00732 ed->queueTransfer(); 00733 printList(type); 00734 enableList(type); 00735 00736 td_mutex.unlock(); 00737 00738 return USB_TYPE_PROCESSING; 00739 } 00740 00741 00742 00743 USB_TYPE USBHost::getDeviceDescriptor(USBDeviceConnected * dev, uint8_t * buf, uint16_t max_len_buf, uint16_t * len_dev_descr) 00744 { 00745 USB_TYPE t = controlRead( dev, 00746 USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE, 00747 GET_DESCRIPTOR, 00748 (DEVICE_DESCRIPTOR << 8) | (0), 00749 0, buf, MIN(DEVICE_DESCRIPTOR_LENGTH, max_len_buf)); 00750 if (len_dev_descr) 00751 *len_dev_descr = MIN(DEVICE_DESCRIPTOR_LENGTH, max_len_buf); 00752 00753 return t; 00754 } 00755 00756 USB_TYPE USBHost::getConfigurationDescriptor(USBDeviceConnected * dev, uint8_t * buf, uint16_t max_len_buf, uint16_t * len_conf_descr) 00757 { 00758 USB_TYPE res; 00759 uint16_t total_conf_descr_length = 0; 00760 00761 // fourth step: get the beginning of the configuration descriptor to have the total length of the conf descr 00762 res = controlRead( dev, 00763 USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE, 00764 GET_DESCRIPTOR, 00765 (CONFIGURATION_DESCRIPTOR << 8) | (0), 00766 0, buf, CONFIGURATION_DESCRIPTOR_LENGTH); 00767 00768 if (res != USB_TYPE_OK) { 00769 USB_ERR("GET CONF 1 DESCR FAILED"); 00770 return res; 00771 } 00772 total_conf_descr_length = buf[2] | (buf[3] << 8); 00773 total_conf_descr_length = MIN(max_len_buf, total_conf_descr_length); 00774 00775 if (len_conf_descr) 00776 *len_conf_descr = total_conf_descr_length; 00777 00778 USB_DBG("TOTAL_LENGTH: %d \t NUM_INTERF: %d", total_conf_descr_length, buf[4]); 00779 00780 return controlRead( dev, 00781 USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE, 00782 GET_DESCRIPTOR, 00783 (CONFIGURATION_DESCRIPTOR << 8) | (0), 00784 0, buf, total_conf_descr_length); 00785 } 00786 00787 00788 USB_TYPE USBHost::setAddress(USBDeviceConnected * dev, uint8_t address) { 00789 return controlWrite( dev, 00790 USB_HOST_TO_DEVICE | USB_RECIPIENT_DEVICE, 00791 SET_ADDRESS, 00792 address, 00793 0, NULL, 0); 00794 00795 } 00796 00797 USB_TYPE USBHost::setConfiguration(USBDeviceConnected * dev, uint8_t conf) 00798 { 00799 return controlWrite( dev, 00800 USB_HOST_TO_DEVICE | USB_RECIPIENT_DEVICE, 00801 SET_CONFIGURATION, 00802 conf, 00803 0, NULL, 0); 00804 } 00805 00806 uint8_t USBHost::numberDriverAttached(USBDeviceConnected * dev) { 00807 int index = findDevice(dev); 00808 uint8_t cnt = 0; 00809 if (index == -1) 00810 return 0; 00811 for (uint8_t i = 0; i < MAX_INTF; i++) { 00812 if (deviceAttachedDriver[index][i]) 00813 cnt++; 00814 } 00815 return cnt; 00816 } 00817 00818 // enumerate a device with the control USBEndpoint 00819 USB_TYPE USBHost::enumerate(USBDeviceConnected * dev, IUSBEnumerator* pEnumerator) 00820 { 00821 uint16_t total_conf_descr_length = 0; 00822 USB_TYPE res; 00823 00824 usb_mutex.lock(); 00825 00826 // don't enumerate a device which all interfaces are registered to a specific driver 00827 int index = findDevice(dev); 00828 00829 if (index == -1) { 00830 usb_mutex.unlock(); 00831 return USB_TYPE_ERROR; 00832 } 00833 00834 uint8_t nb_intf_attached = numberDriverAttached(dev); 00835 USB_DBG("dev: %p nb_intf: %d", dev, dev->getNbIntf()); 00836 USB_DBG("dev: %p nb_intf_attached: %d", dev, nb_intf_attached); 00837 if ((nb_intf_attached != 0) && (dev->getNbIntf() == nb_intf_attached)) { 00838 USB_DBG("Don't enumerate dev: %p because all intf are registered with a driver", dev); 00839 usb_mutex.unlock(); 00840 return USB_TYPE_OK; 00841 } 00842 00843 USB_DBG("Enumerate dev: %p", dev); 00844 00845 // third step: get the whole device descriptor to see vid, pid 00846 res = getDeviceDescriptor(dev, data, DEVICE_DESCRIPTOR_LENGTH); 00847 00848 if (res != USB_TYPE_OK) { 00849 USB_DBG("GET DEV DESCR FAILED"); 00850 usb_mutex.unlock(); 00851 return res; 00852 } 00853 00854 dev->setClass(data[4]); 00855 dev->setSubClass(data[5]); 00856 dev->setProtocol(data[6]); 00857 dev->setVid(data[8] | (data[9] << 8)); 00858 dev->setPid(data[10] | (data[11] << 8)); 00859 USB_DBG("CLASS: %02X \t VID: %04X \t PID: %04X", data[4], data[8] | (data[9] << 8), data[10] | (data[11] << 8)); 00860 00861 pEnumerator->setVidPid( data[8] | (data[9] << 8), data[10] | (data[11] << 8) ); 00862 00863 res = getConfigurationDescriptor(dev, data, sizeof(data), &total_conf_descr_length); 00864 if (res != USB_TYPE_OK) { 00865 usb_mutex.unlock(); 00866 return res; 00867 } 00868 00869 #if DEBUG 00870 USB_DBG("CONFIGURATION DESCRIPTOR:\r\n"); 00871 for (int i = 0; i < total_conf_descr_length; i++) 00872 printf("%02X ", data[i]); 00873 printf("\r\n\r\n"); 00874 #endif 00875 00876 // Parse the configuration descriptor 00877 parseConfDescr(dev, data, total_conf_descr_length, pEnumerator); 00878 00879 // only set configuration if not enumerated before 00880 if (!dev->isEnumerated()) { 00881 00882 USB_DBG("Set configuration 1 on dev: %p", dev); 00883 // sixth step: set configuration (only 1 supported) 00884 res = setConfiguration(dev, 1); 00885 00886 if (res != USB_TYPE_OK) { 00887 USB_DBG("SET CONF FAILED"); 00888 usb_mutex.unlock(); 00889 return res; 00890 } 00891 } 00892 00893 dev->setEnumerated(); 00894 00895 // Now the device is enumerated! 00896 USB_DBG("dev %p is enumerated\r\n", dev); 00897 usb_mutex.unlock(); 00898 00899 // Some devices may require this delay 00900 wait_ms(100); 00901 00902 return USB_TYPE_OK; 00903 } 00904 // this method fills the USBDeviceConnected object: class,.... . It also add endpoints found in the descriptor. 00905 void USBHost::parseConfDescr(USBDeviceConnected * dev, uint8_t * conf_descr, uint32_t len, IUSBEnumerator* pEnumerator) 00906 { 00907 uint32_t index = 0; 00908 uint32_t len_desc = 0; 00909 uint8_t id = 0; 00910 int nb_endpoints_used = 0; 00911 USBEndpoint * ep = NULL; 00912 uint8_t intf_nb = 0; 00913 bool parsing_intf = false; 00914 uint8_t current_intf = 0; 00915 00916 while (index < len) { 00917 len_desc = conf_descr[index]; 00918 id = conf_descr[index+1]; 00919 switch (id) { 00920 case CONFIGURATION_DESCRIPTOR: 00921 USB_DBG("dev: %p has %d intf", dev, conf_descr[4]); 00922 dev->setNbIntf(conf_descr[4]); 00923 break; 00924 case INTERFACE_DESCRIPTOR: 00925 if(pEnumerator->parseInterface(conf_descr[index + 2], conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7])) { 00926 if (intf_nb++ <= MAX_INTF) { 00927 current_intf = conf_descr[index + 2]; 00928 dev->addInterface(current_intf, conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7]); 00929 nb_endpoints_used = 0; 00930 USB_DBG("ADD INTF %d on device %p: class: %d, subclass: %d, proto: %d", current_intf, dev, conf_descr[index + 5],conf_descr[index + 6],conf_descr[index + 7]); 00931 } else { 00932 USB_DBG("Drop intf..."); 00933 } 00934 parsing_intf = true; 00935 } else { 00936 parsing_intf = false; 00937 } 00938 break; 00939 case ENDPOINT_DESCRIPTOR: 00940 if (parsing_intf && (intf_nb <= MAX_INTF) ) { 00941 if (nb_endpoints_used < MAX_ENDPOINT_PER_INTERFACE) { 00942 if( pEnumerator->useEndpoint(current_intf, (ENDPOINT_TYPE)(conf_descr[index + 3] & 0x03), (ENDPOINT_DIRECTION)((conf_descr[index + 2] >> 7) + 1)) ) { 00943 // if the USBEndpoint is isochronous -> skip it (TODO: fix this) 00944 if ((conf_descr[index + 3] & 0x03) != ISOCHRONOUS_ENDPOINT) { 00945 ep = newEndpoint((ENDPOINT_TYPE)(conf_descr[index+3] & 