Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FATFileSystemWithFilinfo
Fork of SDFileSystem by
SDFileSystem.cpp
00001 /* mbed Microcontroller Library 00002 * Copyright (c) 2006-2012 ARM Limited 00003 * 00004 * Permission is hereby granted, free of charge, to any person obtaining a copy 00005 * of this software and associated documentation files (the "Software"), to deal 00006 * in the Software without restriction, including without limitation the rights 00007 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 00008 * copies of the Software, and to permit persons to whom the Software is 00009 * furnished to do so, subject to the following conditions: 00010 * 00011 * The above copyright notice and this permission notice shall be included in 00012 * all copies or substantial portions of the Software. 00013 * 00014 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 00015 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 00016 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 00017 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 00018 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 00019 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 00020 * SOFTWARE. 00021 */ 00022 00023 /* Introduction 00024 * ------------ 00025 * SD and MMC cards support a number of interfaces, but common to them all 00026 * is one based on SPI. This is the one I'm implmenting because it means 00027 * it is much more portable even though not so performant, and we already 00028 * have the mbed SPI Interface! 00029 * 00030 * The main reference I'm using is Chapter 7, "SPI Mode" of: 00031 * http://www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf 00032 * 00033 * SPI Startup 00034 * ----------- 00035 * The SD card powers up in SD mode. The SPI interface mode is selected by 00036 * asserting CS low and sending the reset command (CMD0). The card will 00037 * respond with a (R1) response. 00038 * 00039 * CMD8 is optionally sent to determine the voltage range supported, and 00040 * indirectly determine whether it is a version 1.x SD/non-SD card or 00041 * version 2.x. I'll just ignore this for now. 00042 * 00043 * ACMD41 is repeatedly issued to initialise the card, until "in idle" 00044 * (bit 0) of the R1 response goes to '0', indicating it is initialised. 00045 * 00046 * You should also indicate whether the host supports High Capicity cards, 00047 * and check whether the card is high capacity - i'll also ignore this 00048 * 00049 * SPI Protocol 00050 * ------------ 00051 * The SD SPI protocol is based on transactions made up of 8-bit words, with 00052 * the host starting every bus transaction by asserting the CS signal low. The 00053 * card always responds to commands, data blocks and errors. 00054 * 00055 * The protocol supports a CRC, but by default it is off (except for the 00056 * first reset CMD0, where the CRC can just be pre-calculated, and CMD8) 00057 * I'll leave the CRC off I think! 00058 * 00059 * Standard capacity cards have variable data block sizes, whereas High 00060 * Capacity cards fix the size of data block to 512 bytes. I'll therefore 00061 * just always use the Standard Capacity cards with a block size of 512 bytes. 00062 * This is set with CMD16. 00063 * 00064 * You can read and write single blocks (CMD17, CMD25) or multiple blocks 00065 * (CMD18, CMD25). For simplicity, I'll just use single block accesses. When 00066 * the card gets a read command, it responds with a response token, and then 00067 * a data token or an error. 