ICRS Eurobot 2013

Dependencies:   mbed mbed-rtos Servo QEI

Revision:
15:9c5aaeda36dc
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tvmet/MatrixEval.h	Sat Apr 06 20:57:54 2013 +0000
@@ -0,0 +1,387 @@
+/*
+ * Tiny Vector Matrix Library
+ * Dense Vector Matrix Libary of Tiny size using Expression Templates
+ *
+ * Copyright (C) 2001 - 2007 Olaf Petzold <opetzold@users.sourceforge.net>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *
+ * $Id: MatrixEval.h,v 1.18 2007-06-23 15:58:58 opetzold Exp $
+ */
+
+#ifndef TVMET_MATRIX_EVAL_H
+#define TVMET_MATRIX_EVAL_H
+
+namespace tvmet {
+
+
+/**
+ * \fn bool all_elements(const XprMatrix<E, Rows, Cols>& e)
+ * \brief check on statements for all elements
+ * \ingroup _unary_function
+ * This is for use with boolean operators like
+ * \par Example:
+ * \code
+ * all_elements(matrix > 0) {
+ *     // true branch
+ * } else {
+ *     // false branch
+ * }
+ * \endcode
+ * \sa \ref compare
+ */
+template<class E, std::size_t Rows, std::size_t Cols>
+inline
+bool all_elements(const XprMatrix<E, Rows, Cols>& e) {
+  return meta::Matrix<Rows, Cols, 0, 0>::all_elements(e);
+}
+
+
+/**
+ * \fn bool any_elements(const XprMatrix<E, Rows, Cols>& e)
+ * \brief check on statements for any elements
+ * \ingroup _unary_function
+ * This is for use with boolean operators like
+ * \par Example:
+ * \code
+ * any_elements(matrix > 0) {
+ *     // true branch
+ * } else {
+ *     // false branch
+ * }
+ * \endcode
+ * \sa \ref compare
+ */
+template<class E, std::size_t Rows, std::size_t Cols>
+inline
+bool any_elements(const XprMatrix<E, Rows, Cols>& e) {
+  return meta::Matrix<Rows, Cols, 0, 0>::any_elements(e);
+}
+
+
+/*
+ * trinary evaluation functions with matrizes and xpr of
+ *
+ * XprMatrix<E1, Rows, Cols> ? Matrix<T2, Rows, Cols> : Matrix<T3, Rows, Cols>
+ * XprMatrix<E1, Rows, Cols> ? Matrix<T2, Rows, Cols> : XprMatrix<E3, Rows, Cols>
+ * XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : Matrix<T3, Rows, Cols>
+ * XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : XprMatrix<E3, Rows, Cols>
+ */
+
+/**
+ * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const Matrix<T2, Rows, Cols>& m2, const Matrix<T3, Rows, Cols>& m3)
+ * \brief Evals the matrix expressions.
+ * \ingroup _trinary_function
+ * This eval is for the a?b:c syntax, since it's not allowed to overload
+ * these operators.
+ */
+template<class E1, class T2, class T3, std::size_t Rows, std::size_t Cols>
+inline
+XprMatrix<
+  XprEval<
+    XprMatrix<E1, Rows, Cols>,
+    MatrixConstReference<T2, Rows, Cols>,
+    MatrixConstReference<T3, Rows, Cols>
+  >,
+  Rows, Cols
+>
+eval(const XprMatrix<E1, Rows, Cols>& e1,
+     const Matrix<T2, Rows, Cols>& m2,
+     const Matrix<T3, Rows, Cols>& m3) {
+  typedef XprEval<
+    XprMatrix<E1, Rows, Cols>,
+    MatrixConstReference<T2, Rows, Cols>,
+    MatrixConstReference<T3, Rows, Cols>
+  >                             expr_type;
+  return XprMatrix<expr_type, Rows, Cols>(
+    expr_type(e1, m2.const_ref(), m3.const_ref()));
+}
+
+
+/**
+ * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const Matrix<T2, Rows, Cols>& m2, const XprMatrix<E3, Rows, Cols>& e3)
+ * \brief Evals the matrix expressions.
+ * \ingroup _trinary_function
+ * This eval is for the a?b:c syntax, since it's not allowed to overload
+ * these operators.
+ */
+template<class E1, class T2, class E3, std::size_t Rows, std::size_t Cols>
+inline
+XprMatrix<
+  XprEval<
+    XprMatrix<E1, Rows, Cols>,
+    MatrixConstReference<T2, Rows, Cols>,
+    XprMatrix<E3, Rows, Cols>
+  >,
+  Rows, Cols
+>
+eval(const XprMatrix<E1, Rows, Cols>& e1,
+     const Matrix<T2, Rows, Cols>& m2,
+     const XprMatrix<E3, Rows, Cols>& e3) {
+  typedef XprEval<
+    XprMatrix<E1, Rows, Cols>,
+    MatrixConstReference<T2, Rows, Cols>,
+    XprMatrix<E3, Rows, Cols>
+  >                             expr_type;
+  return XprMatrix<expr_type, Rows, Cols>(
+    expr_type(e1, m2.const_ref(), e3));
+}
+
+
+/**
+ * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const Matrix<T3, Rows, Cols>& m3)
+ * \brief Evals the matrix expressions.