0x03), 00946 (ENDPOINT_DIRECTION)((conf_descr[index + 2] >> 7) + 1), 00947 conf_descr[index + 4] | (conf_descr[index + 5] << 8), 00948 conf_descr[index + 2] & 0x0f); 00949 USB_DBG("ADD USBEndpoint %p, on interf %d on device %p", ep, current_intf, dev); 00950 if (ep != NULL && dev != NULL) { 00951 addEndpoint(dev, current_intf, ep); 00952 } else { 00953 USB_DBG("EP NULL"); 00954 } 00955 nb_endpoints_used++; 00956 } else { 00957 USB_DBG("ISO USBEndpoint NOT SUPPORTED"); 00958 } 00959 } 00960 } 00961 } 00962 break; 00963 case HID_DESCRIPTOR: 00964 lenReportDescr = conf_descr[index + 7] | (conf_descr[index + 8] << 8); 00965 break; 00966 default: 00967 break; 00968 } 00969 index += len_desc; 00970 } 00971 } 00972 00973 00974 USB_TYPE USBHost::bulkWrite(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) 00975 { 00976 return generalTransfer(dev, ep, buf, len, blocking, BULK_ENDPOINT, true); 00977 } 00978 00979 USB_TYPE USBHost::bulkRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) 00980 { 00981 return generalTransfer(dev, ep, buf, len, blocking, BULK_ENDPOINT, false); 00982 } 00983 00984 USB_TYPE USBHost::interruptWrite(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) 00985 { 00986 return generalTransfer(dev, ep, buf, len, blocking, INTERRUPT_ENDPOINT, true); 00987 } 00988 00989 USB_TYPE USBHost::interruptRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) 00990 { 00991 return generalTransfer(dev, ep, buf, len, blocking, INTERRUPT_ENDPOINT, false); 00992 } 00993 00994 USB_TYPE USBHost::generalTransfer(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking, ENDPOINT_TYPE type, bool write) { 00995 00996 #if DEBUG_TRANSFER 00997 const char * type_str = (type == BULK_ENDPOINT) ? "BULK" : ((type == INTERRUPT_ENDPOINT) ? "INTERRUPT" : "ISOCHRONOUS"); 00998 USB_DBG_TRANSFER("----- %s %s [dev: %p - %s - hub: %d - port: %d - addr: %d - ep: %02X]------", type_str, (write) ? "WRITE" : "READ", dev, dev->getName(ep->getIntfNb()), dev->getHub(), dev->getPort(), dev->getAddress(), ep->getAddress()); 00999 #endif 01000 01001 usb_mutex.lock(); 01002 01003 USB_TYPE res; 01004 ENDPOINT_DIRECTION dir = (write) ? OUT : IN; 01005 01006 if (dev == NULL) { 01007 USB_ERR("dev NULL"); 01008 usb_mutex.unlock(); 01009 return USB_TYPE_ERROR; 01010 } 01011 01012 if (ep == NULL) { 01013 USB_ERR("ep NULL"); 01014 usb_mutex.unlock(); 01015 return USB_TYPE_ERROR; 01016 } 01017 01018 if (ep->getState() != USB_TYPE_IDLE) { 01019 USB_WARN("[ep: %p - dev: %p - %s] NOT IDLE: %s", ep, ep->dev, ep->dev->getName(ep->getIntfNb()), ep->getStateString()); 01020 usb_mutex.unlock(); 01021 return ep->getState(); 01022 } 01023 01024 if ((ep->getDir() != dir) || (ep->getType() != type)) { 01025 USB_ERR("[ep: %p - dev: %p] wrong dir or bad USBEndpoint type", ep, ep->dev); 01026 usb_mutex.unlock(); 01027 return USB_TYPE_ERROR; 01028 } 01029 01030 if (dev->getAddress() != ep->getDeviceAddress()) { 01031 USB_ERR("[ep: %p - dev: %p] USBEndpoint addr and device addr don't match", ep, ep->dev); 01032 usb_mutex.unlock(); 01033 return USB_TYPE_ERROR; 01034 } 01035 01036 #if DEBUG_TRANSFER 01037 if (write) { 01038 USB_DBG_TRANSFER("%s WRITE buffer", type_str); 01039 for (int i = 0; i < ep->getLengthTransferred(); i++) 01040 printf("%02X ", buf[i]); 01041 printf("\r\n\r\n"); 01042 } 01043 #endif 01044 addTransfer(ep, buf, len); 01045 01046 if (blocking) { 01047 01048 ep->ep_queue.get(); 01049 res = ep->getState(); 01050 01051 USB_DBG_TRANSFER("%s TRANSFER res: %s on ep: %p\r\n", type_str, ep->getStateString(), ep); 01052 01053 if (res != USB_TYPE_IDLE) { 01054 usb_mutex.unlock(); 01055 return res; 01056 } 01057 01058 usb_mutex.unlock(); 01059 return USB_TYPE_OK; 01060 } 01061 01062 usb_mutex.unlock(); 01063 return USB_TYPE_PROCESSING; 01064 01065 } 01066 01067 01068 USB_TYPE USBHost::controlRead(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { 01069 return controlTransfer(dev, requestType, request, value, index, buf, len, false); 01070 } 01071 01072 USB_TYPE USBHost::controlWrite(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { 01073 return controlTransfer(dev, requestType, request, value, index, buf, len, true); 01074 } 01075 01076 USB_TYPE USBHost::controlTransfer(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len, bool write) 01077 { 01078 usb_mutex.lock(); 01079 USB_DBG_TRANSFER("----- CONTROL %s [dev: %p - hub: %d - port: %d] ------", (write) ? "WRITE" : "READ", dev, dev->getHub(), dev->getPort()); 01080 01081 int length_transfer = len; 01082 USB_TYPE res; 01083 uint32_t token; 01084 01085 control->setSpeed(dev->getSpeed()); 01086 control->setSize(dev->getSizeControlEndpoint()); 01087 if (dev->isActiveAddress()) { 01088 control->setDeviceAddress(dev->getAddress()); 01089 } else { 01090 control->setDeviceAddress(0); 01091 } 01092 01093 USB_DBG_TRANSFER("Control transfer on device: %d\r\n", control->getDeviceAddress()); 01094 fillControlBuf(requestType, request, value, index, len); 01095 01096 #if DEBUG_TRANSFER 01097 USB_DBG_TRANSFER("SETUP PACKET: "); 01098 for (int i = 0; i < 8; i++) 01099 printf("%01X ", setupPacket[i]); 01100 printf("\r\n"); 01101 #endif 01102 01103 control->setNextToken(TD_SETUP); 01104 addTransfer(control, (uint8_t*)setupPacket, 8); 01105 01106 control->ep_queue.get(); 01107 res = control->getState(); 01108 01109 USB_DBG_TRANSFER("CONTROL setup stage %s", control->getStateString()); 01110 01111 if (res != USB_TYPE_IDLE) { 01112 usb_mutex.unlock(); 01113 return res; 01114 } 01115 01116 if (length_transfer) { 01117 token = (write) ? TD_OUT : TD_IN; 01118 control->setNextToken(token); 01119 addTransfer(control, (uint8_t *)buf, length_transfer); 01120 01121 control->ep_queue.get(); 01122 res = control->getState(); 01123 01124 #if DEBUG_TRANSFER 01125 USB_DBG_TRANSFER("CONTROL %s stage %s", (write) ? "WRITE" : "READ", control->getStateString()); 01126 if (write) { 01127 USB_DBG_TRANSFER("CONTROL WRITE buffer"); 01128 for (int i = 0; i < control->getLengthTransferred(); i++) 01129 printf("%02X ", buf[i]); 01130 printf("\r\n\r\n"); 01131 } else { 01132 USB_DBG_TRANSFER("CONTROL READ SUCCESS [%d bytes transferred]", control->getLengthTransferred()); 01133 for (int i = 0; i < control->getLengthTransferred(); i++) 01134 printf("%02X ", buf[i]); 01135 printf("\r\n\r\n"); 01136 } 01137 #endif 01138 01139 if (res != USB_TYPE_IDLE) { 01140 usb_mutex.unlock(); 01141 return res; 01142 } 01143 } 01144 01145 token = (write) ? TD_IN : TD_OUT; 01146 control->setNextToken(token); 01147 addTransfer(control, NULL, 0); 01148 01149 control->ep_queue.get(); 01150 res = control->getState(); 01151 01152 USB_DBG_TRANSFER("CONTROL ack stage %s", control->getStateString()); 01153 usb_mutex.unlock(); 01154 01155 if (res != USB_TYPE_IDLE) 01156 return res; 01157 01158 return USB_TYPE_OK; 01159 } 01160 01161 01162 void USBHost::fillControlBuf(uint8_t requestType, uint8_t request, uint16_t value, uint16_t index, int len) 01163 { 01164 #ifdef __BIG_ENDIAN 01165 #error "Must implement BE to LE conv here" 01166 #endif 01167 setupPacket[0] = requestType; 01168 setupPacket[1] = request; 01169 //We are in LE so it's fine 01170 *((uint16_t*)&setupPacket[2]) = value; 01171 *((uint16_t*)&setupPacket[4]) = index; 01172 *((uint16_t*)&setupPacket[6]) = (uint32_t) len; 01173 }
Generated on Thu Jul 14 2022 03:19:09 by
1.7.2