00068 * 00069 * SPI Command Format 00070 * ------------------ 00071 * Commands are 6-bytes long, containing the command, 32-bit argument, and CRC. 00072 * 00073 * +---------------+------------+------------+-----------+----------+--------------+ 00074 * | 01 | cmd[5:0] | arg[31:24] | arg[23:16] | arg[15:8] | arg[7:0] | crc[6:0] | 1 | 00075 * +---------------+------------+------------+-----------+----------+--------------+ 00076 * 00077 * As I'm not using CRC, I can fix that byte to what is needed for CMD0 (0x95) 00078 * 00079 * All Application Specific commands shall be preceded with APP_CMD (CMD55). 00080 * 00081 * SPI Response Format 00082 * ------------------- 00083 * The main response format (R1) is a status byte (normally zero). Key flags: 00084 * idle - 1 if the card is in an idle state/initialising 00085 * cmd - 1 if an illegal command code was detected 00086 * 00087 * +-------------------------------------------------+ 00088 * R1 | 0 | arg | addr | seq | crc | cmd | erase | idle | 00089 * +-------------------------------------------------+ 00090 * 00091 * R1b is the same, except it is followed by a busy signal (zeros) until 00092 * the first non-zero byte when it is ready again. 00093 * 00094 * Data Response Token 00095 * ------------------- 00096 * Every data block written to the card is acknowledged by a byte 00097 * response token 00098 * 00099 * +----------------------+ 00100 * | xxx | 0 | status | 1 | 00101 * +----------------------+ 00102 * 010 - OK! 00103 * 101 - CRC Error 00104 * 110 - Write Error 00105 * 00106 * Single Block Read and Write 00107 * --------------------------- 00108 * 00109 * Block transfers have a byte header, followed by the data, followed 00110 * by a 16-bit CRC. In our case, the data will always be 512 bytes. 00111 * 00112 * +------+---------+---------+- - - -+---------+-----------+----------+ 00113 * | 0xFE | data[0] | data[1] | | data[n] | crc[15:8] | crc[7:0] | 00114 * +------+---------+---------+- - - -+---------+-----------+----------+ 00115 */ 00116 #include "SDFileSystem.h" 00117 #include "mbed_debug.h" 00118 00119 #define SD_COMMAND_TIMEOUT 5000 00120 00121 #define SD_DBG 0 00122 00123 SDFileSystem::SDFileSystem(PinName mosi, PinName miso, PinName sclk, PinName cs, const char* name) : 00124 FATFileSystem(name), _spi(mosi, miso, sclk), _cs(cs) { 00125 _cs = 1; 00126 } 00127 00128 #define R1_IDLE_STATE (1 << 0) 00129 #define R1_ERASE_RESET (1 << 1) 00130 #define R1_ILLEGAL_COMMAND (1 << 2) 00131 #define R1_COM_CRC_ERROR (1 << 3) 00132 #define R1_ERASE_SEQUENCE_ERROR (1 << 4) 00133 #define R1_ADDRESS_ERROR (1 << 5) 00134 #define R1_PARAMETER_ERROR (1 << 6) 00135 00136 // Types 00137 #define SDCARD_FAIL 0 //!< v1.x Standard Capacity 00138 #define SDCARD_V1 1 //!< v2.x Standard Capacity 00139 #define SDCARD_V2 2 //!< v2.x High Capacity 00140 #define SDCARD_V2HC 3 //!< Not recognised as an SD Card 00141 00142 int SDFileSystem::initialise_card() { 00143 // Set to 100kHz for initialisation, and clock card with cs = 1 00144 _spi.frequency(100000); 00145 _cs = 1; 00146 for (int i = 0; i < 16; i++) { 00147 _spi.write(0xFF); 00148 } 00149 00150 int ret = SDCARD_FAIL; 00151 00152 // send CMD0, should return with all zeros except IDLE STATE set (bit 0) 00153 if (_cmd(0, 0) != R1_IDLE_STATE) { 00154 debug("No disk, or could not put SD card in to SPI idle state\n"); 00155 } 00156 00157 // send CMD8 to determine whther it is ver 2.x 00158 int r = _cmd8(); 00159 if (r == R1_IDLE_STATE) { 00160 ret = initialise_card_v2(); 00161 } else if (r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) { 00162 ret = initialise_card_v1(); 00163 } else { 00164 debug("Not in idle state after sending CMD8 (not an SD card?)