CyaSSL is an SSL library for devices like mbed.

Dependents:   cyassl-client Sync

Revision:
0:5045d2638c29
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/integer.c	Sat Feb 05 01:09:17 2011 +0000
@@ -0,0 +1,4280 @@
+/* integer.c
+ *
+ * Copyright (C) 2006-2009 Sawtooth Consulting Ltd.
+ *
+ * This file is part of CyaSSL.
+ *
+ * CyaSSL is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * CyaSSL is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
+ */
+
+/*
+ * Based on public domain LibTomMath 0.38 by Tom St Denis, tomstdenis@iahu.ca,
+ * http://math.libtomcrypt.com
+ */
+
+
+#ifndef USE_FAST_MATH
+
+#include "integer.h"
+
+
+/* handle up to 6 inits */
+int mp_init_multi(mp_int* a, mp_int* b, mp_int* c, mp_int* d, mp_int* e,
+                  mp_int* f)
+{
+    int res = MP_OKAY;
+
+    if (a && ((res = mp_init(a)) != MP_OKAY))
+        return res;
+
+    if (b && ((res = mp_init(b)) != MP_OKAY)) {
+        mp_clear(a);
+        return res;
+    }
+
+    if (c && ((res = mp_init(c)) != MP_OKAY)) {
+        mp_clear(a); mp_clear(b);
+        return res;
+    }
+
+    if (d && ((res = mp_init(d)) != MP_OKAY)) {
+        mp_clear(a); mp_clear(b); mp_clear(c);
+        return res;
+    }
+
+    if (e && ((res = mp_init(e)) != MP_OKAY)) {
+        mp_clear(a); mp_clear(b); mp_clear(c); mp_clear(d);
+        return res;
+    }
+
+    if (f && ((res = mp_init(f)) != MP_OKAY)) {
+        mp_clear(a); mp_clear(b); mp_clear(c); mp_clear(d); mp_clear(e);
+        return res;
+    }
+
+    return res;
+}
+
+
+/* init a new mp_int */
+int mp_init (mp_int * a)
+{
+  int i;
+
+  /* allocate memory required and clear it */
+  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC, 0,
+                                      DYNAMIC_TYPE_BIGINT);
+  if (a->dp == NULL) {
+    return MP_MEM;
+  }
+
+  /* set the digits to zero */
+  for (i = 0; i < MP_PREC; i++) {
+      a->dp[i] = 0;
+  }
+
+  /* set the used to zero, allocated digits to the default precision
+   * and sign to positive */
+  a->used  = 0;
+  a->alloc = MP_PREC;
+  a->sign  = MP_ZPOS;
+
+  return MP_OKAY;
+}
+
+
+/* clear one (frees)  */
+void
+mp_clear (mp_int * a)
+{
+  int i;
+
+  /* only do anything if a hasn't been freed previously */
+  if (a->dp != NULL) {
+    /* first zero the digits */
+    for (i = 0; i < a->used; i++) {
+        a->dp[i] = 0;
+    }
+
+    /* free ram */
+    XFREE(a->dp, 0, DYNAMIC_TYPE_BIGINT);
+
+    /* reset members to make debugging easier */
+    a->dp    = NULL;
+    a->alloc = a->used = 0;
+    a->sign  = MP_ZPOS;
+  }
+}
+
+
+/* get the size for an unsigned equivalent */
+int mp_unsigned_bin_size (mp_int * a)
+{
+  int     size = mp_count_bits (a);
+  return (size / 8 + ((size & 7) != 0 ? 1 : 0));
+}
+
+
+/* returns the number of bits in an int */
+int
+mp_count_bits (mp_int * a)
+{
+  int     r;
+  mp_digit q;
+
+  /* shortcut */
+  if (a->used == 0) {
+    return 0;
+  }
+
+  /* get number of digits and add that */
+  r = (a->used - 1) * DIGIT_BIT;
+  
+  /* take the last digit and count the bits in it */
+  q = a->dp[a->used - 1];
+  while (q > ((mp_digit) 0)) {
+    ++r;
+    q >>= ((mp_digit) 1);
+  }
+  return r;
+}
+
+
+/* store in unsigned [big endian] format */
+int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
+{
+  int     x, res;
+  mp_int  t;
+
+  if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+    return res;
+  }
+
+  x = 0;
+  while (mp_iszero (&t) == 0) {
+#ifndef MP_8BIT
+      b[x++] = (unsigned char) (t.dp[0] & 255);
+#else
+      b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
+#endif
+    if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
+      mp_clear (&t);
+      return res;
+    }
+  }
+  bn_reverse (b, x);
+  mp_clear (&t);
+  return MP_OKAY;
+}
+
+
+/* creates "a" then copies b into it */
+int mp_init_copy (mp_int * a, mp_int * b)
+{
+  int     res;
+
+  if ((res = mp_init (a)) != MP_OKAY) {
+    return res;
+  }
+  return mp_copy (b, a);
+}
+
+
+/* copy, b = a */
+int
+mp_copy (mp_int * a, mp_int * b)
+{
+  int     res, n;
+
+  /* if dst == src do nothing */
+  if (a == b) {
+    return MP_OKAY;
+  }
+
+  /* grow dest */
+  if (b->alloc < a->used) {
+     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
+        return res;
+     }
+  }
+
+  /* zero b and copy the parameters over */
+  {
+    register mp_digit *tmpa, *tmpb;
+
+    /* pointer aliases */
+
+    /* source */
+    tmpa = a->dp;
+
+    /* destination */
+    tmpb = b->dp;
+
+    /* copy all the digits */
+    for (n = 0; n < a->used; n++) {
+      *tmpb++ = *tmpa++;
+    }
+
+    /* clear high digits */
+    for (; n < b->used; n++) {
+      *tmpb++ = 0;
+    }
+  }
+
+  /* copy used count and sign */
+  b->used = a->used;
+  b->sign = a->sign;
+  return MP_OKAY;
+}
+
+
+/* grow as required */
+int mp_grow (mp_int * a, int size)
+{
+  int     i;
+  mp_digit *tmp;
+
+  /* if the alloc size is smaller alloc more ram */
+  if (a->alloc < size) {
+    /* ensure there are always at least MP_PREC digits extra on top */
+    size += (MP_PREC * 2) - (size % MP_PREC);
+
+    /* reallocate the array a->dp
+     *
+     * We store the return in a temporary variable
+     * in case the operation failed we don't want
+     * to overwrite the dp member of a.
+     */
+    tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size, 0,
+                                       DYNAMIC_TYPE_BIGINT);
+    if (tmp == NULL) {
+      /* reallocation failed but "a" is still valid [can be freed] */
+      return MP_MEM;
+    }
+
+    /* reallocation succeeded so set a->dp */
+    a->dp = tmp;
+
+    /* zero excess digits */
+    i        = a->alloc;
+    a->alloc = size;
+    for (; i < a->alloc; i++) {
+      a->dp[i] = 0;
+    }
+  }
+  return MP_OKAY;
+}
+
+
+/* reverse an array, used for radix code */
+void
+bn_reverse (unsigned char *s, int len)
+{
+  int     ix, iy;
+  unsigned char t;
+
+  ix = 0;
+  iy = len - 1;
+  while (ix < iy) {
+    t     = s[ix];
+    s[ix] = s[iy];
+    s[iy] = t;
+    ++ix;
+    --iy;
+  }
+}
+
+
+/* shift right by a certain bit count (store quotient in c, optional
+   remainder in d) */
+int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
+{
+  mp_digit D, r, rr;
+  int     x, res;
+  mp_int  t;
+
+
+  /* if the shift count is <= 0 then we do no work */
+  if (b <= 0) {
+    res = mp_copy (a, c);
+    if (d != NULL) {
+      mp_zero (d);
+    }
+    return res;
+  }
+
+  if ((res = mp_init (&t)) != MP_OKAY) {
+    return res;
+  }
+
+  /* get the remainder */
+  if (d != NULL) {
+    if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
+      mp_clear (&t);
+      return res;
+    }
+  }
+
+  /* copy */
+  if ((res = mp_copy (a, c)) != MP_OKAY) {
+    mp_clear (&t);
+    return res;
+  }
+
+  /* shift by as many digits in the bit count */
+  if (b >= (int)DIGIT_BIT) {
+    mp_rshd (c, b / DIGIT_BIT);
+  }
+
+  /* shift any bit count < DIGIT_BIT */
+  D = (mp_digit) (b % DIGIT_BIT);
+  if (D != 0) {
+    register mp_digit *tmpc, mask, shift;
+
+    /* mask */
+    mask = (((mp_digit)1) << D) - 1;
+
+    /* shift for lsb */
+    shift = DIGIT_BIT - D;
+
+    /* alias */
+    tmpc = c->dp + (c->used - 1);
+
+    /* carry */
+    r = 0;
+    for (x = c->used - 1; x >= 0; x--) {
+      /* get the lower  bits of this word in a temp */
+      rr = *tmpc & mask;
+
+      /* shift the current word and mix in the carry bits from the previous
+         word */
+      *tmpc = (*tmpc >> D) | (r << shift);
+      --tmpc;
+
+      /* set the carry to the carry bits of the current word found above */
+      r = rr;
+    }
+  }
+  mp_clamp (c);
+  if (d != NULL) {
+    mp_exch (&t, d);
+  }
+  mp_clear (&t);
+  return MP_OKAY;
+}
+
+
+/* set to zero */
+void mp_zero (mp_int * a)
+{
+  int       n;
+  mp_digit *tmp;
+
+  a->sign = MP_ZPOS;
+  a->used = 0;
+
+  tmp = a->dp;
+  for (n = 0; n < a->alloc; n++) {
+     *tmp++ = 0;
+  }
+}
+
+
+/* trim unused digits 
+ *
+ * This is used to ensure that leading zero digits are
+ * trimed and the leading "used" digit will be non-zero
+ * Typically very fast.  Also fixes the sign if there
+ * are no more leading digits
+ */
+void
+mp_clamp (mp_int * a)
+{
+  /* decrease used while the most significant digit is
+   * zero.
+   */
+  while (a->used > 0 && a->dp[a->used - 1] == 0) {
+    --(a->used);
+  }
+
+  /* reset the sign flag if used == 0 */
+  if (a->used == 0) {
+    a->sign = MP_ZPOS;
+  }
+}
+
+
+/* swap the elements of two integers, for cases where you can't simply swap the 
+ * mp_int pointers around
+ */
+void
+mp_exch (mp_int * a, mp_int * b)
+{
+  mp_int  t;
+
+  t  = *a;
+  *a = *b;
+  *b = t;
+}
+
+
+/* shift right a certain amount of digits */
+void mp_rshd (mp_int * a, int b)
+{
+  int     x;
+
+  /* if b <= 0 then ignore it */
+  if (b <= 0) {
+    return;
+  }
+
+  /* if b > used then simply zero it and return */
+  if (a->used <= b) {
+    mp_zero (a);
+    return;
+  }
+
+  {
+    register mp_digit *bottom, *top;
+
+    /* shift the digits down */
+
+    /* bottom */
+    bottom = a->dp;
+
+    /* top [offset into digits] */
+    top = a->dp + b;
+
+    /* this is implemented as a sliding window where 
+     * the window is b-digits long and digits from 
+     * the top of the window are copied to the bottom
+     *
+     * e.g.