+ * \ingroup _trinary_function
+ * This eval is for the a?b:c syntax, since it's not allowed to overload
+ * these operators.
+ */
+template<class E1, class E2, class T3, std::size_t Rows, std::size_t Cols>
+inline
+XprMatrix<
+  XprEval<
+    XprMatrix<E1, Rows, Cols>,
+    XprMatrix<E2, Rows, Cols>,
+    MatrixConstReference<T3, Rows, Cols>
+  >,
+  Rows, Cols
+>
+eval(const XprMatrix<E1, Rows, Cols>& e1,
+    const  XprMatrix<E2, Rows, Cols>& e2,
+     const Matrix<T3, Rows, Cols>& m3) {
+  typedef XprEval<
+    XprMatrix<E1, Rows, Cols>,
+    XprMatrix<E2, Rows, Cols>,
+    MatrixConstReference<T3, Rows, Cols>
+  >                             expr_type;
+  return XprMatrix<expr_type, Rows, Cols>(
+    expr_type(e1, e2, m3.const_ref()));
+}
+
+
+/**
+ * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const XprMatrix<E3, Rows, Cols>& e3)
+ * \brief Evals the matrix expressions.
+ * \ingroup _trinary_function
+ * This eval is for the a?b:c syntax, since it's not allowed to overload
+ * these operators.
+ */
+template<class E1, class E2, class E3, std::size_t Rows, std::size_t Cols>
+inline
+XprMatrix<
+  XprEval<
+    XprMatrix<E1, Rows, Cols>,
+    XprMatrix<E2, Rows, Cols>,
+    XprMatrix<E3, Rows, Cols>
+  >,
+  Rows, Cols
+>
+eval(const XprMatrix<E1, Rows, Cols>& e1,
+     const XprMatrix<E2, Rows, Cols>& e2,
+     const XprMatrix<E3, Rows, Cols>& e3) {
+  typedef XprEval<
+    XprMatrix<E1, Rows, Cols>,
+    XprMatrix<E2, Rows, Cols>,
+    XprMatrix<E3, Rows, Cols>
+  >                             expr_type;
+  return XprMatrix<expr_type, Rows, Cols>(expr_type(e1, e2, e3));
+}
+
+
+/*
+ * trinary evaluation functions with matrizes, xpr of and POD
+ *
+ * XprMatrix<E, Rows, Cols> ? POD1 : POD2
+ * XprMatrix<E1, Rows, Cols> ? POD : XprMatrix<E3, Rows, Cols>
+ * XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : POD
+ */
+#define TVMET_IMPLEMENT_MACRO(POD)                           \
+template<class E, std::size_t Rows, std::size_t Cols>            \
+inline                                           \
+XprMatrix<                                       \
+  XprEval<                                       \
+    XprMatrix<E, Rows, Cols>,                                     \
+    XprLiteral< POD >,                                   \
+    XprLiteral< POD >                                   \
+  >,                                            \
+  Rows, Cols                                \
+>                                           \
+eval(const XprMatrix<E, Rows, Cols>& e, POD x2, POD x3) {              \
+  typedef XprEval<                                   \
+    XprMatrix<E, Rows, Cols>,                               \
+    XprLiteral< POD >,                                    \
+    XprLiteral< POD >                                    \
+  >                             expr_type;     \
+  return XprMatrix<expr_type, Rows, Cols>(                \
+    expr_type(e, XprLiteral< POD >(x2), XprLiteral< POD >(x3)));     \
+}                                           \
+                                               \
+template<class E1, class E3, std::size_t Rows, std::size_t Cols>     \
+inline                                           \
+XprMatrix<                                       \
+  XprEval<                                       \
+    XprMatrix<E1, Rows, Cols>,                               \
+    XprLiteral< POD >,                                   \
+    XprMatrix<E3, Rows, Cols>                               \
+  >,                                            \
+  Rows, Cols                                \
+>                                           \
+eval(const XprMatrix<E1, Rows, Cols>& e1, POD x2, const XprMatrix<E3, Rows, Cols>& e3) { \
+  typedef XprEval<                                   \
+    XprMatrix<E1, Rows, Cols>,                               \
+    XprLiteral< POD >,                                    \
+    XprMatrix<E3, Rows, Cols>                               \
+  >                             expr_type;     \
+  return XprMatrix<expr_type, Rows, Cols>(                \
+    expr_type(e1, XprLiteral< POD >(x2), e3));                 \
+}                                           \
+                                               \
+template<class E1, class E2, std::size_t Rows, std::size_t Cols>    \
+inline                                           \