\n"); 00165 } 00166 return ret; 00167 } 00168 00169 int SDFileSystem::initialise_card_v1() { 00170 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00171 _cmd(55, 0); 00172 if (_cmd(41, 0) == 0) { 00173 cdv = 512; 00174 debug_if(SD_DBG, "\n\rInit: SEDCARD_V1\n\r"); 00175 return SDCARD_V1; 00176 } 00177 } 00178 00179 debug("Timeout waiting for v1.x card\n"); 00180 return SDCARD_FAIL; 00181 } 00182 00183 int SDFileSystem::initialise_card_v2() { 00184 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00185 wait_ms(50); 00186 _cmd58(); 00187 _cmd(55, 0); 00188 if (_cmd(41, 0x40000000) == 0) { 00189 _cmd58(); 00190 debug_if(SD_DBG, "\n\rInit: SDCARD_V2\n\r"); 00191 cdv = 1; 00192 return SDCARD_V2; 00193 } 00194 } 00195 00196 debug("Timeout waiting for v2.x card\n"); 00197 return SDCARD_FAIL; 00198 } 00199 00200 int SDFileSystem::disk_initialize() { 00201 int i = initialise_card(); 00202 debug_if(SD_DBG, "init card = %d\n", i); 00203 if (i==SDCARD_FAIL) { 00204 return 1; 00205 } 00206 _sectors = _sd_sectors(); 00207 00208 // Set block length to 512 (CMD16) 00209 if (_cmd(16, 512) != 0) { 00210 debug("Set 512-byte block timed out\n"); 00211 return 1; 00212 } 00213 00214 _spi.frequency(1000000); // Set to 1MHz for data transfer 00215 return 0; 00216 } 00217 00218 int SDFileSystem::disk_write(const uint8_t *buffer, uint64_t block_number) { 00219 // set write address for single block (CMD24) 00220 if (_cmd(24, block_number * cdv) != 0) { 00221 return 1; 00222 } 00223 00224 // send the data block 00225 _write(buffer, 512); 00226 return 0; 00227 } 00228 00229 int SDFileSystem::disk_read(uint8_t *buffer, uint64_t block_number) { 00230 // set read address for single block (CMD17) 00231 if (_cmd(17, block_number * cdv) != 0) { 00232 return 1; 00233 } 00234 00235 // receive the data 00236 _read(buffer, 512); 00237 return 0; 00238 } 00239 00240 int SDFileSystem::disk_status() { return 0; } 00241 int SDFileSystem::disk_sync() { return 0; } 00242 uint64_t SDFileSystem::disk_sectors() { return _sectors; } 00243 00244 00245 // PRIVATE FUNCTIONS 00246 int SDFileSystem::_cmd(int cmd, int arg) { 00247 _cs = 0; 00248 00249 // send a command 00250 _spi.write(0x40 | cmd); 00251 _spi.write(arg >> 24); 00252 _spi.write(arg >> 16); 00253 _spi.write(arg >> 8); 00254 _spi.write(arg >> 0); 00255 _spi.write(0x95); 00256 00257 // wait for the repsonse (response[7] == 0) 00258 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00259 int response = _spi.write(0xFF); 00260 if (!(response & 0x80)) { 00261 _cs = 1; 00262 _spi.write(0xFF); 00263 return response; 00264 } 00265 } 00266 _cs = 1; 00267 _spi.write(0xFF); 00268 return -1; // timeout 00269 } 00270 int SDFileSystem::_cmdx(int cmd, int arg) { 00271 _cs = 0; 00272 00273 // send a command 00274 _spi.write(0x40 | cmd); 00275 _spi.write(arg >> 24); 00276 _spi.write(arg >> 16); 00277 _spi.write(arg >> 8); 00278 _spi.write(arg >> 0); 00279 _spi.write(0x95); 00280 00281 // wait for the repsonse (response[7] == 0) 00282 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00283 int response = _spi.write(0xFF); 00284 if (!(response & 0x80)) { 00285 return response; 00286 } 00287 } 00288 _cs = 1; 00289 _spi.write(0xFF); 00290 return -1; // timeout 00291 } 00292 00293 00294 int SDFileSystem::_cmd58() { 00295 _cs = 0; 00296 int arg = 0; 00297 00298 // send a command 00299 _spi.write(0x40 | 58); 00300 _spi.write(arg >> 24); 00301 _spi.write(arg >> 16); 00302 _spi.write(arg >> 8); 00303 _spi.write(arg >> 0); 00304 _spi.write(0x95); 00305 00306 // wait for the repsonse (response[7] == 0) 00307 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00308 int response = _spi.write(0xFF); 00309 if (!(response & 0x80)) { 00310 int ocr = _spi.write(0xFF) << 24; 00311 ocr |= _spi.write(0xFF) << 16; 00312 ocr |= _spi.write(0xFF) << 8; 00313 ocr |= _spi.write(0xFF) << 0; 00314 _cs = 1; 00315 _spi.write(0xFF); 00316 return response; 00317 } 00318 } 00319 _cs = 1; 00320 _spi.write(0xFF); 00321 return -1; // timeout 00322 } 00323 00324 int SDFileSystem::_cmd8() { 00325 _cs = 0; 00326 00327 // send a command 00328 _spi.write(0x40 | 8); // CMD8 00329 _spi.write(0x00); // reserved 00330 _spi.write(0x00); // reserved 00331 _spi.write(0x01); // 3.3v 00332 _spi.write(0xAA); // check pattern 00333 _spi.write(0x87); // crc 00334 00335 // wait for the repsonse (response[7] == 0) 00336 for (int i = 0; i < SD_COMMAND_TIMEOUT * 1000; i++) { 00337 char response[5]; 00338 response[0] = _spi.write(0xFF); 00339 if (!(response[0] & 0x80)) { 00340 for (int j = 1; j < 5; j++) { 00341 response[i] = _spi.write(0xFF); 00342 } 00343 _cs = 1; 00344 _spi.write(0xFF); 00345 return response[0]; 00346 } 00347 } 00348 _cs = 1; 00349 _spi.write(0xFF); 00350 return -1; // timeout 00351 } 00352 00353 int SDFileSystem::_read(uint8_t *buffer, uint32_t length) { 00354 _cs = 0; 00355 00356 // read until start byte (0xFF) 00357 while (_spi.write(0xFF) != 0xFE); 00358 00359 // read data 00360 for (int i = 0; i < length; i++) { 00361 buffer[i] = _spi.write(0xFF); 00362 } 00363 _spi.write(0xFF); // checksum 00364 _spi.write(0xFF); 00365 00366 _cs = 1; 00367 _spi.write(0xFF); 00368 return 0; 00369 } 00370 00371 int SDFileSystem::_write(const uint8_t*buffer, uint32_t length) { 00372 _cs = 0; 00373 00374 // indicate start of block 00375 _spi.write(0xFE); 00376 00377 // write the data 00378 for (int i = 0; i < length; i++) { 00379 _spi.write(buffer[i]); 00380 } 00381 00382 // write the checksum 00383 _spi.write(0xFF); 00384 _spi.write(0xFF); 00385 00386 // check the response token 00387 if ((_spi.write(0xFF) & 0x1F) != 0x05) { 00388 _cs = 1; 00389 _spi.write(0xFF); 00390 return 1; 00391 } 00392 00393 // wait for write to finish 00394 while (_spi.write(0xFF) == 0); 00395 00396 _cs = 1; 00397 _spi.write(0xFF); 00398 return 0; 00399 } 00400 00401 static uint32_t ext_bits(unsigned char *data, int msb, int lsb) { 00402 uint32_t bits = 0; 00403 uint32_t size = 1 + msb - lsb; 00404 for (int i = 0; i < size; i++) { 00405 uint32_t position = lsb + i; 00406 uint32_t byte = 15 - (position >> 3); 00407 uint32_t bit = position & 0x7; 00408 uint32_t value = (data[byte] >> bit) & 1; 00409 bits |= value << i; 00410 } 00411 return bits; 00412 } 00413 00414 uint64_t SDFileSystem::_sd_sectors() { 00415 uint32_t c_size, c_size_mult, read_bl_len; 00416 uint32_t block_len, mult, blocknr, capacity; 00417 uint32_t hc_c_size; 00418 uint64_t blocks; 00419 00420 // CMD9, Response R2 (R1 byte + 16-byte block read) 00421 if (_cmdx(9, 0) != 0) { 00422 debug("Didn't get a response from the disk\n"); 00423 return 0; 00424 } 00425 00426 uint8_t csd[16]; 00427 if (_read(csd, 16) != 0) { 00428 debug("Couldn't read csd response from disk\n"); 00429 return 0; 00430 } 00431 00432 // csd_structure : csd[127:126] 00433 // c_size : csd[73:62] 00434 // c_size_mult : csd[49:47] 00435 // read_bl_len : csd[83:80] - the *maximum* read block length 00436 00437 int csd_structure = ext_bits(csd, 127, 126); 00438 00439 switch (csd_structure) { 00440 case 0: 00441 cdv = 512; 00442 c_size = ext_bits(csd, 73, 62); 00443 c_size_mult = ext_bits(csd, 49, 47); 00444 read_bl_len = ext_bits(csd, 83, 80); 00445 00446 block_len = 1 << read_bl_len; 00447 mult = 1 << (c_size_mult + 2); 00448 blocknr = (c_size + 1) * mult; 00449 capacity = blocknr * block_len; 00450 blocks = capacity / 512; 00451 debug_if(SD_DBG, "\n\rSDCard\n\rc_size: %d \n\rcapacity: %ld \n\rsectors: %lld\n\r", c_size, capacity, blocks); 00452 break; 00453 00454 case 1: 00455 cdv = 1; 00456 hc_c_size = ext_bits(csd, 63, 48); 00457 blocks = (hc_c_size+1)*1024; 00458 debug_if(SD_DBG, "\n\rSDHC Card \n\rhc_c_size: %d\n\rcapacity: %lld \n\rsectors: %lld\n\r", hc_c_size, blocks*512, blocks); 00459 break; 00460 00461 default: 00462 debug("CSD struct unsupported\r\n"); 00463 return 0; 00464 }; 00465 return blocks; 00466 }
Generated on Tue Jul 19 2022 13:19:33 by