+
+     b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
+                 /\                   |      ---->
+                  \-------------------/      ---->
+     */
+    for (x = 0; x < (a->used - b); x++) {
+      *bottom++ = *top++;
+    }
+
+    /* zero the top digits */
+    for (; x < a->used; x++) {
+      *bottom++ = 0;
+    }
+  }
+  
+  /* remove excess digits */
+  a->used -= b;
+}
+
+
+/* calc a value mod 2**b */
+int
+mp_mod_2d (mp_int * a, int b, mp_int * c)
+{
+  int     x, res;
+
+  /* if b is <= 0 then zero the int */
+  if (b <= 0) {
+    mp_zero (c);
+    return MP_OKAY;
+  }
+
+  /* if the modulus is larger than the value than return */
+  if (b >= (int) (a->used * DIGIT_BIT)) {
+    res = mp_copy (a, c);
+    return res;
+  }
+
+  /* copy */
+  if ((res = mp_copy (a, c)) != MP_OKAY) {
+    return res;
+  }
+
+  /* zero digits above the last digit of the modulus */
+  for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
+    c->dp[x] = 0;
+  }
+  /* clear the digit that is not completely outside/inside the modulus */
+  c->dp[b / DIGIT_BIT] &= (mp_digit) ((((mp_digit) 1) <<
+              (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
+  mp_clamp (c);
+  return MP_OKAY;
+}
+
+
+/* reads a unsigned char array, assumes the msb is stored first [big endian] */
+int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
+{
+  int     res;
+
+  /* make sure there are at least two digits */
+  if (a->alloc < 2) {
+     if ((res = mp_grow(a, 2)) != MP_OKAY) {
+        return res;
+     }
+  }
+
+  /* zero the int */
+  mp_zero (a);
+
+  /* read the bytes in */
+  while (c-- > 0) {
+    if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
+      return res;
+    }
+
+#ifndef MP_8BIT
+      a->dp[0] |= *b++;
+      a->used += 1;
+#else
+      a->dp[0] = (*b & MP_MASK);
+      a->dp[1] |= ((*b++ >> 7U) & 1);
+      a->used += 2;
+#endif
+  }
+  mp_clamp (a);
+  return MP_OKAY;
+}
+
+
+/* shift left by a certain bit count */
+int mp_mul_2d (mp_int * a, int b, mp_int * c)
+{
+  mp_digit d;
+  int      res;
+
+  /* copy */
+  if (a != c) {
+     if ((res = mp_copy (a, c)) != MP_OKAY) {
+       return res;
+     }
+  }
+
+  if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
+     if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
+       return res;
+     }
+  }
+
+  /* shift by as many digits in the bit count */
+  if (b >= (int)DIGIT_BIT) {
+    if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
+      return res;
+    }
+  }
+
+  /* shift any bit count < DIGIT_BIT */
+  d = (mp_digit) (b % DIGIT_BIT);
+  if (d != 0) {
+    register mp_digit *tmpc, shift, mask, r, rr;
+    register int x;
+
+    /* bitmask for carries */
+    mask = (((mp_digit)1) << d) - 1;
+
+    /* shift for msbs */
+    shift = DIGIT_BIT - d;
+
+    /* alias */
+    tmpc = c->dp;
+
+    /* carry */
+    r    = 0;
+    for (x = 0; x < c->used; x++) {
+      /* get the higher bits of the current word */
+      rr = (*tmpc >> shift) & mask;
+
+      /* shift the current word and OR in the carry */
+      *tmpc = ((*tmpc << d) | r) & MP_MASK;
+      ++tmpc;
+
+      /* set the carry to the carry bits of the current word */
+      r = rr;
+    }
+    
+    /* set final carry */
+    if (r != 0) {
+       c->dp[(c->used)++] = r;
+    }
+  }
+  mp_clamp (c);
+  return MP_OKAY;
+}
+
+
+/* shift left a certain amount of digits */
+int mp_lshd (mp_int * a, int b)
+{
+  int     x, res;
+
+  /* if its less than zero return */
+  if (b <= 0) {
+    return MP_OKAY;
+  }
+
+  /* grow to fit the new digits */
+  if (a->alloc < a->used + b) {
+     if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
+       return res;
+     }
+  }
+
+  {
+    register mp_digit *top, *bottom;
+
+    /* increment the used by the shift amount then copy upwards */
+    a->used += b;
+
+    /* top */
+    top = a->dp + a->used - 1;
+
+    /* base */
+    bottom = a->dp + a->used - 1 - b;
+
+    /* much like mp_rshd this is implemented using a sliding window
+     * except the window goes the otherway around.  Copying from
+     * the bottom to the top.  see bn_mp_rshd.c for more info.
+     */
+    for (x = a->used - 1; x >= b; x--) {
+      *top-- = *bottom--;
+    }
+
+    /* zero the lower digits */
+    top = a->dp;
+    for (x = 0; x < b; x++) {
+      *top++ = 0;
+    }
+  }
+  return MP_OKAY;
+}
+
+
+/* this is a shell function that calls either the normal or Montgomery
+ * exptmod functions.  Originally the call to the montgomery code was
+ * embedded in the normal function but that wasted alot of stack space
+ * for nothing (since 99% of the time the Montgomery code would be called)
+ */
+int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+{
+  int dr;
+
+  /* modulus P must be positive */
+  if (P->sign == MP_NEG) {
+     return MP_VAL;
+  }
+
+  /* if exponent X is negative we have to recurse */
+  if (X->sign == MP_NEG) {
+#ifdef BN_MP_INVMOD_C
+     mp_int tmpG, tmpX;
+     int err;
+
+     /* first compute 1/G mod P */
+     if ((err = mp_init(&tmpG)) != MP_OKAY) {
+        return err;
+     }
+     if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
+        mp_clear(&tmpG);
+        return err;
+     }
+
+     /* now get |X| */
+     if ((err = mp_init(&tmpX)) != MP_OKAY) {
+        mp_clear(&tmpG);
+        return err;
+     }
+     if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
+        mp_clear(&tmpG);
+        mp_clear(&tmpX);
+        return err;
+     }
+
+     /* and now compute (1/G)**|X| instead of G**X [X < 0] */
+     err = mp_exptmod(&tmpG, &tmpX, P, Y);
+     mp_clear(&tmpG);
+     mp_clear(&tmpX);
+     return err;
+#else 
+     /* no invmod */
+     return MP_VAL;
+#endif
+  }
+
+/* modified diminished radix reduction */
+#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && \
+  defined(BN_S_MP_EXPTMOD_C)
+  if (mp_reduce_is_2k_l(P) == MP_YES) {
+     return s_mp_exptmod(G, X, P, Y, 1);
+  }
+#endif
+
+#ifdef BN_MP_DR_IS_MODULUS_C
+  /* is it a DR modulus? */
+  dr = mp_dr_is_modulus(P);
+#else
+  /* default to no */
+  dr = 0;
+#endif
+
+#ifdef BN_MP_REDUCE_IS_2K_C
+  /* if not, is it a unrestricted DR modulus? */
+  if (dr == 0) {
+     dr = mp_reduce_is_2k(P) << 1;
+  }
+#endif
+    
+  /* if the modulus is odd or dr != 0 use the montgomery method */
+#ifdef BN_MP_EXPTMOD_FAST_C
+  if (mp_isodd (P) == 1 || dr !=  0) {
+    return mp_exptmod_fast (G, X, P, Y, dr);
+  } else {
+#endif
+#ifdef BN_S_MP_EXPTMOD_C
+    /* otherwise use the generic Barrett reduction technique */
+    return s_mp_exptmod (G, X, P, Y, 0);
+#else
+    /* no exptmod for evens */
+    return MP_VAL;
+#endif
+#ifdef BN_MP_EXPTMOD_FAST_C
+  }
+#endif
+}
+
+
+/* b = |a| 
+ *
+ * Simple function copies the input and fixes the sign to positive
+ */
+int
+mp_abs (mp_int * a, mp_int * b)
+{
+  int     res;
+
+  /* copy a to b */
+  if (a != b) {
+     if ((res = mp_copy (a, b)) != MP_OKAY) {
+       return res;
+     }
+  }
+
+  /* force the sign of b to positive */
+  b->sign = MP_ZPOS;
+
+  return MP_OKAY;
+}
+
+
+/* hac 14.61, pp608 */
+int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+{
+  /* b cannot be negative */
+  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
+    return MP_VAL;
+  }
+
+#ifdef BN_FAST_MP_INVMOD_C
+  /* if the modulus is odd we can use a faster routine instead */
+  if (mp_isodd (b) == 1) {
+    return fast_mp_invmod (a, b, c);
+  }
+#endif
+
+#ifdef BN_MP_INVMOD_SLOW_C
+  return mp_invmod_slow(a, b, c);
+#endif
+}
+
+
+/* computes the modular inverse via binary extended euclidean algorithm, 
+ * that is c = 1/a mod b 
+ *
+ * Based on slow invmod except this is optimized for the case where b is 
+ * odd as per HAC Note 14.64 on pp. 610
+ */
+int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+{
+  mp_int  x, y, u, v, B, D;
+  int     res, neg;
+
+  /* 2. [modified] b must be odd   */
+  if (mp_iseven (b) == 1) {
+    return MP_VAL;
+  }
+
+  /* init all our temps */
+  if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D)) != MP_OKAY) {
+     return res;
+  }
+
+  /* x == modulus, y == value to invert */
+  if ((res = mp_copy (b, &x)) != MP_OKAY) {
+    goto LBL_ERR;
+  }
+
+  /* we need y = |a| */
+  if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
+    goto LBL_ERR;
+  }
+
+  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
+    goto LBL_ERR;
+  }
+  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
+    goto LBL_ERR;
+  }
+  mp_set (&D, 1);
+
+top:
+  /* 4.  while u is even do */
+  while (mp_iseven (&u) == 1) {
+    /* 4.1 u = u/2 */
+    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+    /* 4.2 if B is odd then */
+    if (mp_isodd (&B) == 1) {
+      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
+        goto LBL_ERR;
+      }
+    }
+    /* B = B/2 */
+    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+  }
+
+  /* 5.  while v is even do */
+  while (mp_iseven (&v) == 1) {
+    /* 5.1 v = v/2 */
+    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+    /* 5.2 if D is odd then */
+    if (mp_isodd (&D) == 1) {
+      /* D = (D-x)/2 */
+      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
+        goto LBL_ERR;
+      }
+    }
+    /* D = D/2 */
+    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+  }
+
+  /* 6.  if u >= v then */
+  if (mp_cmp (&u, &v) != MP_LT) {
+    /* u = u - v, B = B - D */
+    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+
+    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+  } else {
+    /* v - v - u, D = D - B */
+    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+
+    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+  }
+
+  /* if not zero goto step 4 */
+  if (mp_iszero (&u) == 0) {
+    goto top;
+  }
+
+  /* now a = C, b = D, gcd == g*v */
+
+  /* if v != 1 then there is no inverse */
+  if (mp_cmp_d (&v, 1) != MP_EQ) {
+    res = MP_VAL;
+    goto LBL_ERR;
+  }
+
+  /* b is now the inverse */
+  neg = a->sign;
+  while (D.sign == MP_NEG) {
+    if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+  }
+  mp_exch (&D, c);
+  c->sign = neg;
+  res = MP_OKAY;
+
+LBL_ERR:mp_clear(&x);
+        mp_clear(&y);
+        mp_clear(&u);
+        mp_clear(&v);
+        mp_clear(&B);
+        mp_clear(&D);
+  return res;
+}
+
+
+/* hac 14.61, pp608 */
+int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
+{
+  mp_int  x, y, u, v, A, B, C, D;
+  int     res;
+
+  /* b cannot be negative */
+  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
+    return MP_VAL;
+  }
+
+  /* init temps */
+  if ((res = mp_init_multi(&x, &y, &u, &v, 
+                           &A, &B)) != MP_OKAY) {
+     return res;
+  }
+
+  /* init rest of tmps temps */
+  if ((res = mp_init_multi(&C, &D, 0, 0, 0, 0)) != MP_OKAY) {
+     return res;
+  }
+
+  /* x = a, y = b */
+  if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
+      goto LBL_ERR;
+  }
+  if ((res = mp_copy (b, &y)) != MP_OKAY) {
+    goto LBL_ERR;
+  }
+
+  /* 2. [modified] if x,y are both even then return an error! */
+  if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
+    res = MP_VAL;
+    goto LBL_ERR;
+  }
+
+  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
+    goto LBL_ERR;
+  }
+  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
+    goto LBL_ERR;
+  }
+  mp_set (&A, 1);
+  mp_set (&D, 1);
+
+top:
+  /* 4.  while u is even do */
+  while (mp_iseven (&u) == 1) {
+    /* 4.1 u = u/2 */
+    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+    /* 4.2 if A or B is odd then */
+    if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
+      /* A = (A+y)/2, B = (B-x)/2 */
+      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
+         goto LBL_ERR;
+      }
+      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
+         goto LBL_ERR;
+      }
+    }
+    /* A = A/2, B = B/2 */
+    if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+  }
+
+  /* 5.  while v is even do */
+  while (mp_iseven (&v) == 1) {
+    /* 5.1 v = v/2 */
+    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+    /* 5.2 if C or D is odd then */
+    if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
+      /* C = (C+y)/2, D = (D-x)/2 */
+      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
+         goto LBL_ERR;
+      }
+      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
+         goto LBL_ERR;
+      }
+    }
+    /* C = C/2, D = D/2 */
+    if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+  }
+
+  /* 6.  if u >= v then */
+  if (mp_cmp (&u, &v) != MP_LT) {
+    /* u = u - v, A = A - C, B = B - D */
+    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+
+    if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+
+    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+  } else {