+XprMatrix<                                       \
+  XprEval<                                       \
+    XprMatrix<E1, Rows, Cols>,                               \
+    XprMatrix<E2, Rows, Cols>,                               \
+    XprLiteral< POD >                                   \
+  >,                                            \
+  Rows, Cols                                \
+>                                           \
+eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, POD x3) { \
+  typedef XprEval<                                   \
+    XprMatrix<E1, Rows, Cols>,                               \
+    XprMatrix<E2, Rows, Cols>,                               \
+    XprLiteral< POD >                                    \
+  >                             expr_type;     \
+  return XprMatrix<expr_type, Rows, Cols>(                \
+    expr_type(e1, e2, XprLiteral< POD >(x3)));                 \
+}
+
+TVMET_IMPLEMENT_MACRO(int)
+
+#if defined(TVMET_HAVE_LONG_LONG)
+TVMET_IMPLEMENT_MACRO(long long int)
+#endif
+
+TVMET_IMPLEMENT_MACRO(float)
+TVMET_IMPLEMENT_MACRO(double)
+
+#if defined(TVMET_HAVE_LONG_DOUBLE)
+TVMET_IMPLEMENT_MACRO(long double)
+#endif
+
+#undef TVMET_IMPLEMENT_MACRO
+
+
+/*
+ * trinary evaluation functions with matrizes, xpr of and complex<> types
+ *
+ * XprMatrix<E, Rows, Cols> e, std::complex<T> z2, std::complex<T> z3
+ * XprMatrix<E1, Rows, Cols> e1, std::complex<T> z2, XprMatrix<E3, Rows, Cols> e3
+ * XprMatrix<E1, Rows, Cols> e1, XprMatrix<E2, Rows, Cols> e2, std::complex<T> z3
+ */
+#if defined(TVMET_HAVE_COMPLEX)
+
+/**
+ * \fn eval(const XprMatrix<E, Rows, Cols>& e, const std::complex<T>& x2, const std::complex<T>& x3)
+ * \brief Evals the matrix expressions.
+ * \ingroup _trinary_function
+ * This eval is for the a?b:c syntax, since it's not allowed to overload
+ * these operators.
+ */
+template<class E, std::size_t Rows, std::size_t Cols, class T>
+inline
+XprMatrix<
+  XprEval<
+    XprMatrix<E, Rows, Cols>,
+    XprLiteral< std::complex<T> >,
+    XprLiteral< std::complex<T> >
+  >,
+  Rows, Cols
+>
+eval(const XprMatrix<E, Rows, Cols>& e, const std::complex<T>& x2, const std::complex<T>& x3) {
+  typedef XprEval<
+    XprMatrix<E, Rows, Cols>,
+    XprLiteral< std::complex<T> >,
+    XprLiteral< std::complex<T> >
+  >                             expr_type;
+  return XprMatrix<expr_type, Rows, Cols>(
+    expr_type(e, XprLiteral< std::complex<T> >(x2), XprLiteral< std::complex<T> >(x3)));
+}
+
+
+/**
+ * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const std::complex<T>& x2, const XprMatrix<E3, Rows, Cols>& e3)
+ * \brief Evals the matrix expressions.
+ * \ingroup _trinary_function
+ * This eval is for the a?b:c syntax, since it's not allowed to overload
+ * these operators.
+ */
+template<class E1, class E3, std::size_t Rows, std::size_t Cols, class T>
+inline
+XprMatrix<
+  XprEval<
+    XprMatrix<E1, Rows, Cols>,
+    XprLiteral< std::complex<T> >,
+    XprMatrix<E3, Rows, Cols>
+  >,
+  Rows, Cols
+>
+eval(const XprMatrix<E1, Rows, Cols>& e1, const std::complex<T>& x2, const XprMatrix<E3, Rows, Cols>& e3) {
+  typedef XprEval<
+    XprMatrix<E1, Rows, Cols>,
+    XprLiteral< std::complex<T> >,
+    XprMatrix<E3, Rows, Cols>
+  >                             expr_type;
+  return XprMatrix<expr_type, Rows, Cols>(
+    expr_type(e1, XprLiteral< std::complex<T> >(x2), e3));
+}
+
+
+/**
+ * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const std::complex<T>& x3)
+ * \brief Evals the matrix expressions.
+ * \ingroup _trinary_function
+ * This eval is for the a?b:c syntax, since it's not allowed to overload
+ * these operators.
+ */
+template<class E1, class E2, std::size_t Rows, std::size_t Cols, class T>
+inline
+XprMatrix<
+  XprEval<
+    XprMatrix<E1, Rows, Cols>,
+    XprMatrix<E2, Rows, Cols>,
+    XprLiteral< std::complex<T> >
+  >,
+  Rows, Cols
+>
+eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const std::complex<T>& x3) {
+  typedef XprEval<
+    XprMatrix<E1, Rows, Cols>,
+    XprMatrix<E2, Rows, Cols>,
+    XprLiteral< std::complex<T> >
+  >                             expr_type;
+  return XprMatrix<expr_type, Rows, Cols>(
+    expr_type(e1, e2, XprLiteral< std::complex<T> >(x3)));
+}
+#endif // defined(TVMET_HAVE_COMPLEX)
+
+
+} // namespace tvmet
+
+#endif // TVMET_MATRIX_EVAL_H
+
+// Local Variables:
+// mode:C++
+// tab-width:8
+// End: