Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
mem.c
00001 /** 00002 * @file 00003 * Dynamic memory manager 00004 * 00005 * This is a lightweight replacement for the standard C library malloc(). 00006 * 00007 * If you want to use the standard C library malloc() instead, define 00008 * MEM_LIBC_MALLOC to 1 in your lwipopts.h 00009 * 00010 * To let mem_malloc() use pools (prevents fragmentation and is much faster than 00011 * a heap but might waste some memory), define MEM_USE_POOLS to 1, define 00012 * MEM_USE_CUSTOM_POOLS to 1 and create a file "lwippools.h" that includes a list 00013 * of pools like this (more pools can be added between _START and _END): 00014 * 00015 * Define three pools with sizes 256, 512, and 1512 bytes 00016 * LWIP_MALLOC_MEMPOOL_START 00017 * LWIP_MALLOC_MEMPOOL(20, 256) 00018 * LWIP_MALLOC_MEMPOOL(10, 512) 00019 * LWIP_MALLOC_MEMPOOL(5, 1512) 00020 * LWIP_MALLOC_MEMPOOL_END 00021 */ 00022 00023 /* 00024 * Copyright (c) 2001-2004 Swedish Institute of Computer Science. 00025 * All rights reserved. 00026 * 00027 * Redistribution and use in source and binary forms, with or without modification, 00028 * are permitted provided that the following conditions are met: 00029 * 00030 * 1. Redistributions of source code must retain the above copyright notice, 00031 * this list of conditions and the following disclaimer. 00032 * 2. Redistributions in binary form must reproduce the above copyright notice, 00033 * this list of conditions and the following disclaimer in the documentation 00034 * and/or other materials provided with the distribution. 00035 * 3. The name of the author may not be used to endorse or promote products 00036 * derived from this software without specific prior written permission. 00037 * 00038 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 00039 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 00040 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT 00041 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 00042 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 00043 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 00044 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 00045 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 00046 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 00047 * OF SUCH DAMAGE. 00048 * 00049 * This file is part of the lwIP TCP/IP stack. 00050 * 00051 * Author: Adam Dunkels <adam@sics.se> 00052 * Simon Goldschmidt 00053 * 00054 */ 00055 00056 #include "lwip/opt.h" 00057 00058 #if !MEM_LIBC_MALLOC /* don't build if not configured for use in lwipopts.h */ 00059 00060 #include "lwip/def.h" 00061 #include "lwip/mem.h" 00062 #include "lwip/sys.h" 00063 #include "lwip/stats.h" 00064 #include "lwip/err.h" 00065 00066 #include <string.h> 00067 00068 #if MEM_USE_POOLS 00069 /* lwIP head implemented with different sized pools */ 00070 00071 /** 00072 * Allocate memory: determine the smallest pool that is big enough 00073 * to contain an element of 'size' and get an element from that pool. 00074 * 00075 * @param size the size in bytes of the memory needed 00076 * @return a pointer to the allocated memory or NULL if the pool is empty 00077 */ 00078 void * 00079 mem_malloc(mem_size_t size) 00080 { 00081 struct memp_malloc_helper *element; 00082 memp_t poolnr; 00083 mem_size_t required_size = size + sizeof(struct memp_malloc_helper); 00084 00085 for (poolnr = MEMP_POOL_FIRST; poolnr <= MEMP_POOL_LAST; poolnr = (memp_t)(poolnr + 1)) { 00086 #if MEM_USE_POOLS_TRY_BIGGER_POOL 00087 again: 00088 #endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */ 00089 /* is this pool big enough to hold an element of the required size 00090 plus a struct memp_malloc_helper that saves the pool this element came from? */ 00091 if (required_size <= memp_sizes[poolnr]) { 00092 break; 00093 } 00094 } 00095 if (poolnr > MEMP_POOL_LAST) { 00096 LWIP_ASSERT("mem_malloc(): no pool is that big!", 0); 00097 return NULL; 00098 } 00099 element = (struct memp_malloc_helper*)memp_malloc(poolnr); 00100 if (element == NULL) { 00101 /* No need to DEBUGF or ASSERT: This error is already 00102 taken care of in memp.c */ 00103 #if MEM_USE_POOLS_TRY_BIGGER_POOL 00104 /** Try a bigger pool if this one is empty! */ 00105 if (poolnr < MEMP_POOL_LAST) { 00106 poolnr++; 00107 goto again; 00108 } 00109 #endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */ 00110 return NULL; 00111 } 00112 00113 /* save the pool number this element came from */ 00114 element->poolnr = poolnr; 00115 /* and return a pointer to the memory directly after the struct memp_malloc_helper */ 00116 element++; 00117 00118 return element; 00119 } 00120 00121 /** 00122 * Free memory previously allocated by mem_malloc. Loads the pool number 00123 * and calls memp_free with that pool number to put the element back into 00124 * its pool 00125 * 00126 * @param rmem the memory element to free 00127 */ 00128 void 00129 mem_free(void *rmem) 00130 { 00131 struct memp_malloc_helper *hmem = (struct memp_malloc_helper*)rmem; 00132 00133 LWIP_ASSERT("rmem != NULL", (rmem != NULL)); 00134 LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem))); 00135 00136 /* get the original struct memp_malloc_helper */ 00137 hmem--; 00138 00139 LWIP_ASSERT("hmem != NULL", (hmem != NULL)); 00140 LWIP_ASSERT("hmem == MEM_ALIGN(hmem)", (hmem == LWIP_MEM_ALIGN(hmem))); 00141 LWIP_ASSERT("hmem->poolnr < MEMP_MAX", (hmem->poolnr < MEMP_MAX)); 00142 00143 /* and put it in the pool we saved earlier */ 00144 memp_free(hmem->poolnr, hmem); 00145 } 00146 00147 #else /* MEM_USE_POOLS */ 00148 /* lwIP replacement for your libc malloc() */ 00149 00150 /** 00151 * The heap is made up as a list of structs of this type. 00152 * This does not have to be aligned since for getting its size, 00153 * we only use the macro SIZEOF_STRUCT_MEM, which automatically alignes. 00154 */ 00155 struct mem { 00156 /** index (-> ram[next]) of the next struct */ 00157 mem_size_t next; 00158 /** index (-> ram[prev]) of the previous struct */ 00159 mem_size_t prev; 00160 /** 1: this area is used; 0: this area is unused */ 00161 u8_t used; 00162 }; 00163 00164 /** All allocated blocks will be MIN_SIZE bytes big, at least! 00165 * MIN_SIZE can be overridden to suit your needs. Smaller values save space, 00166 * larger values could prevent too small blocks to fragment the RAM too much. */ 00167 #ifndef MIN_SIZE 00168 #define MIN_SIZE 12 00169 #endif /* MIN_SIZE */ 00170 /* some alignment macros: we define them here for better source code layout */ 00171 #define MIN_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MIN_SIZE) 00172 #define SIZEOF_STRUCT_MEM LWIP_MEM_ALIGN_SIZE(sizeof(struct mem)) 00173 #define MEM_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MEM_SIZE) 00174 00175 /** If you want to relocate the heap to external memory, simply define 00176 * LWIP_RAM_HEAP_POINTER as a void-pointer to that location. 00177 * If so, make sure the memory at that location is big enough (see below on 00178 * how that space is calculated). */ 00179 #ifndef LWIP_RAM_HEAP_POINTER 00180 /** the heap. we need one struct mem at the end and some room for alignment */ 00181 u8_t ram_heap[MEM_SIZE_ALIGNED + (2*SIZEOF_STRUCT_MEM) + MEM_ALIGNMENT]; 00182 #define LWIP_RAM_HEAP_POINTER ram_heap 00183 #endif /* LWIP_RAM_HEAP_POINTER */ 00184 00185 /** pointer to the heap (ram_heap): for alignment, ram is now a pointer instead of an array */ 00186 static u8_t *ram; 00187 /** the last entry, always unused! */ 00188 static struct mem *ram_end; 00189 /** pointer to the lowest free block, this is used for faster search */ 00190 static struct mem *lfree; 00191 00192 /** concurrent access protection */ 00193 static sys_mutex_t mem_mutex; 00194 00195 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00196 00197 static volatile u8_t mem_free_count; 00198 00199 /* Allow mem_free from other (e.g. interrupt) context */ 00200 #define LWIP_MEM_FREE_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_free) 00201 #define LWIP_MEM_FREE_PROTECT() SYS_ARCH_PROTECT(lev_free) 00202 #define LWIP_MEM_FREE_UNPROTECT() SYS_ARCH_UNPROTECT(lev_free) 00203 #define LWIP_MEM_ALLOC_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_alloc) 00204 #define LWIP_MEM_ALLOC_PROTECT() SYS_ARCH_PROTECT(lev_alloc) 00205 #define LWIP_MEM_ALLOC_UNPROTECT() SYS_ARCH_UNPROTECT(lev_alloc) 00206 00207 #else /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00208 00209 /* Protect the heap only by using a semaphore */ 00210 #define LWIP_MEM_FREE_DECL_PROTECT() 00211 #define LWIP_MEM_FREE_PROTECT() sys_mutex_lock(&mem_mutex) 00212 #define LWIP_MEM_FREE_UNPROTECT() sys_mutex_unlock(&mem_mutex) 00213 /* mem_malloc is protected using semaphore AND LWIP_MEM_ALLOC_PROTECT */ 00214 #define LWIP_MEM_ALLOC_DECL_PROTECT() 00215 #define LWIP_MEM_ALLOC_PROTECT() 00216 #define LWIP_MEM_ALLOC_UNPROTECT() 00217 00218 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00219 00220 00221 /** 00222 * "Plug holes" by combining adjacent empty struct mems. 00223 * After this function is through, there should not exist 00224 * one empty struct mem pointing to another empty struct mem. 00225 * 00226 * @param mem this points to a struct mem which just has been freed 00227 * @internal this function is only called by mem_free() and mem_trim() 00228 * 00229 * This assumes access to the heap is protected by the calling function 00230 * already. 00231 */ 00232 static void 00233 plug_holes(struct mem *mem) 00234 { 00235 struct mem *nmem; 00236 struct mem *pmem; 00237 00238 LWIP_ASSERT("plug_holes: mem >= ram", (u8_t *)mem >= ram); 00239 LWIP_ASSERT("plug_holes: mem < ram_end", (u8_t *)mem < (u8_t *)ram_end); 00240 LWIP_ASSERT("plug_holes: mem->used == 0", mem->used == 0); 00241 00242 /* plug hole forward */ 00243 LWIP_ASSERT("plug_holes: mem->next <= MEM_SIZE_ALIGNED", mem->next <= MEM_SIZE_ALIGNED); 00244 00245 nmem = (struct mem *)(void *)&ram[mem->next]; 00246 if (mem != nmem && nmem->used == 0 && (u8_t *)nmem != (u8_t *)ram_end) { 00247 /* if mem->next is unused and not end of ram, combine mem and mem->next */ 00248 if (lfree == nmem) { 00249 lfree = mem; 00250 } 00251 mem->next = nmem->next; 00252 ((struct mem *)(void *)&ram[nmem->next])->prev = (mem_size_t)((u8_t *)mem - ram); 00253 } 00254 00255 /* plug hole backward */ 00256 pmem = (struct mem *)(void *)&ram[mem->prev]; 00257 if (pmem != mem && pmem->used == 0) { 00258 /* if mem->prev is unused, combine mem and mem->prev */ 00259 if (lfree == mem) { 00260 lfree = pmem; 00261 } 00262 pmem->next = mem->next; 00263 ((struct mem *)(void *)&ram[mem->next])->prev = (mem_size_t)((u8_t *)pmem - ram); 00264 } 00265 } 00266 00267 /** 00268 * Zero the heap and initialize start, end and lowest-free 00269 */ 00270 void 00271 mem_init(void) 00272 { 00273 struct mem *mem; 00274 00275 LWIP_ASSERT("Sanity check alignment", 00276 (SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT-1)) == 0); 00277 00278 /* align the heap */ 00279 ram = (u8_t *)LWIP_MEM_ALIGN(LWIP_RAM_HEAP_POINTER); 00280 /* initialize the start of the heap */ 00281 mem = (struct mem *)(void *)ram; 00282 mem->next = MEM_SIZE_ALIGNED; 00283 mem->prev = 0; 00284 mem->used = 0; 00285 /* initialize the end of the heap */ 00286 ram_end = (struct mem *)(void *)&ram[MEM_SIZE_ALIGNED]; 00287 ram_end->used = 1; 00288 ram_end->next = MEM_SIZE_ALIGNED; 00289 ram_end->prev = MEM_SIZE_ALIGNED; 00290 00291 /* initialize the lowest-free pointer to the start of the heap */ 00292 lfree = (struct mem *)(void *)ram; 00293 00294 MEM_STATS_AVAIL(avail, MEM_SIZE_ALIGNED); 00295 00296 if(sys_mutex_new(&mem_mutex) != ERR_OK) { 00297 LWIP_ASSERT("failed to create mem_mutex", 0); 00298 } 00299 } 00300 00301 /** 00302 * Put a struct mem back on the heap 00303 * 00304 * @param rmem is the data portion of a struct mem as returned by a previous 00305 * call to mem_malloc() 00306 */ 00307 void 00308 mem_free(void *rmem) 00309 { 00310 struct mem *mem; 00311 LWIP_MEM_FREE_DECL_PROTECT(); 00312 00313 if (rmem == NULL) { 00314 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS, ("mem_free(p == NULL) was called.\n")); 00315 return; 00316 } 00317 LWIP_ASSERT("mem_free: sanity check alignment", (((mem_ptr_t)rmem) & (MEM_ALIGNMENT-1)) == 0); 00318 00319 LWIP_ASSERT("mem_free: legal memory", (u8_t *)rmem >= (u8_t *)ram && 00320 (u8_t *)rmem < (u8_t *)ram_end); 00321 00322 if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) { 00323 SYS_ARCH_DECL_PROTECT(lev); 00324 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory\n")); 00325 /* protect mem stats from concurrent access */ 00326 SYS_ARCH_PROTECT(lev); 00327 MEM_STATS_INC(illegal); 00328 SYS_ARCH_UNPROTECT(lev); 00329 return; 00330 } 00331 /* protect the heap from concurrent access */ 00332 LWIP_MEM_FREE_PROTECT(); 00333 /* Get the corresponding struct mem ... */ 00334 mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM); 00335 /* ... which has to be in a used state ... */ 00336 LWIP_ASSERT("mem_free: mem->used", mem->used); 00337 /* ... and is now unused. */ 00338 mem->used = 0; 00339 00340 if (mem < lfree) { 00341 /* the newly freed struct is now the lowest */ 00342 lfree = mem; 00343 } 00344 00345 MEM_STATS_DEC_USED(used, mem->next - (mem_size_t)(((u8_t *)mem - ram))); 00346 00347 /* finally, see if prev or next are free also */ 00348 plug_holes(mem); 00349 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00350 mem_free_count = 1; 00351 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00352 LWIP_MEM_FREE_UNPROTECT(); 00353 } 00354 00355 /** 00356 * Shrink memory returned by mem_malloc(). 00357 * 00358 * @param rmem pointer to memory allocated by mem_malloc the is to be shrinked 00359 * @param newsize required size after shrinking (needs to be smaller than or 00360 * equal to the previous size) 00361 * @return for compatibility reasons: is always == rmem, at the moment 00362 * or NULL if newsize is > old size, in which case rmem is NOT touched 00363 * or freed! 00364 */ 00365 void * 00366 mem_trim(void *rmem, mem_size_t newsize) 00367 { 00368 mem_size_t size; 00369 mem_size_t ptr, ptr2; 00370 struct mem *mem, *mem2; 00371 /* use the FREE_PROTECT here: it protects with sem OR SYS_ARCH_PROTECT */ 00372 LWIP_MEM_FREE_DECL_PROTECT(); 00373 00374 /* Expand the size of the allocated memory region so that we can 00375 adjust for alignment. */ 00376 newsize = LWIP_MEM_ALIGN_SIZE(newsize); 00377 00378 if(newsize < MIN_SIZE_ALIGNED) { 00379 /* every data block must be at least MIN_SIZE_ALIGNED long */ 00380 newsize = MIN_SIZE_ALIGNED; 00381 } 00382 00383 if (newsize > MEM_SIZE_ALIGNED) { 00384 return NULL; 00385 } 00386 00387 LWIP_ASSERT("mem_trim: legal memory", (u8_t *)rmem >= (u8_t *)ram && 00388 (u8_t *)rmem < (u8_t *)ram_end); 00389 00390 if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) { 00391 SYS_ARCH_DECL_PROTECT(lev); 00392 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_trim: illegal memory\n")); 00393 /* protect mem stats from concurrent access */ 00394 SYS_ARCH_PROTECT(lev); 00395 MEM_STATS_INC(illegal); 00396 SYS_ARCH_UNPROTECT(lev); 00397 return rmem; 00398 } 00399 /* Get the corresponding struct mem ... */ 00400 mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM); 00401 /* ... and its offset pointer */ 00402 ptr = (mem_size_t)((u8_t *)mem - ram); 00403 00404 size = mem->next - ptr - SIZEOF_STRUCT_MEM; 00405 LWIP_ASSERT("mem_trim can only shrink memory", newsize <= size); 00406 if (newsize > size) { 00407 /* not supported */ 00408 return NULL; 00409 } 00410 if (newsize == size) { 00411 /* No change in size, simply return */ 00412 return rmem; 00413 } 00414 00415 /* protect the heap from concurrent access */ 00416 LWIP_MEM_FREE_PROTECT(); 00417 00418 mem2 = (struct mem *)(void *)&ram[mem->next]; 00419 if(mem2->used == 0) { 00420 /* The next struct is unused, we can simply move it at little */ 00421 mem_size_t next; 00422 /* remember the old next pointer */ 00423 next = mem2->next; 00424 /* create new struct mem which is moved directly after the shrinked mem */ 00425 ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize; 00426 if (lfree == mem2) { 00427 lfree = (struct mem *)(void *)&ram[ptr2]; 00428 } 00429 mem2 = (struct mem *)(void *)&ram[ptr2]; 00430 mem2->used = 0; 00431 /* restore the next pointer */ 00432 mem2->next = next; 00433 /* link it back to mem */ 00434 mem2->prev = ptr; 00435 /* link mem to it */ 00436 mem->next = ptr2; 00437 /* last thing to restore linked list: as we have moved mem2, 00438 * let 'mem2->next->prev' point to mem2 again. but only if mem2->next is not 00439 * the end of the heap */ 00440 if (mem2->next != MEM_SIZE_ALIGNED) { 00441 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2; 00442 } 00443 MEM_STATS_DEC_USED(used, (size - newsize)); 00444 /* no need to plug holes, we've already done that */ 00445 } else if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED <= size) { 00446 /* Next struct is used but there's room for another struct mem with 00447 * at least MIN_SIZE_ALIGNED of data. 00448 * Old size ('size') must be big enough to contain at least 'newsize' plus a struct mem 00449 * ('SIZEOF_STRUCT_MEM') with some data ('MIN_SIZE_ALIGNED'). 00450 * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty 00451 * region that couldn't hold data, but when mem->next gets freed, 00452 * the 2 regions would be combined, resulting in more free memory */ 00453 ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize; 00454 mem2 = (struct mem *)(void *)&ram[ptr2]; 00455 if (mem2 < lfree) { 00456 lfree = mem2; 00457 } 00458 mem2->used = 0; 00459 mem2->next = mem->next; 00460 mem2->prev = ptr; 00461 mem->next = ptr2; 00462 if (mem2->next != MEM_SIZE_ALIGNED) { 00463 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2; 00464 } 00465 MEM_STATS_DEC_USED(used, (size - newsize)); 00466 /* the original mem->next is used, so no need to plug holes! */ 00467 } 00468 /* else { 00469 next struct mem is used but size between mem and mem2 is not big enough 00470 to create another struct mem 00471 -> don't do anyhting. 