+    /* v - v - u, C = C - A, D = D - B */
+    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+
+    if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+
+    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
+      goto LBL_ERR;
+    }
+  }
+
+  /* if not zero goto step 4 */
+  if (mp_iszero (&u) == 0)
+    goto top;
+
+  /* now a = C, b = D, gcd == g*v */
+
+  /* if v != 1 then there is no inverse */
+  if (mp_cmp_d (&v, 1) != MP_EQ) {
+    res = MP_VAL;
+    goto LBL_ERR;
+  }
+
+  /* if its too low */
+  while (mp_cmp_d(&C, 0) == MP_LT) {
+      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
+         goto LBL_ERR;
+      }
+  }
+  
+  /* too big */
+  while (mp_cmp_mag(&C, b) != MP_LT) {
+      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
+         goto LBL_ERR;
+      }
+  }
+  
+  /* C is now the inverse */
+  mp_exch (&C, c);
+  res = MP_OKAY;
+LBL_ERR:mp_clear(&x);
+        mp_clear(&y);
+        mp_clear(&u);
+        mp_clear(&v);
+        mp_clear(&A);
+        mp_clear(&B);
+        mp_clear(&C);
+        mp_clear(&D);
+  return res;
+}
+
+
+/* compare maginitude of two ints (unsigned) */
+int mp_cmp_mag (mp_int * a, mp_int * b)
+{
+  int     n;
+  mp_digit *tmpa, *tmpb;
+
+  /* compare based on # of non-zero digits */
+  if (a->used > b->used) {
+    return MP_GT;
+  }
+  
+  if (a->used < b->used) {
+    return MP_LT;
+  }
+
+  /* alias for a */
+  tmpa = a->dp + (a->used - 1);
+
+  /* alias for b */
+  tmpb = b->dp + (a->used - 1);
+
+  /* compare based on digits  */
+  for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
+    if (*tmpa > *tmpb) {
+      return MP_GT;
+    }
+
+    if (*tmpa < *tmpb) {
+      return MP_LT;
+    }
+  }
+  return MP_EQ;
+}
+
+
+/* compare two ints (signed)*/
+int
+mp_cmp (mp_int * a, mp_int * b)
+{
+  /* compare based on sign */
+  if (a->sign != b->sign) {
+     if (a->sign == MP_NEG) {
+        return MP_LT;
+     } else {
+        return MP_GT;
+     }
+  }
+  
+  /* compare digits */
+  if (a->sign == MP_NEG) {
+     /* if negative compare opposite direction */
+     return mp_cmp_mag(b, a);
+  } else {
+     return mp_cmp_mag(a, b);
+  }
+}
+
+
+/* compare a digit */
+int mp_cmp_d(mp_int * a, mp_digit b)
+{
+  /* compare based on sign */
+  if (a->sign == MP_NEG) {
+    return MP_LT;
+  }
+
+  /* compare based on magnitude */
+  if (a->used > 1) {
+    return MP_GT;
+  }
+
+  /* compare the only digit of a to b */
+  if (a->dp[0] > b) {
+    return MP_GT;
+  } else if (a->dp[0] < b) {
+    return MP_LT;
+  } else {
+    return MP_EQ;
+  }
+}
+
+
+/* set to a digit */
+void mp_set (mp_int * a, mp_digit b)
+{
+  mp_zero (a);
+  a->dp[0] = b & MP_MASK;
+  a->used  = (a->dp[0] != 0) ? 1 : 0;
+}
+
+
+/* c = a mod b, 0 <= c < b */
+int
+mp_mod (mp_int * a, mp_int * b, mp_int * c)
+{
+  mp_int  t;
+  int     res;
+
+  if ((res = mp_init (&t)) != MP_OKAY) {
+    return res;
+  }
+
+  if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
+    mp_clear (&t);
+    return res;
+  }
+
+  if (t.sign != b->sign) {
+    res = mp_add (b, &t, c);
+  } else {
+    res = MP_OKAY;
+    mp_exch (&t, c);
+  }
+
+  mp_clear (&t);
+  return res;
+}
+
+
+/* slower bit-bang division... also smaller */
+int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+   mp_int ta, tb, tq, q;
+   int    res, n, n2;
+
+  /* is divisor zero ? */
+  if (mp_iszero (b) == 1) {
+    return MP_VAL;
+  }
+
+  /* if a < b then q=0, r = a */
+  if (mp_cmp_mag (a, b) == MP_LT) {
+    if (d != NULL) {
+      res = mp_copy (a, d);
+    } else {
+      res = MP_OKAY;
+    }
+    if (c != NULL) {
+      mp_zero (c);
+    }
+    return res;
+  }
+	
+  /* init our temps */
+  if ((res = mp_init_multi(&ta, &tb, &tq, &q, 0, 0) != MP_OKAY)) {
+     return res;
+  }
+
+
+  mp_set(&tq, 1);
+  n = mp_count_bits(a) - mp_count_bits(b);
+  if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
+      ((res = mp_abs(b, &tb)) != MP_OKAY) || 
+      ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
+      ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
+      goto LBL_ERR;
+  }
+
+  while (n-- >= 0) {
+     if (mp_cmp(&tb, &ta) != MP_GT) {
+        if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
+            ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
+           goto LBL_ERR;
+        }
+     }
+     if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
+         ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
+           goto LBL_ERR;
+     }
+  }
+
+  /* now q == quotient and ta == remainder */
+  n  = a->sign;
+  n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
+  if (c != NULL) {
+     mp_exch(c, &q);
+     c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
+  }
+  if (d != NULL) {
+     mp_exch(d, &ta);
+     d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
+  }
+LBL_ERR:
+   mp_clear(&ta);
+   mp_clear(&tb);
+   mp_clear(&tq);
+   mp_clear(&q);
+   return res;
+}
+
+
+/* b = a/2 */
+int mp_div_2(mp_int * a, mp_int * b)
+{
+  int     x, res, oldused;
+
+  /* copy */
+  if (b->alloc < a->used) {
+    if ((res = mp_grow (b, a->used)) != MP_OKAY) {
+      return res;
+    }
+  }
+
+  oldused = b->used;
+  b->used = a->used;
+  {
+    register mp_digit r, rr, *tmpa, *tmpb;
+
+    /* source alias */
+    tmpa = a->dp + b->used - 1;
+
+    /* dest alias */
+    tmpb = b->dp + b->used - 1;
+
+    /* carry */
+    r = 0;
+    for (x = b->used - 1; x >= 0; x--) {
+      /* get the carry for the next iteration */
+      rr = *tmpa & 1;
+
+      /* shift the current digit, add in carry and store */
+      *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
+
+      /* forward carry to next iteration */
+      r = rr;
+    }
+
+    /* zero excess digits */
+    tmpb = b->dp + b->used;
+    for (x = b->used; x < oldused; x++) {
+      *tmpb++ = 0;
+    }
+  }
+  b->sign = a->sign;
+  mp_clamp (b);
+  return MP_OKAY;
+}
+
+
+/* high level addition (handles signs) */
+int mp_add (mp_int * a, mp_int * b, mp_int * c)
+{
+  int     sa, sb, res;
+
+  /* get sign of both inputs */
+  sa = a->sign;
+  sb = b->sign;
+
+  /* handle two cases, not four */
+  if (sa == sb) {
+    /* both positive or both negative */
+    /* add their magnitudes, copy the sign */
+    c->sign = sa;
+    res = s_mp_add (a, b, c);
+  } else {
+    /* one positive, the other negative */
+    /* subtract the one with the greater magnitude from */
+    /* the one of the lesser magnitude.  The result gets */
+    /* the sign of the one with the greater magnitude. */
+    if (mp_cmp_mag (a, b) == MP_LT) {
+      c->sign = sb;
+      res = s_mp_sub (b, a, c);
+    } else {
+      c->sign = sa;
+      res = s_mp_sub (a, b, c);
+    }
+  }
+  return res;
+}
+
+
+/* low level addition, based on HAC pp.594, Algorithm 14.7 */
+int
+s_mp_add (mp_int * a, mp_int * b, mp_int * c)
+{
+  mp_int *x;
+  int     olduse, res, min, max;
+
+  /* find sizes, we let |a| <= |b| which means we have to sort
+   * them.  "x" will point to the input with the most digits
+   */
+  if (a->used > b->used) {
+    min = b->used;
+    max = a->used;
+    x = a;
+  } else {
+    min = a->used;
+    max = b->used;
+    x = b;
+  }
+
+  /* init result */
+  if (c->alloc < max + 1) {
+    if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
+      return res;
+    }
+  }
+
+  /* get old used digit count and set new one */
+  olduse = c->used;
+  c->used = max + 1;
+
+  {
+    register mp_digit u, *tmpa, *tmpb, *tmpc;
+    register int i;
+
+    /* alias for digit pointers */
+
+    /* first input */
+    tmpa = a->dp;
+
+    /* second input */
+    tmpb = b->dp;
+
+    /* destination */
+    tmpc = c->dp;
+
+    /* zero the carry */
+    u = 0;
+    for (i = 0; i < min; i++) {
+      /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
+      *tmpc = *tmpa++ + *tmpb++ + u;
+
+      /* U = carry bit of T[i] */
+      u = *tmpc >> ((mp_digit)DIGIT_BIT);
+
+      /* take away carry bit from T[i] */
+      *tmpc++ &= MP_MASK;
+    }
+
+    /* now copy higher words if any, that is in A+B 
+     * if A or B has more digits add those in 
+     */
+    if (min != max) {
+      for (; i < max; i++) {
+        /* T[i] = X[i] + U */
+        *tmpc = x->dp[i] + u;
+
+        /* U = carry bit of T[i] */
+        u = *tmpc >> ((mp_digit)DIGIT_BIT);
+
+        /* take away carry bit from T[i] */
+        *tmpc++ &= MP_MASK;
+      }
+    }
+
+    /* add carry */
+    *tmpc++ = u;
+
+    /* clear digits above oldused */
+    for (i = c->used; i < olduse; i++) {
+      *tmpc++ = 0;
+    }
+  }
+
+  mp_clamp (c);
+  return MP_OKAY;
+}
+
+
+/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
+int
+s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
+{
+  int     olduse, res, min, max;
+
+  /* find sizes */
+  min = b->used;
+  max = a->used;
+
+  /* init result */
+  if (c->alloc < max) {
+    if ((res = mp_grow (c, max)) != MP_OKAY) {
+      return res;
+    }
+  }
+  olduse = c->used;
+  c->used = max;
+
+  {
+    register mp_digit u, *tmpa, *tmpb, *tmpc;
+    register int i;
+
+    /* alias for digit pointers */
+    tmpa = a->dp;
+    tmpb = b->dp;
+    tmpc = c->dp;
+
+    /* set carry to zero */
+    u = 0;
+    for (i = 0; i < min; i++) {
+      /* T[i] = A[i] - B[i] - U */
+      *tmpc = *tmpa++ - *tmpb++ - u;
+
+      /* U = carry bit of T[i]
+       * Note this saves performing an AND operation since
+       * if a carry does occur it will propagate all the way to the
+       * MSB.  As a result a single shift is enough to get the carry
+       */
+      u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+
+      /* Clear carry from T[i] */
+      *tmpc++ &= MP_MASK;
+    }
+
+    /* now copy higher words if any, e.g. if A has more digits than B  */
+    for (; i < max; i++) {
+      /* T[i] = A[i] - U */
+      *tmpc = *tmpa++ - u;
+
+      /* U = carry bit of T[i] */
+      u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+
+      /* Clear carry from T[i] */
+      *tmpc++ &= MP_MASK;
+    }
+
+    /* clear digits above used (since we may not have grown result above) */
+    for (i = c->used; i < olduse; i++) {
+      *tmpc++ = 0;
+    }
+  }
+
+  mp_clamp (c);
+  return MP_OKAY;
+}
+
+
+/* high level subtraction (handles signs) */
+int
+mp_sub (mp_int * a, mp_int * b, mp_int * c)
+{
+  int     sa, sb, res;
+
+  sa = a->sign;
+  sb = b->sign;
+
+  if (sa != sb) {
+    /* subtract a negative from a positive, OR */
+    /* subtract a positive from a negative. */
+    /* In either case, ADD their magnitudes, */
+    /* and use the sign of the first number. */
+    c->sign = sa;
+    res = s_mp_add (a, b, c);
+  } else {
+    /* subtract a positive from a positive, OR */
+    /* subtract a negative from a negative. */
+    /* First, take the difference between their */
+    /* magnitudes, then... */
+    if (mp_cmp_mag (a, b) != MP_LT) {
+      /* Copy the sign from the first */
+      c->sign = sa;
+      /* The first has a larger or equal magnitude */
+      res = s_mp_sub (a, b, c);
+    } else {
+      /* The result has the *opposite* sign from */
+      /* the first number. */
+      c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
+      /* The second has a larger magnitude */
+      res = s_mp_sub (b, a, c);
+    }
+  }
+  return res;
+}
+
+
+/* determines if reduce_2k_l can be used */
+int mp_reduce_is_2k_l(mp_int *a)
+{
+   int ix, iy;
+   
+   if (a->used == 0) {
+      return MP_NO;
+   } else if (a->used == 1) {
+      return MP_YES;
+   } else if (a->used > 1) {
+      /* if more than half of the digits are -1 we're sold */
+      for (iy = ix = 0; ix < a->used; ix++) {
+          if (a->dp[ix] == MP_MASK) {
+              ++iy;
+          }
+      }
+      return (iy >= (a->used/2)) ? MP_YES : MP_NO;
+      
+   }
+   return MP_NO;
+}
+
+
+/* determines if mp_reduce_2k can be used */
+int mp_reduce_is_2k(mp_int *a)
+{
+   int ix, iy, iw;
+   mp_digit iz;
+   
+   if (a->used == 0) {
+      return MP_NO;
+   } else if (a->used == 1) {
+      return MP_YES;
+   } else if (a->used > 1) {
+      iy = mp_count_bits(a);
+      iz = 1;
+      iw = 1;
+    
+      /* Test every bit from the second digit up, must be 1 */
+      for (ix = DIGIT_BIT; ix < iy; ix++) {
+          if ((a->dp[iw] & iz) == 0) {
+             return MP_NO;
+          }
+          iz <<= 1;
+          if (iz > (mp_digit)MP_MASK) {
+             ++iw;
+             iz = 1;
+          }
+      }
+   }
+   return MP_YES;
+}
+
+
+/* determines if a number is a valid DR modulus */
+int mp_dr_is_modulus(mp_int *a)
+{
+   int ix;
+
+   /* must be at least two digits */
+   if (a->used < 2) {
+      return 0;
+   }
+
+   /* must be of the form b**k - a [a <= b] so all
+    * but the first digit must be equal to -1 (mod b).
+    */
+   for (ix = 1; ix < a->used; ix++) {
+       if (a->dp[ix] != MP_MASK) {
+          return 0;
+       }
+   }
+   return 1;
+}
+
+
+/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
+ *
+ * Uses a left-to-right k-ary sliding window to compute the modular
+ * exponentiation.
+ * The value of k changes based on the size of the exponent.
+ *
+ * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
+ */
+
+#ifdef MP_LOW_MEM
+   #define TAB_SIZE 32
+#else
+   #define TAB_SIZE 256
+#endif
+
+int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y,
+                     int redmode)
+{
+  mp_int  M[TAB_SIZE], res;
+  mp_digit buf, mp;
+  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+
+  /* use a pointer to the reduction algorithm.  This allows us to use
+   * one of many reduction algorithms without modding the guts of
+   * the code with if statements everywhere.
+   */
+  int     (*redux)(mp_int*,mp_int*,mp_digit);
+
+  /* find window size */
+  x = mp_count_bits (X);
+  if (x <= 7) {
+    winsize = 2;
+  } else if (x <= 36) {
+    winsize = 3;
+  } else if (x <= 140) {
+    winsize = 4;
+  } else if (x <= 450) {
+    winsize = 5;
+  } else if (x <= 1303) {
+    winsize = 6;
+  } else if (x <= 3529) {
+    winsize = 7;
+  } else {
+    winsize = 8;
+  }
+
+#ifdef MP_LOW_MEM
+  if (winsize > 5) {
+     winsize = 5;
+  }
+#endif
+
+  /* init M array */
+  /* init first cell */
+  if ((err = mp_init(&M[1])) != MP_OKAY) {
+     return err;
+  }
+
+  /* now init the second half of the array */
+  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+    if ((err = mp_init(&M[x])) != MP_OKAY) {
+      for (y = 1<<(winsize-1); y < x; y++) {
+        mp_clear (&M[y]);
+      }
+      mp_clear(&M[1]);
+      return err;
+    }
+  }
+
+  /* determine and setup reduction code */
+  if (redmode == 0) {
+#ifdef BN_MP_MONTGOMERY_SETUP_C     
+     /* now setup montgomery  */
+     if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
+        goto LBL_M;
+     }
+#else
+     err = MP_VAL;
+     goto LBL_M;
+#endif
+
+     /* automatically pick the comba one if available (saves quite a few
+        calls/ifs) */
+#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
+     if (((P->used * 2 + 1) < MP_WARRAY) &&
+          P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+        redux = fast_mp_montgomery_reduce;
+     } else 
+#endif
+     {
+#ifdef BN_MP_MONTGOMERY_REDUCE_C
+        /* use slower baseline Montgomery method */
+        redux = mp_montgomery_reduce;
+#else
+        err = MP_VAL;
+        goto LBL_M;
+#endif
+     }
+  } else if (redmode == 1) {
+#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
+     /* setup DR reduction for moduli of the form B**k - b */
+     mp_dr_setup(P, &mp);
+     redux = mp_dr_reduce;
+#else
+     err = MP_VAL;
+     goto LBL_M;
+#endif
+  } else {
+#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
+     /* setup DR reduction for moduli of the form 2**k - b */
+     if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
+        goto LBL_M;
+     }
+     redux = mp_reduce_2k;
+#else
+     err = MP_VAL;
+     goto LBL_M;
+#endif
+  }
+
+  /* setup result */
+  if ((err = mp_init (&res)) != MP_OKAY) {
+    goto LBL_M;
+  }
+
+  /* create M table
+   *
+
+   *
+   * The first half of the table is not computed though accept for M[0] and M[1]
+   */
+
+  if (redmode == 0) {
+#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+     /* now we need R mod m */
+     if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
+       goto LBL_RES;
+     }
+#else 
+     err = MP_VAL;
+     goto LBL_RES;
+#endif
+
+     /* now set M[1] to G * R mod m */
+     if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
+       goto LBL_RES;
+     }
+  } else {
+     mp_set(&res, 1);
+     if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
+        goto LBL_RES;
+     }
+  }
+
+  /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times*/
+  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
+    goto LBL_RES;
+  }
+
+  for (x = 0; x < (winsize - 1); x++) {
+    if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
+      goto LBL_RES;
+    }
+    if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
+      goto LBL_RES;
+    }
+  }
+
+  /* create upper table */
+  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
+    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
+      goto LBL_RES;
+    }
+    if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
+      goto LBL_RES;
+    }
+  }
+
+  /* set initial mode and bit cnt */
+  mode   = 0;
+  bitcnt = 1;
+  buf    = 0;
+  digidx = X->used - 1;
+  bitcpy = 0;
+  bitbuf = 0;
+
+  for (;;) {
+    /* grab next digit as required */
+    if (--bitcnt == 0) {
+      /* if digidx == -1 we are out of digits so break */
+      if (digidx == -1) {
+        break;
+      }
+      /* read next digit and reset bitcnt */
+      buf    = X->dp[digidx--];
+      bitcnt = (int)DIGIT_BIT;
+    }
+
+    /* grab the next msb from the exponent */
+    y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
+    buf <<= (mp_digit)1;
+
+    /* if the bit is zero and mode == 0 then we ignore it
+     * These represent the leading zero bits before the first 1 bit
+     * in the exponent.  Technically this opt is not required but it
+     * does lower the # of trivial squaring/reductions used
+     */
+    if (mode == 0 && y == 0) {
+      continue;
+    }
+
+    /* if the bit is zero and mode == 1 then we square */
+    if (mode == 1 && y == 0) {
+      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+        goto LBL_RES;
+      }
+      if ((err = redux (&res, P, mp)) != MP_OKAY) {
+        goto LBL_RES;
+      }
+      continue;
+    }
+
+    /* else we add it to the window */
+    bitbuf |= (y << (winsize - ++bitcpy));
+    mode    = 2;
+
+    if (bitcpy == winsize) {
+      /* ok window is filled so square as required and multiply  */
+      /* square first */
+      for (x = 0; x < winsize; x++) {
+        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+          goto LBL_RES;
+        }
+        if ((err = redux (&res, P, mp)) != MP_OKAY) {
+          goto LBL_RES;
+        }
+      }
+
+      /* then multiply */
+      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
+        goto LBL_RES;
+      }
+      if ((err = redux (&res, P, mp)) != MP_OKAY) {
+        goto LBL_RES;
+      }
+
+      /* empty window and reset */
+      bitcpy = 0;
+      bitbuf = 0;
+      mode   = 1;
+    }
+  }
+
+  /* if bits remain then square/multiply */
+  if (mode == 2 && bitcpy > 0) {
+    /* square then multiply if the bit is set */
+    for (x = 0; x < bitcpy; x++) {
+      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+        goto LBL_RES;
+      }
+      if ((err = redux (&res, P, mp)) != MP_OKAY) {
+        goto LBL_RES;
+      }
+
+      /* get next bit of the window */
+      bitbuf <<= 1;
+      if ((bitbuf & (1 << winsize)) != 0) {
+        /* then multiply */
+        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
+          goto LBL_RES;
+        }
+        if ((err = redux (&res, P, mp)) != MP_OKAY) {
+          goto LBL_RES;
+        }
+      }
+    }
+  }
+
+  if (redmode == 0) {
+     /* fixup result if Montgomery reduction is used
+      * recall that any value in a Montgomery system is
+      * actually multiplied by R mod n.  So we have
+      * to reduce one more time to cancel out the factor
+      * of R.
+      */
+     if ((err = redux(&res, P, mp)) != MP_OKAY) {
+       goto LBL_RES;
+     }
+  }
+
+  /* swap res with Y */
+  mp_exch (&res, Y);
+  err = MP_OKAY;
+LBL_RES:mp_clear (&res);
+LBL_M:
+  mp_clear(&M[1]);
+  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+    mp_clear (&M[x]);
+  }
+  return err;
+}
+
+
+/* setups the montgomery reduction stuff */
+int
+mp_montgomery_setup (mp_int * n, mp_digit * rho)
+{
+  mp_digit x, b;
+
+/* fast inversion mod 2**k
+ *
+ * Based on the fact that
+ *
+ * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
+ *                    =>  2*X*A - X*X*A*A = 1
+ *                    =>  2*(1) - (1)     = 1
+ */
+  b = n->dp[0];
+
+  if ((b & 1) == 0) {
+    return MP_VAL;
+  }
+
+  x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
+  x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
+#if !defined(MP_8BIT)
+  x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
+#endif
+#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
+  x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
+#endif
+#ifdef MP_64BIT
+  x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
+#endif
+
+  /* rho = -1/m mod b */
+  /* TAO, switched mp_word casts to mp_digit to shut up compiler */
+  *rho = (((mp_digit)1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK;
+
+  return MP_OKAY;
+}
+
+
+/* computes xR**-1 == x (mod N) via Montgomery Reduction
+ *
+ * This is an optimized implementation of montgomery_reduce
+ * which uses the comba method to quickly calculate the columns of the
+ * reduction.
+ *
+ * Based on Algorithm 14.32 on pp.601 of HAC.
+*/
+int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
+{
+  int     ix, res, olduse;
+  mp_word W[MP_WARRAY];
+
+  /* get old used count */
+  olduse = x->used;
+
+  /* grow a as required */
+  if (x->alloc < n->used + 1) {
+    if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
+      return res;
+    }
+  }
+
+  /* first we have to get the digits of the input into
+   * an array of double precision words W[...]
+   */
+  {
+    register mp_word *_W;
+    register mp_digit *tmpx;
+
+    /* alias for the W[] array */
+    _W   = W;
+
+    /* alias for the digits of  x*/
+    tmpx = x->dp;
+
+    /* copy the digits of a into W[0..a->used-1] */
+    for (ix = 0; ix < x->used; ix++) {
+      *_W++ = *tmpx++;
+    }
+
+    /* zero the high words of W[a->used..m->used*2] */
+    for (; ix < n->used * 2 + 1; ix++) {
+      *_W++ = 0;
+    }
+  }
+
+  /* now we proceed to zero successive digits
+   * from the least significant upwards
+   */
+  for (ix = 0; ix < n->used; ix++) {
+    /* mu = ai * m' mod b
+     *
+     * We avoid a double precision multiplication (which isn't required)
+     * by casting the value down to a mp_digit.  Note this requires
+     * that W[ix-1] have  the carry cleared (see after the inner loop)
+     */
+    register mp_digit mu;
+    mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
+
+    /* a = a + mu * m * b**i
+     *
+     * This is computed in place and on the fly.  The multiplication
+     * by b**i is handled by offseting which columns the results
+     * are added to.
+     *
+     * Note the comba method normally doesn't handle carries in the
+     * inner loop In this case we fix the carry from the previous
+     * column since the Montgomery reduction requires digits of the
+     * result (so far) [see above] to work.  This is
+     * handled by fixing up one carry after the inner loop.  The
+     * carry fixups are done in order so after these loops the
+     * first m->used words of W[] have the carries fixed
+     */
+    {
+      register int iy;
+      register mp_digit *tmpn;
+      register mp_word *_W;
+
+      /* alias for the digits of the modulus */
+      tmpn = n->dp;
+
+      /* Alias for the columns set by an offset of ix */
+      _W = W + ix;
+
+      /* inner loop */
+      for (iy = 0; iy < n->used; iy++) {
+          *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
+      }
+    }
+
+    /* now fix carry for next digit, W[ix+1] */
+    W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
+  }
+
+  /* now we have to propagate the carries and
+   * shift the words downward [all those least
+   * significant digits we zeroed].
+   */
+  {
+    register mp_digit *tmpx;
+    register mp_word *_W, *_W1;
+
+    /* nox fix rest of carries */
+
+    /* alias for current word */
+    _W1 = W + ix;
+
+    /* alias for next word, where the carry goes */
+    _W = W + ++ix;
+
+    for (; ix <= n->used * 2 + 1; ix++) {
+      *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
+    }
+
+    /* copy out, A = A/b**n
+     *
+     * The result is A/b**n but instead of converting from an
+     * array of mp_word to mp_digit than calling mp_rshd
+     * we just copy them in the right order
+     */
+
+    /* alias for destination word */
+    tmpx = x->dp;
+
+    /* alias for shifted double precision result */
+    _W = W + n->used;
+
+    for (ix = 0; ix < n->used + 1; ix++) {
+      *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
+    }
+
+    /* zero oldused digits, if the input a was larger than
+     * m->used+1 we'll have to clear the digits
+     */
+    for (; ix < olduse; ix++) {
+      *tmpx++ = 0;
+    }
+  }
+
+  /* set the max used and clamp */
+  x->used = n->used + 1;
+  mp_clamp (x);
+
+  /* if A >= m then A = A - m */
+  if (mp_cmp_mag (x, n) != MP_LT) {
+    return s_mp_sub (x, n, x);
+  }
+  return MP_OKAY;
+}
+
+
+/* computes xR**-1 == x (mod N) via Montgomery Reduction */
+int
+mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
+{
+  int     ix, res, digs;
+  mp_digit mu;
+
+  /* can the fast reduction [comba] method be used?
+   *
+   * Note that unlike in mul you're safely allowed *less*
+   * than the available columns [255 per default] since carries
+   * are fixed up in the inner loop.
+   */
+  digs = n->used * 2 + 1;
+  if ((digs < MP_WARRAY) &&
+      n->used <
+      (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+    return fast_mp_montgomery_reduce (x, n, rho);
+  }
+
+  /* grow the input as required */
+  if (x->alloc < digs) {
+    if ((res = mp_grow (x, digs)) != MP_OKAY) {
+      return res;
+    }
+  }
+  x->used = digs;
+
+  for (ix = 0; ix < n->used; ix++) {
+    /* mu = ai * rho mod b
+     *
+     * The value of rho must be precalculated via
+     * montgomery_setup() such that
+     * it equals -1/n0 mod b this allows the
+     * following inner loop to reduce the
+     * input one digit at a time
+     */
+    mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
+
+    /* a = a + mu * m * b**i */
+    {
+      register int iy;
+      register mp_digit *tmpn, *tmpx, u;
+      register mp_word r;
+
+      /* alias for digits of the modulus */
+      tmpn = n->dp;
+
+      /* alias for the digits of x [the input] */
+      tmpx = x->dp + ix;
+
+      /* set the carry to zero */
+      u = 0;
+
+      /* Multiply and add in place */
+      for (iy = 0; iy < n->used; iy++) {
+        /* compute product and sum */
+        r       = ((mp_word)mu) * ((mp_word)*tmpn++) +
+                  ((mp_word) u) + ((mp_word) * tmpx);
+
+        /* get carry */
+        u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+
+        /* fix digit */
+        *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
+      }
+      /* At this point the ix'th digit of x should be zero */
+
+
+      /* propagate carries upwards as required*/
+      while (u) {
+        *tmpx   += u;
+        u        = *tmpx >> DIGIT_BIT;
+        *tmpx++ &= MP_MASK;
+      }
+    }
+  }
+
+  /* at this point the n.used'th least
+   * significant digits of x are all zero
+   * which means we can shift x to the
+   * right by n.used digits and the
+   * residue is unchanged.
+   */
+
+  /* x = x/b**n.used */
+  mp_clamp(x);
+  mp_rshd (x, n->used);
+
+  /* if x >= n then x = x - n */
+  if (mp_cmp_mag (x, n) != MP_LT) {
+    return s_mp_sub (x, n, x);
+  }
+
+  return MP_OKAY;
+}
+
+
+/* determines the setup value */
+void mp_dr_setup(mp_int *a, mp_digit *d)
+{
+   /* the casts are required if DIGIT_BIT is one less than
+    * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
+    */
+   *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - 
+        ((mp_word)a->dp[0]));
+}
+
+
+/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
+ *
+ * Based on algorithm from the paper
+ *
+ * "Generating Efficient Primes for Discrete Log Cryptosystems"
+ *                 Chae Hoon Lim, Pil Joong Lee,
+ *          POSTECH Information Research Laboratories
+ *
+ * The modulus must be of a special format [see manual]
+ *
+ * Has been modified to use algorithm 7.10 from the LTM book instead
+ *
+ * Input x must be in the range 0 <= x <= (n-1)**2
+ */
+int
+mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
+{
+  int      err, i, m;
+  mp_word  r;
+  mp_digit mu, *tmpx1, *tmpx2;
+
+  /* m = digits in modulus */
+  m = n->used;
+
+  /* ensure that "x" has at least 2m digits */
+  if (x->alloc < m + m) {
+    if ((err = mp_grow (x, m + m)) != MP_OKAY) {
+      return err;
+    }
+  }
+
+/* top of loop, this is where the code resumes if
+ * another reduction pass is required.
+ */
+top:
+  /* aliases for digits */
+  /* alias for lower half of x */
+  tmpx1 = x->dp;
+
+  /* alias for upper half of x, or x/B**m */
+  tmpx2 = x->dp + m;
+
+  /* set carry to zero */
+  mu = 0;
+
+  /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
+  for (i = 0; i < m; i++) {
+      r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
+      *tmpx1++  = (mp_digit)(r & MP_MASK);
+      mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
+  }
+
+  /* set final carry */
+  *tmpx1++ = mu;
+
+  /* zero words above m */
+  for (i = m + 1; i < x->used; i++) {
+      *tmpx1++ = 0;
+  }
+
+  /* clamp, sub and return */
+  mp_clamp (x);
+
+  /* if x >= n then subtract and reduce again
+   * Each successive "recursion" makes the input smaller and smaller.
+   */
+  if (mp_cmp_mag (x, n) != MP_LT) {
+    s_mp_sub(x, n, x);
+    goto top;
+  }
+  return MP_OKAY;
+}
+
+
+/* reduces a modulo n where n is of the form 2**p - d */
+int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
+{
+   mp_int q;
+   int    p, res;
+   
+   if ((res = mp_init(&q)) != MP_OKAY) {
+      return res;
+   }
+   
+   p = mp_count_bits(n);    
+top:
+   /* q = a/2**p, a = a mod 2**p */
+   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
+      goto ERR;
+   }
+   
+   if (d != 1) {
+      /* q = q * d */
+      if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { 
+         goto ERR;
+      }
+   }
+   
+   /* a = a + q */
+   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
+      goto ERR;
+   }
+   
+   if (mp_cmp_mag(a, n) != MP_LT) {
+      s_mp_sub(a, n, a);
+      goto top;
+   }
+   
+ERR:
+   mp_clear(&q);
+   return res;
+}
+
+
+/* determines the setup value */
+int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
+{
+   int res, p;
+   mp_int tmp;
+   
+   if ((res = mp_init(&tmp)) != MP_OKAY) {
+      return res;
+   }
+   
+   p = mp_count_bits(a);
+   if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
+      mp_clear(&tmp);
+      return res;
+   }
+   
+   if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
+      mp_clear(&tmp);
+      return res;
+   }
+   
+   *d = tmp.dp[0];
+   mp_clear(&tmp);
+   return MP_OKAY;
+}
+
+
+/* computes a = 2**b 
+ *
+ * Simple algorithm which zeroes the int, grows it then just sets one bit
+ * as required.
+ */
+int
+mp_2expt (mp_int * a, int b)
+{
+  int     res;
+
+  /* zero a as per default */
+  mp_zero (a);
+
+  /* grow a to accomodate the single bit */
+  if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
+    return res;
+  }
+
+  /* set the used count of where the bit will go */
+  a->used = b / DIGIT_BIT + 1;
+
+  /* put the single bit in its place */
+  a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
+
+  return MP_OKAY;
+}
+
+
+/* multiply by a digit */
+int
+mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
+{
+  mp_digit u, *tmpa, *tmpc;
+  mp_word  r;
+  int      ix, res, olduse;
+
+  /* make sure c is big enough to hold a*b */
+  if (c->alloc < a->used + 1) {
+    if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
+      return res;
+    }
+  }
+
+  /* get the original destinations used count */
+  olduse = c->used;
+
+  /* set the sign */
+  c->sign = a->sign;
+
+  /* alias for a->dp [source] */
+  tmpa = a->dp;
+
+  /* alias for c->dp [dest] */
+  tmpc = c->dp;
+
+  /* zero carry */
+  u = 0;
+
+  /* compute columns */
+  for (ix = 0; ix < a->used; ix++) {
+    /* compute product and carry sum for this term */
+    r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
+
+    /* mask off higher bits to get a single digit */
+    *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+    /* send carry into next iteration */
+    u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+  }
+
+  /* store final carry [if any] and increment ix offset  */
+  *tmpc++ = u;
+  ++ix;
+
+  /* now zero digits above the top */
+  while (ix++ < olduse) {
+     *tmpc++ = 0;
+  }
+
+  /* set used count */
+  c->used = a->used + 1;
+  mp_clamp(c);
+
+  return MP_OKAY;
+}
+
+
+/* d = a * b (mod c) */
+int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+  int     res;
+  mp_int  t;
+
+  if ((res = mp_init (&t)) != MP_OKAY) {
+    return res;
+  }
+
+  if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
+    mp_clear (&t);
+    return res;
+  }
+  res = mp_mod (&t, c, d);
+  mp_clear (&t);
+  return res;
+}
+
+
+/* computes b = a*a */
+int
+mp_sqr (mp_int * a, mp_int * b)
+{
+  int     res;
+
+  {
+#ifdef BN_FAST_S_MP_SQR_C
+    /* can we use the fast comba multiplier? */
+    if ((a->used * 2 + 1) < MP_WARRAY && 
+         a->used < 
+         (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
+      res = fast_s_mp_sqr (a, b);
+    } else
+#endif
+#ifdef BN_S_MP_SQR_C
+      res = s_mp_sqr (a, b);
+#else
+      res = MP_VAL;
+#endif
+  }
+  b->sign = MP_ZPOS;
+  return res;
+}
+
+
+/* high level multiplication (handles sign) */
+int mp_mul (mp_int * a, mp_int * b, mp_int * c)
+{
+  int     res, neg;
+  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+
+  {
+    /* can we use the fast multiplier?
+     *
+     * The fast multiplier can be used if the output will 
+     * have less than MP_WARRAY digits and the number of 
+     * digits won't affect carry propagation
+     */
+    int     digs = a->used + b->used + 1;
+
+#ifdef BN_FAST_S_MP_MUL_DIGS_C
+    if ((digs < MP_WARRAY) &&
+        MIN(a->used, b->used) <= 
+        (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+      res = fast_s_mp_mul_digs (a, b, c, digs);
+    } else 
+#endif
+#ifdef BN_S_MP_MUL_DIGS_C
+      res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
+#else
+      res = MP_VAL;
+#endif
+
+  }
+  c->sign = (c->used > 0) ? neg : MP_ZPOS;
+  return res;
+}
+
+
+/* b = a*2 */
+int mp_mul_2(mp_int * a, mp_int * b)
+{
+  int     x, res, oldused;
+
+  /* grow to accomodate result */
+  if (b->alloc < a->used + 1) {
+    if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
+      return res;
+    }
+  }
+
+  oldused = b->used;
+  b->used = a->used;
+
+  {
+    register mp_digit r, rr, *tmpa, *tmpb;
+
+    /* alias for source */
+    tmpa = a->dp;
+    
+    /* alias for dest */
+    tmpb = b->dp;
+
+    /* carry */
+    r = 0;
+    for (x = 0; x < a->used; x++) {
+    
+      /* get what will be the *next* carry bit from the 
+       * MSB of the current digit 
+       */
+      rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
+      
+      /* now shift up this digit, add in the carry [from the previous] */
+      *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
+      
+      /* copy the carry that would be from the source 
+       * digit into the next iteration 
+       */
+      r = rr;
+    }
+
+    /* new leading digit? */
+    if (r != 0) {
+      /* add a MSB which is always 1 at this point */
+      *tmpb = 1;
+      ++(b->used);
+    }
+
+    /* now zero any excess digits on the destination 
+     * that we didn't write to 
+     */
+    tmpb = b->dp + b->used;
+    for (x = b->used; x < oldused; x++) {
+      *tmpb++ = 0;
+    }
+  }
+  b->sign = a->sign;
+  return MP_OKAY;
+}
+
+
+/* divide by three (based on routine from MPI and the GMP manual) */
+int
+mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
+{
+  mp_int   q;
+  mp_word  w, t;
+  mp_digit b;
+  int      res, ix;
+  
+  /* b = 2**DIGIT_BIT / 3 */
+  b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
+
+  if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
+     return res;
+  }
+  
+  q.used = a->used;
+  q.sign = a->sign;
+  w = 0;
+  for (ix = a->used - 1; ix >= 0; ix--) {
+     w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+
+     if (w >= 3) {
+        /* multiply w by [1/3] */
+        t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
+
+        /* now subtract 3 * [w/3] from w, to get the remainder */
+        w -= t+t+t;
+
+        /* fixup the remainder as required since
+         * the optimization is not exact.
+         */
+        while (w >= 3) {
+           t += 1;
+           w -= 3;
+        }
+      } else {
+        t = 0;
+      }
+      q.dp[ix] = (mp_digit)t;
+  }
+
+  /* [optional] store the remainder */
+  if (d != NULL) {
+     *d = (mp_digit)w;
+  }
+
+  /* [optional] store the quotient */
+  if (c != NULL) {
+     mp_clamp(&q);
+     mp_exch(&q, c);
+  }
+  mp_clear(&q);
+  
+  return res;
+}
+
+
+/* init an mp_init for a given size */
+int mp_init_size (mp_int * a, int size)
+{
+  int x;
+
+  /* pad size so there are always extra digits */
+  size += (MP_PREC * 2) - (size % MP_PREC);	
+  
+  /* alloc mem */
+  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size, 0,
+                                      DYNAMIC_TYPE_BIGINT);
+  if (a->dp == NULL) {
+    return MP_MEM;
+  }
+
+  /* set the members */
+  a->used  = 0;
+  a->alloc = size;
+  a->sign  = MP_ZPOS;
+
+  /* zero the digits */
+  for (x = 0; x < size; x++) {
+      a->dp[x] = 0;
+  }
+
+  return MP_OKAY;
+}
+
+
+/* the jist of squaring...
+ * you do like mult except the offset of the tmpx [one that 
+ * starts closer to zero] can't equal the offset of tmpy.  
+ * So basically you set up iy like before then you min it with
+ * (ty-tx) so that it never happens.  You double all those 
+ * you add in the inner loop
+
+After that loop you do the squares and add them in.
+*/
+
+int fast_s_mp_sqr (mp_int * a, mp_int * b)
+{
+  int       olduse, res, pa, ix, iz;
+  mp_digit   W[MP_WARRAY], *tmpx;
+  mp_word   W1;
+
+  /* grow the destination as required */
+  pa = a->used + a->used;
+  if (b->alloc < pa) {
+    if ((res = mp_grow (b, pa)) != MP_OKAY) {
+      return res;
+    }
+  }
+
+  /* number of output digits to produce */
+  W1 = 0;
+  for (ix = 0; ix < pa; ix++) { 
+      int      tx, ty, iy;
+      mp_word  _W;
+      mp_digit *tmpy;
+
+      /* clear counter */
+      _W = 0;
+
+      /* get offsets into the two bignums */
+      ty = MIN(a->used-1, ix);
+      tx = ix - ty;
+
+      /* setup temp aliases */
+      tmpx = a->dp + tx;
+      tmpy = a->dp + ty;
+
+      /* this is the number of times the loop will iterrate, essentially
+         while (tx++ < a->used && ty-- >= 0) { ... }
+       */
+      iy = MIN(a->used-tx, ty+1);
+
+      /* now for squaring tx can never equal ty 
+       * we halve the distance since they approach at a rate of 2x
+       * and we have to round because odd cases need to be executed
+       */
+      iy = MIN(iy, (ty-tx+1)>>1);
+
+      /* execute loop */
+      for (iz = 0; iz < iy; iz++) {
+         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
+      }
+
+      /* double the inner product and add carry */
+      _W = _W + _W + W1;
+
+      /* even columns have the square term in them */
+      if ((ix&1) == 0) {
+         _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
+      }
+
+      /* store it */
+      W[ix] = (mp_digit)(_W & MP_MASK);
+
+      /* make next carry */
+      W1 = _W >> ((mp_word)DIGIT_BIT);
+  }
+
+  /* setup dest */
+  olduse  = b->used;
+  b->used = a->used+a->used;
+
+  {
+    mp_digit *tmpb;
+    tmpb = b->dp;
+    for (ix = 0; ix < pa; ix++) {
+      *tmpb++ = W[ix] & MP_MASK;
+    }
+
+    /* clear unused digits [that existed in the old copy of c] */
+    for (; ix < olduse; ix++) {
+      *tmpb++ = 0;
+    }
+  }
+  mp_clamp (b);
+  return MP_OKAY;
+}
+
+
+/* Fast (comba) multiplier
+ *
+ * This is the fast column-array [comba] multiplier.  It is 
+ * designed to compute the columns of the product first 
+ * then handle the carries afterwards.  This has the effect 
+ * of making the nested loops that compute the columns very
+ * simple and schedulable on super-scalar processors.
+ *
+ * This has been modified to produce a variable number of 
+ * digits of output so if say only a half-product is required 
+ * you don't have to compute the upper half (a feature 
+ * required for fast Barrett reduction).
+ *
+ * Based on Algorithm 14.12 on pp.595 of HAC.
+ *
+ */
+int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+  int     olduse, res, pa, ix, iz;
+  mp_digit W[MP_WARRAY];
+  register mp_word  _W;
+
+  /* grow the destination as required */
+  if (c->alloc < digs) {
+    if ((res = mp_grow (c, digs)) != MP_OKAY) {
+      return res;
+    }
+  }
+
+  /* number of output digits to produce */
+  pa = MIN(digs, a->used + b->used);
+
+  /* clear the carry */
+  _W = 0;
+  for (ix = 0; ix < pa; ix++) { 
+      int      tx, ty;
+      int      iy;
+      mp_digit *tmpx, *tmpy;
+
+      /* get offsets into the two bignums */
+      ty = MIN(b->used-1, ix);
+      tx = ix - ty;
+
+      /* setup temp aliases */
+      tmpx = a->dp + tx;
+      tmpy = b->dp + ty;
+
+      /* this is the number of times the loop will iterrate, essentially 
+         while (tx++ < a->used && ty-- >= 0) { ... }
+       */
+      iy = MIN(a->used-tx, ty+1);
+
+      /* execute loop */
+      for (iz = 0; iz < iy; ++iz) {
+         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
+
+      }
+
+      /* store term */
+      W[ix] = ((mp_digit)_W) & MP_MASK;
+
+      /* make next carry */
+      _W = _W >> ((mp_word)DIGIT_BIT);
+ }
+
+  /* setup dest */
+  olduse  = c->used;
+  c->used = pa;
+
+  {
+    register mp_digit *tmpc;
+    tmpc = c->dp;
+    for (ix = 0; ix < pa+1; ix++) {
+      /* now extract the previous digit [below the carry] */
+      *tmpc++ = W[ix];
+    }
+
+    /* clear unused digits [that existed in the old copy of c] */
+    for (; ix < olduse; ix++) {
+      *tmpc++ = 0;
+    }
+  }
+  mp_clamp (c);
+  return MP_OKAY;
+}
+
+
+/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
+int s_mp_sqr (mp_int * a, mp_int * b)
+{
+  mp_int  t;
+  int     res, ix, iy, pa;
+  mp_word r;
+  mp_digit u, tmpx, *tmpt;
+
+  pa = a->used;
+  if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
+    return res;
+  }
+
+  /* default used is maximum possible size */
+  t.used = 2*pa + 1;
+
+  for (ix = 0; ix < pa; ix++) {
+    /* first calculate the digit at 2*ix */
+    /* calculate double precision result */
+    r = ((mp_word) t.dp[2*ix]) +
+        ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
+
+    /* store lower part in result */
+    t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
+
+    /* get the carry */
+    u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+
+    /* left hand side of A[ix] * A[iy] */
+    tmpx        = a->dp[ix];
+
+    /* alias for where to store the results */
+    tmpt        = t.dp + (2*ix + 1);
+    
+    for (iy = ix + 1; iy < pa; iy++) {
+      /* first calculate the product */
+      r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
+
+      /* now calculate the double precision result, note we use
+       * addition instead of *2 since it's easier to optimize
+       */
+      r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);
+
+      /* store lower part */
+      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+      /* get carry */
+      u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+    }
+    /* propagate upwards */
+    while (u != ((mp_digit) 0)) {
+      r       = ((mp_word) *tmpt) + ((mp_word) u);
+      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+      u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+    }
+  }
+
+  mp_clamp (&t);
+  mp_exch (&t, b);
+  mp_clear (&t);
+  return MP_OKAY;
+}
+
+
+/* multiplies |a| * |b| and only computes upto digs digits of result
+ * HAC pp. 595, Algorithm 14.12  Modified so you can control how 
+ * many digits of output are created.
+ */
+int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+  mp_int  t;
+  int     res, pa, pb, ix, iy;
+  mp_digit u;
+  mp_word r;
+  mp_digit tmpx, *tmpt, *tmpy;
+
+  /* can we use the fast multiplier? */
+  if (((digs) < MP_WARRAY) &&
+      MIN (a->used, b->used) < 
+          (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+    return fast_s_mp_mul_digs (a, b, c, digs);
+  }
+
+  if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
+    return res;
+  }
+  t.used = digs;
+
+  /* compute the digits of the product directly */
+  pa = a->used;
+  for (ix = 0; ix < pa; ix++) {
+    /* set the carry to zero */
+    u = 0;
+
+    /* limit ourselves to making digs digits of output */
+    pb = MIN (b->used, digs - ix);
+
+    /* setup some aliases */
+    /* copy of the digit from a used within the nested loop */
+    tmpx = a->dp[ix];
+    
+    /* an alias for the destination shifted ix places */
+    tmpt = t.dp + ix;
+    
+    /* an alias for the digits of b */
+    tmpy = b->dp;
+
+    /* compute the columns of the output and propagate the carry */
+    for (iy = 0; iy < pb; iy++) {
+      /* compute the column as a mp_word */
+      r       = ((mp_word)*tmpt) +
+                ((mp_word)tmpx) * ((mp_word)*tmpy++) +
+                ((mp_word) u);
+
+      /* the new column is the lower part of the result */
+      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+      /* get the carry word from the result */
+      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+    }
+    /* set carry if it is placed below digs */
+    if (ix + iy < digs) {
+      *tmpt = u;
+    }
+  }
+
+  mp_clamp (&t);
+  mp_exch (&t, c);
+
+  mp_clear (&t);
+  return MP_OKAY;
+}
+
+
+/*
+ * shifts with subtractions when the result is greater than b.
+ *
+ * The method is slightly modified to shift B unconditionally upto just under
+ * the leading bit of b.  This saves alot of multiple precision shifting.
+ */
+int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
+{
+  int     x, bits, res;
+
+  /* how many bits of last digit does b use */
+  bits = mp_count_bits (b) % DIGIT_BIT;
+
+  if (b->used > 1) {
+     if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
+        return res;
+     }
+  } else {
+     mp_set(a, 1);
+     bits = 1;
+  }
+
+
+  /* now compute C = A * B mod b */
+  for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
+    if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
+      return res;
+    }
+    if (mp_cmp_mag (a, b) != MP_LT) {
+      if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
+        return res;
+      }
+    }
+  }
+
+  return MP_OKAY;
+}
+
+
+#ifdef MP_LOW_MEM
+   #define TAB_SIZE 32
+#else
+   #define TAB_SIZE 256
+#endif
+
+int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
+{
+  mp_int  M[TAB_SIZE], res, mu;
+  mp_digit buf;
+  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+  int (*redux)(mp_int*,mp_int*,mp_int*);
+
+  /* find window size */
+  x = mp_count_bits (X);
+  if (x <= 7) {
+    winsize = 2;
+  } else if (x <= 36) {
+    winsize = 3;
+  } else if (x <= 140) {
+    winsize = 4;
+  } else if (x <= 450) {
+    winsize = 5;
+  } else if (x <= 1303) {
+    winsize = 6;
+  } else if (x <= 3529) {
+    winsize = 7;
+  } else {
+    winsize = 8;
+  }
+
+#ifdef MP_LOW_MEM
+    if (winsize > 5) {
+       winsize = 5;
+    }
+#endif
+
+  /* init M array */
+  /* init first cell */
+  if ((err = mp_init(&M[1])) != MP_OKAY) {
+     return err; 
+  }
+
+  /* now init the second half of the array */
+  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+    if ((err = mp_init(&M[x])) != MP_OKAY) {
+      for (y = 1<<(winsize-1); y < x; y++) {
+        mp_clear (&M[y]);
+      }
+      mp_clear(&M[1]);
+      return err;
+    }
+  }
+
+  /* create mu, used for Barrett reduction */
+  if ((err = mp_init (&mu)) != MP_OKAY) {
+    goto LBL_M;
+  }
+  
+  if (redmode == 0) {
+     if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
+        goto LBL_MU;
+     }
+     redux = mp_reduce;
+  } else {
+     if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
+        goto LBL_MU;
+     }
+     redux = mp_reduce_2k_l;
+  }    
+
+  /* create M table
+   *
+   * The M table contains powers of the base, 
+   * e.g. M[x] = G**x mod P
+   *
+   * The first half of the table is not 
+   * computed though accept for M[0] and M[1]
+   */
+  if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
+    goto LBL_MU;
+  }
+
+  /* compute the value at M[1<<(winsize-1)] by squaring 
+   * M[1] (winsize-1) times 
+   */
+  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
+    goto LBL_MU;
+  }
+
+  for (x = 0; x < (winsize - 1); x++) {
+    /* square it */
+    if ((err = mp_sqr (&M[1 << (winsize - 1)], 
+                       &M[1 << (winsize - 1)])) != MP_OKAY) {
+      goto LBL_MU;
+    }
+
+    /* reduce modulo P */
+    if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
+      goto LBL_MU;
+    }
+  }
+
+  /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
+   * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
+   */
+  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
+    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
+      goto LBL_MU;
+    }
+    if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
+      goto LBL_MU;
+    }
+  }
+
+  /* setup result */
+  if ((err = mp_init (&res)) != MP_OKAY) {
+    goto LBL_MU;
+  }
+  mp_set (&res, 1);
+
+  /* set initial mode and bit cnt */
+  mode   = 0;
+  bitcnt = 1;
+  buf    = 0;
+  digidx = X->used - 1;
+  bitcpy = 0;
+  bitbuf = 0;
+
+  for (;;) {
+    /* grab next digit as required */
+    if (--bitcnt == 0) {
+      /* if digidx == -1 we are out of digits */
+      if (digidx == -1) {
+        break;
+      }
+      /* read next digit and reset the bitcnt */
+      buf    = X->dp[digidx--];
+      bitcnt = (int) DIGIT_BIT;
+    }
+
+    /* grab the next msb from the exponent */
+    y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
+    buf <<= (mp_digit)1;
+
+    /* if the bit is zero and mode == 0 then we ignore it
+     * These represent the leading zero bits before the first 1 bit
+     * in the exponent.  Technically this opt is not required but it
+     * does lower the # of trivial squaring/reductions used
+     */
+    if (mode == 0 && y == 0) {
+      continue;
+    }
+
+    /* if the bit is zero and mode == 1 then we square */
+    if (mode == 1 && y == 0) {
+      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+        goto LBL_RES;
+      }
+      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
+        goto LBL_RES;
+      }
+      continue;
+    }
+
+    /* else we add it to the window */
+    bitbuf |= (y << (winsize - ++bitcpy));
+    mode    = 2;
+
+    if (bitcpy == winsize) {
+      /* ok window is filled so square as required and multiply  */
+      /* square first */
+      for (x = 0; x < winsize; x++) {
+        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+          goto LBL_RES;
+        }
+        if ((err = redux (&res, P, &mu)) != MP_OKAY) {
+          goto LBL_RES;
+        }
+      }
+
+      /* then multiply */
+      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
+        goto LBL_RES;
+      }
+      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
+        goto LBL_RES;
+      }
+
+      /* empty window and reset */
+      bitcpy = 0;
+      bitbuf = 0;
+      mode   = 1;
+    }
+  }
+
+  /* if bits remain then square/multiply */
+  if (mode == 2 && bitcpy > 0) {
+    /* square then multiply if the bit is set */
+    for (x = 0; x < bitcpy; x++) {
+      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+        goto LBL_RES;
+      }
+      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
+        goto LBL_RES;
+      }
+
+      bitbuf <<= 1;
+      if ((bitbuf & (1 << winsize)) != 0) {
+        /* then multiply */
+        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
+          goto LBL_RES;
+        }
+        if ((err = redux (&res, P, &mu)) != MP_OKAY) {
+          goto LBL_RES;
+        }
+      }
+    }
+  }
+
+  mp_exch (&res, Y);
+  err = MP_OKAY;
+LBL_RES:mp_clear (&res);
+LBL_MU:mp_clear (&mu);
+LBL_M:
+  mp_clear(&M[1]);
+  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+    mp_clear (&M[x]);
+  }
+  return err;
+}
+
+
+/* pre-calculate the value required for Barrett reduction
+ * For a given modulus "b" it calulates the value required in "a"
+ */
+int mp_reduce_setup (mp_int * a, mp_int * b)
+{
+  int     res;
+  
+  if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
+    return res;
+  }
+  return mp_div (a, b, a, NULL);
+}
+
+
+/* reduces x mod m, assumes 0 < x < m**2, mu is 
+ * precomputed via mp_reduce_setup.
+ * From HAC pp.604 Algorithm 14.42
+ */
+int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
+{
+  mp_int  q;
+  int     res, um = m->used;
+
+  /* q = x */
+  if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
+    return res;
+  }
+
+  /* q1 = x / b**(k-1)  */
+  mp_rshd (&q, um - 1);         
+
+  /* according to HAC this optimization is ok */
+  if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
+    if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
+      goto CLEANUP;
+    }
+  } else {
+#ifdef BN_S_MP_MUL_HIGH_DIGS_C
+    if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
+      goto CLEANUP;
+    }
+#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
+    if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
+      goto CLEANUP;
+    }
+#else 
+    { 
+      res = MP_VAL;
+      goto CLEANUP;
+    }
+#endif
+  }
+
+  /* q3 = q2 / b**(k+1) */
+  mp_rshd (&q, um + 1);         
+
+  /* x = x mod b**(k+1), quick (no division) */
+  if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
+    goto CLEANUP;
+  }
+
+  /* q = q * m mod b**(k+1), quick (no division) */
+  if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
+    goto CLEANUP;
+  }
+
+  /* x = x - q */
+  if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
+    goto CLEANUP;
+  }
+
+  /* If x < 0, add b**(k+1) to it */
+  if (mp_cmp_d (x, 0) == MP_LT) {
+    mp_set (&q, 1);
+    if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
+      goto CLEANUP;
+    if ((res = mp_add (x, &q, x)) != MP_OKAY)
+      goto CLEANUP;
+  }
+
+  /* Back off if it's too big */
+  while (mp_cmp (x, m) != MP_LT) {
+    if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
+      goto CLEANUP;
+    }
+  }
+  
+CLEANUP:
+  mp_clear (&q);
+
+  return res;
+}
+
+
+/* reduces a modulo n where n is of the form 2**p - d 
+   This differs from reduce_2k since "d" can be larger
+   than a single digit.
+*/
+int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
+{
+   mp_int q;
+   int    p, res;
+   
+   if ((res = mp_init(&q)) != MP_OKAY) {
+      return res;
+   }
+   
+   p = mp_count_bits(n);    
+top:
+   /* q = a/2**p, a = a mod 2**p */
+   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
+      goto ERR;
+   }
+   
+   /* q = q * d */
+   if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { 
+      goto ERR;
+   }
+   
+   /* a = a + q */
+   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
+      goto ERR;
+   }
+   
+   if (mp_cmp_mag(a, n) != MP_LT) {
+      s_mp_sub(a, n, a);
+      goto top;
+   }
+   
+ERR:
+   mp_clear(&q);
+   return res;
+}
+
+
+/* determines the setup value */
+int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
+{
+   int    res;
+   mp_int tmp;
+   
+   if ((res = mp_init(&tmp)) != MP_OKAY) {
+      return res;
+   }
+   
+   if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
+      goto ERR;
+   }
+   
+   if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
+      goto ERR;
+   }
+   
+ERR:
+   mp_clear(&tmp);
+   return res;
+}
+
+
+/* multiplies |a| * |b| and does not compute the lower digs digits
+ * [meant to get the higher part of the product]
+ */
+int
+s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+  mp_int  t;
+  int     res, pa, pb, ix, iy;
+  mp_digit u;
+  mp_word r;
+  mp_digit tmpx, *tmpt, *tmpy;
+
+  /* can we use the fast multiplier? */
+#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
+  if (((a->used + b->used + 1) < MP_WARRAY)
+      && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+    return fast_s_mp_mul_high_digs (a, b, c, digs);
+  }
+#endif
+
+  if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
+    return res;
+  }
+  t.used = a->used + b->used + 1;
+
+  pa = a->used;
+  pb = b->used;
+  for (ix = 0; ix < pa; ix++) {
+    /* clear the carry */
+    u = 0;
+
+    /* left hand side of A[ix] * B[iy] */
+    tmpx = a->dp[ix];
+
+    /* alias to the address of where the digits will be stored */
+    tmpt = &(t.dp[digs]);
+
+    /* alias for where to read the right hand side from */
+    tmpy = b->dp + (digs - ix);
+
+    for (iy = digs - ix; iy < pb; iy++) {
+      /* calculate the double precision result */
+      r       = ((mp_word)*tmpt) +
+                ((mp_word)tmpx) * ((mp_word)*tmpy++) +
+                ((mp_word) u);
+
+      /* get the lower part */
+      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+      /* carry the carry */
+      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+    }
+    *tmpt = u;
+  }
+  mp_clamp (&t);
+  mp_exch (&t, c);
+  mp_clear (&t);
+  return MP_OKAY;
+}
+
+
+/* this is a modified version of fast_s_mul_digs that only produces
+ * output digits *above* digs.  See the comments for fast_s_mul_digs
+ * to see how it works.
+ *
+ * This is used in the Barrett reduction since for one of the multiplications
+ * only the higher digits were needed.  This essentially halves the work.
+ *
+ * Based on Algorithm 14.12 on pp.595 of HAC.
+ */
+int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+  int     olduse, res, pa, ix, iz;
+  mp_digit W[MP_WARRAY];
+  mp_word  _W;
+
+  /* grow the destination as required */
+  pa = a->used + b->used;
+  if (c->alloc < pa) {
+    if ((res = mp_grow (c, pa)) != MP_OKAY) {
+      return res;
+    }
+  }
+
+  /* number of output digits to produce */
+  pa = a->used + b->used;
+  _W = 0;
+  for (ix = digs; ix < pa; ix++) { 
+      int      tx, ty, iy;
+      mp_digit *tmpx, *tmpy;
+
+      /* get offsets into the two bignums */
+      ty = MIN(b->used-1, ix);
+      tx = ix - ty;
+
+      /* setup temp aliases */
+      tmpx = a->dp + tx;
+      tmpy = b->dp + ty;
+
+      /* this is the number of times the loop will iterrate, essentially its 
+         while (tx++ < a->used && ty-- >= 0) { ... }
+       */
+      iy = MIN(a->used-tx, ty+1);
+
+      /* execute loop */
+      for (iz = 0; iz < iy; iz++) {
+         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
+      }
+
+      /* store term */
+      W[ix] = ((mp_digit)_W) & MP_MASK;
+
+      /* make next carry */
+      _W = _W >> ((mp_word)DIGIT_BIT);
+  }
+  
+  /* setup dest */
+  olduse  = c->used;
+  c->used = pa;
+
+  {
+    register mp_digit *tmpc;
+
+    tmpc = c->dp + digs;
+    for (ix = digs; ix <= pa; ix++) {
+      /* now extract the previous digit [below the carry] */
+      *tmpc++ = W[ix];
+    }
+
+    /* clear unused digits [that existed in the old copy of c] */
+    for (; ix < olduse; ix++) {
+      *tmpc++ = 0;
+    }
+  }
+  mp_clamp (c);
+  return MP_OKAY;
+}
+
+
+#ifdef CYASSL_KEY_GEN
+
+int mp_cnt_lsb(mp_int *a);
+
+/* c = a * a (mod b) */
+int mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
+{
+  int     res;
+  mp_int  t;
+
+  if ((res = mp_init (&t)) != MP_OKAY) {
+    return res;
+  }
+
+  if ((res = mp_sqr (a, &t)) != MP_OKAY) {
+    mp_clear (&t);
+    return res;
+  }
+  res = mp_mod (&t, b, c);
+  mp_clear (&t);
+  return res;
+}
+
+
+/* single digit addition */
+int mp_add_d (mp_int * a, mp_digit b, mp_int * c)
+{
+  int     res, ix, oldused;
+  mp_digit *tmpa, *tmpc, mu;
+
+  /* grow c as required */
+  if (c->alloc < a->used + 1) {
+     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
+        return res;
+     }
+  }
+
+  /* if a is negative and |a| >= b, call c = |a| - b */
+  if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
+     /* temporarily fix sign of a */
+     a->sign = MP_ZPOS;
+
+     /* c = |a| - b */
+     res = mp_sub_d(a, b, c);
+
+     /* fix sign  */
+     a->sign = c->sign = MP_NEG;
+
+     /* clamp */
+     mp_clamp(c);
+
+     return res;
+  }
+
+  /* old number of used digits in c */
+  oldused = c->used;
+
+  /* sign always positive */
+  c->sign = MP_ZPOS;
+
+  /* source alias */
+  tmpa    = a->dp;
+
+  /* destination alias */
+  tmpc    = c->dp;
+
+  /* if a is positive */
+  if (a->sign == MP_ZPOS) {
+     /* add digit, after this we're propagating
+      * the carry.
+      */
+     *tmpc   = *tmpa++ + b;
+     mu      = *tmpc >> DIGIT_BIT;
+     *tmpc++ &= MP_MASK;
+
+     /* now handle rest of the digits */
+     for (ix = 1; ix < a->used; ix++) {
+        *tmpc   = *tmpa++ + mu;
+        mu      = *tmpc >> DIGIT_BIT;
+        *tmpc++ &= MP_MASK;
+     }
+     /* set final carry */
+     ix++;
+     *tmpc++  = mu;
+
+     /* setup size */
+     c->used = a->used + 1;
+  } else {
+     /* a was negative and |a| < b */
+     c->used  = 1;
+
+     /* the result is a single digit */
+     if (a->used == 1) {
+        *tmpc++  =  b - a->dp[0];
+     } else {
+        *tmpc++  =  b;
+     }
+
+     /* setup count so the clearing of oldused
+      * can fall through correctly
+      */
+     ix       = 1;
+  }
+
+  /* now zero to oldused */
+  while (ix++ < oldused) {
+     *tmpc++ = 0;
+  }
+  mp_clamp(c);
+
+  return MP_OKAY;
+}
+
+
+/* single digit subtraction */
+int mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
+{
+  mp_digit *tmpa, *tmpc, mu;
+  int       res, ix, oldused;
+
+  /* grow c as required */
+  if (c->alloc < a->used + 1) {
+     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
+        return res;
+     }
+  }
+
+  /* if a is negative just do an unsigned
+   * addition [with fudged signs]
+   */
+  if (a->sign == MP_NEG) {
+     a->sign = MP_ZPOS;
+     res     = mp_add_d(a, b, c);
+     a->sign = c->sign = MP_NEG;
+
+     /* clamp */
+     mp_clamp(c);
+
+     return res;
+  }
+
+  /* setup regs */
+  oldused = c->used;
+  tmpa    = a->dp;
+  tmpc    = c->dp;
+
+  /* if a <= b simply fix the single digit */
+  if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
+     if (a->used == 1) {
+        *tmpc++ = b - *tmpa;
+     } else {
+        *tmpc++ = b;
+     }
+     ix      = 1;
+
+     /* negative/1digit */
+     c->sign = MP_NEG;
+     c->used = 1;
+  } else {
+     /* positive/size */
+     c->sign = MP_ZPOS;
+     c->used = a->used;
+
+     /* subtract first digit */
+     *tmpc    = *tmpa++ - b;
+     mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
+     *tmpc++ &= MP_MASK;
+
+     /* handle rest of the digits */
+     for (ix = 1; ix < a->used; ix++) {
+        *tmpc    = *tmpa++ - mu;
+        mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
+        *tmpc++ &= MP_MASK;
+     }
+  }
+
+  /* zero excess digits */
+  while (ix++ < oldused) {
+     *tmpc++ = 0;
+  }
+  mp_clamp(c);
+  return MP_OKAY;
+}
+
+
+static int s_is_power_of_two(mp_digit b, int *p)
+{
+   int x;
+
+   /* fast return if no power of two */
+   if ((b==0) || (b & (b-1))) {
+      return 0;
+   }
+
+   for (x = 0; x < DIGIT_BIT; x++) {
+      if (b == (((mp_digit)1)<<x)) {
+         *p = x;
+         return 1;
+      }
+   }
+   return 0;
+}
+
+/* single digit division (based on routine from MPI) */
+int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
+{
+  mp_int  q;
+  mp_word w;
+  mp_digit t;
+  int     res, ix;
+
+  /* cannot divide by zero */
+  if (b == 0) {
+     return MP_VAL;
+  }
+
+  /* quick outs */
+  if (b == 1 || mp_iszero(a) == 1) {
+     if (d != NULL) {
+        *d = 0;
+     }
+     if (c != NULL) {
+        return mp_copy(a, c);
+     }
+     return MP_OKAY;
+  }
+
+  /* power of two ? */
+  if (s_is_power_of_two(b, &ix) == 1) {
+     if (d != NULL) {
+        *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
+     }
+     if (c != NULL) {
+        return mp_div_2d(a, ix, c, NULL);
+     }
+     return MP_OKAY;
+  }
+
+#ifdef BN_MP_DIV_3_C
+  /* three? */
+  if (b == 3) {
+     return mp_div_3(a, c, d);
+  }
+#endif
+
+  /* no easy answer [c'est la vie].  Just division */
+  if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
+     return res;
+  }
+  
+  q.used = a->used;
+  q.sign = a->sign;
+  w = 0;
+  for (ix = a->used - 1; ix >= 0; ix--) {
+     w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+     
+     if (w >= b) {
+        t = (mp_digit)(w / b);
+        w -= ((mp_word)t) * ((mp_word)b);
+      } else {
+        t = 0;
+      }
+      q.dp[ix] = (mp_digit)t;
+  }
+  
+  if (d != NULL) {
+     *d = (mp_digit)w;
+  }
+  
+  if (c != NULL) {
+     mp_clamp(&q);
+     mp_exch(&q, c);
+  }
+  mp_clear(&q);
+  
+  return res;
+}
+
+
+int mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
+{
+  return mp_div_d(a, b, NULL, c);
+}
+
+
+const mp_digit ltm_prime_tab[] = {
+  0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
+  0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
+  0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
+  0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
+#ifndef MP_8BIT
+  0x0083,
+  0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
+  0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
+  0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
+  0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
+
+  0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
+  0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
+  0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
+  0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
+  0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
+  0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
+  0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
+  0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
+
+  0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
+  0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
+  0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
+  0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
+  0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
+  0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
+  0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
+  0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
+
+  0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
+  0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
+  0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
+  0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
+  0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
+  0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
+  0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
+  0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
+#endif
+};
+
+
+/* Miller-Rabin test of "a" to the base of "b" as described in 
+ * HAC pp. 139 Algorithm 4.24
+ *
+ * Sets result to 0 if definitely composite or 1 if probably prime.
+ * Randomly the chance of error is no more than 1/4 and often 
+ * very much lower.
+ */
+int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+{
+  mp_int  n1, y, r;
+  int     s, j, err;
+
+  /* default */
+  *result = MP_NO;
+
+  /* ensure b > 1 */
+  if (mp_cmp_d(b, 1) != MP_GT) {
+     return MP_VAL;
+  }     
+
+  /* get n1 = a - 1 */
+  if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
+    return err;
+  }
+  if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
+    goto LBL_N1;
+  }
+
+  /* set 2**s * r = n1 */
+  if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
+    goto LBL_N1;
+  }
+
+  /* count the number of least significant bits
+   * which are zero
+   */
+  s = mp_cnt_lsb(&r);
+
+  /* now divide n - 1 by 2**s */
+  if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
+    goto LBL_R;
+  }
+
+  /* compute y = b**r mod a */
+  if ((err = mp_init (&y)) != MP_OKAY) {
+    goto LBL_R;
+  }
+  if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
+    goto LBL_Y;
+  }
+
+  /* if y != 1 and y != n1 do */
+  if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
+    j = 1;
+    /* while j <= s-1 and y != n1 */
+    while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
+      if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
+         goto LBL_Y;
+      }
+
+      /* if y == 1 then composite */
+      if (mp_cmp_d (&y, 1) == MP_EQ) {
+         goto LBL_Y;
+      }
+
+      ++j;
+    }
+
+    /* if y != n1 then composite */
+    if (mp_cmp (&y, &n1) != MP_EQ) {
+      goto LBL_Y;
+    }
+  }
+
+  /* probably prime now */
+  *result = MP_YES;
+LBL_Y:mp_clear (&y);
+LBL_R:mp_clear (&r);
+LBL_N1:mp_clear (&n1);
+  return err;
+}
+
+
+/* determines if an integers is divisible by one 
+ * of the first PRIME_SIZE primes or not
+ *
+ * sets result to 0 if not, 1 if yes
+ */
+int mp_prime_is_divisible (mp_int * a, int *result)
+{
+  int     err, ix;
+  mp_digit res;
+
+  /* default to not */
+  *result = MP_NO;
+
+  for (ix = 0; ix < PRIME_SIZE; ix++) {
+    /* what is a mod LBL_prime_tab[ix] */
+    if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
+      return err;
+    }
+
+    /* is the residue zero? */
+    if (res == 0) {
+      *result = MP_YES;
+      return MP_OKAY;
+    }
+  }
+
+  return MP_OKAY;
+}
+
+
+/*
+ * Sets result to 1 if probably prime, 0 otherwise
+ */
+int mp_prime_is_prime (mp_int * a, int t, int *result)
+{
+  mp_int  b;
+  int     ix, err, res;
+
+  /* default to no */
+  *result = MP_NO;
+
+  /* valid value of t? */
+  if (t <= 0 || t > PRIME_SIZE) {
+    return MP_VAL;
+  }
+
+  /* is the input equal to one of the primes in the table? */
+  for (ix = 0; ix < PRIME_SIZE; ix++) {
+      if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
+         *result = 1;
+         return MP_OKAY;
+      }
+  }
+
+  /* first perform trial division */
+  if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
+    return err;
+  }
+
+  /* return if it was trivially divisible */
+  if (res == MP_YES) {
+    return MP_OKAY;
+  }
+
+  /* now perform the miller-rabin rounds */
+  if ((err = mp_init (&b)) != MP_OKAY) {
+    return err;
+  }
+
+  for (ix = 0; ix < t; ix++) {
+    /* set the prime */
+    mp_set (&b, ltm_prime_tab[ix]);
+
+    if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
+      goto LBL_B;
+    }
+
+    if (res == MP_NO) {
+      goto LBL_B;
+    }
+  }
+
+  /* passed the test */
+  *result = MP_YES;
+LBL_B:mp_clear (&b);
+  return err;
+}
+
+
+/* computes least common multiple as |a*b|/(a, b) */
+int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
+{
+  int     res;
+  mp_int  t1, t2;
+
+
+  if ((res = mp_init_multi (&t1, &t2, NULL, NULL, NULL, NULL)) != MP_OKAY) {
+    return res;
+  }
+
+  /* t1 = get the GCD of the two inputs */
+  if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
+    goto LBL_T;
+  }
+
+  /* divide the smallest by the GCD */
+  if (mp_cmp_mag(a, b) == MP_LT) {
+     /* store quotient in t2 such that t2 * b is the LCM */
+     if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
+        goto LBL_T;
+     }
+     res = mp_mul(b, &t2, c);
+  } else {
+     /* store quotient in t2 such that t2 * a is the LCM */
+     if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
+        goto LBL_T;
+     }
+     res = mp_mul(a, &t2, c);
+  }
+
+  /* fix the sign to positive */
+  c->sign = MP_ZPOS;
+
+LBL_T:
+  mp_clear(&t1);
+  mp_clear(&t2);
+  return res;
+}
+
+
+static const int lnz[16] = { 
+   4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
+};
+
+/* Counts the number of lsbs which are zero before the first zero bit */
+int mp_cnt_lsb(mp_int *a)
+{
+    int x;
+    mp_digit q, qq;
+
+    /* easy out */
+    if (mp_iszero(a) == 1) {
+        return 0;
+    }
+
+    /* scan lower digits until non-zero */
+    for (x = 0; x < a->used && a->dp[x] == 0; x++);
+    q = a->dp[x];
+    x *= DIGIT_BIT;
+
+    /* now scan this digit until a 1 is found */
+    if ((q & 1) == 0) {
+        do {
+            qq  = q & 15;
+            x  += lnz[qq];
+            q >>= 4;
+        } while (qq == 0);
+    }
+    return x;
+}
+
+
+/* Greatest Common Divisor using the binary method */
+int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
+{
+    mp_int  u, v;
+    int     k, u_lsb, v_lsb, res;
+
+    /* either zero than gcd is the largest */
+    if (mp_iszero (a) == MP_YES) {
+        return mp_abs (b, c);
+    }
+    if (mp_iszero (b) == MP_YES) {
+        return mp_abs (a, c);
+    }
+
+    /* get copies of a and b we can modify */
+    if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
+        return res;
+    }
+
+    if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
+        goto LBL_U;
+    }
+
+    /* must be positive for the remainder of the algorithm */
+    u.sign = v.sign = MP_ZPOS;
+
+    /* B1.  Find the common power of two for u and v */
+    u_lsb = mp_cnt_lsb(&u);
+    v_lsb = mp_cnt_lsb(&v);
+    k     = MIN(u_lsb, v_lsb);
+
+    if (k > 0) {
+        /* divide the power of two out */
+        if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
+            goto LBL_V;
+        }
+
+        if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
+            goto LBL_V;
+        }
+    }
+
+    /* divide any remaining factors of two out */
+    if (u_lsb != k) {
+        if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
+            goto LBL_V;
+        }
+    }
+
+    if (v_lsb != k) {
+        if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
+            goto LBL_V;
+        }
+    }
+
+    while (mp_iszero(&v) == 0) {
+        /* make sure v is the largest */
+        if (mp_cmp_mag(&u, &v) == MP_GT) {
+            /* swap u and v to make sure v is >= u */
+            mp_exch(&u, &v);
+        }
+     
+        /* subtract smallest from largest */
+        if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
+            goto LBL_V;
+        }
+     
+        /* Divide out all factors of two */
+        if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
+            goto LBL_V;
+        } 
+    } 
+
+    /* multiply by 2**k which we divided out at the beginning */
+    if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
+        goto LBL_V;
+    }
+    c->sign = MP_ZPOS;
+    res = MP_OKAY;
+LBL_V:mp_clear (&u);
+LBL_U:mp_clear (&v);
+    return res;
+}
+
+
+/* set a 32-bit const */
+int mp_set_int (mp_int * a, unsigned long b)
+{
+  int     x, res;
+
+  mp_zero (a);
+  
+  /* set four bits at a time */
+  for (x = 0; x < 8; x++) {
+    /* shift the number up four bits */
+    if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
+      return res;
+    }
+
+    /* OR in the top four bits of the source */
+    a->dp[0] |= (b >> 28) & 15;
+
+    /* shift the source up to the next four bits */
+    b <<= 4;
+
+    /* ensure that digits are not clamped off */
+    a->used += 1;
+  }
+  mp_clamp (a);
+  return MP_OKAY;
+}
+
+
+#endif /* CYASSL_KEY_GEN */
+
+#endif /* USE_FAST_MATH */
+