00472 -> the remaining space stays unused since it is too small 00473 } */ 00474 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00475 mem_free_count = 1; 00476 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00477 LWIP_MEM_FREE_UNPROTECT(); 00478 return rmem; 00479 } 00480 00481 /** 00482 * Adam's mem_malloc() plus solution for bug #17922 00483 * Allocate a block of memory with a minimum of 'size' bytes. 00484 * 00485 * @param size is the minimum size of the requested block in bytes. 00486 * @return pointer to allocated memory or NULL if no free memory was found. 00487 * 00488 * Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT). 00489 */ 00490 void * 00491 mem_malloc(mem_size_t size) 00492 { 00493 mem_size_t ptr, ptr2; 00494 struct mem *mem, *mem2; 00495 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00496 u8_t local_mem_free_count = 0; 00497 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00498 LWIP_MEM_ALLOC_DECL_PROTECT(); 00499 00500 if (size == 0) { 00501 return NULL; 00502 } 00503 00504 /* Expand the size of the allocated memory region so that we can 00505 adjust for alignment. */ 00506 size = LWIP_MEM_ALIGN_SIZE(size); 00507 00508 if(size < MIN_SIZE_ALIGNED) { 00509 /* every data block must be at least MIN_SIZE_ALIGNED long */ 00510 size = MIN_SIZE_ALIGNED; 00511 } 00512 00513 if (size > MEM_SIZE_ALIGNED) { 00514 return NULL; 00515 } 00516 00517 /* protect the heap from concurrent access */ 00518 sys_mutex_lock(&mem_mutex); 00519 LWIP_MEM_ALLOC_PROTECT(); 00520 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00521 /* run as long as a mem_free disturbed mem_malloc */ 00522 do { 00523 local_mem_free_count = 0; 00524 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00525 00526 /* Scan through the heap searching for a free block that is big enough, 00527 * beginning with the lowest free block. 00528 */ 00529 for (ptr = (mem_size_t)((u8_t *)lfree - ram); ptr < MEM_SIZE_ALIGNED - size; 00530 ptr = ((struct mem *)(void *)&ram[ptr])->next) { 00531 mem = (struct mem *)(void *)&ram[ptr]; 00532 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00533 mem_free_count = 0; 00534 LWIP_MEM_ALLOC_UNPROTECT(); 00535 /* allow mem_free to run */ 00536 LWIP_MEM_ALLOC_PROTECT(); 00537 if (mem_free_count != 0) { 00538 local_mem_free_count = mem_free_count; 00539 } 00540 mem_free_count = 0; 00541 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00542 00543 if ((!mem->used) && 00544 (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) { 00545 /* mem is not used and at least perfect fit is possible: 00546 * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */ 00547 00548 if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) { 00549 /* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing 00550 * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem') 00551 * -> split large block, create empty remainder, 00552 * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if 00553 * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size, 00554 * struct mem would fit in but no data between mem2 and mem2->next 00555 * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty 00556 * region that couldn't hold data, but when mem->next gets freed, 00557 * the 2 regions would be combined, resulting in more free memory 00558 */ 00559 ptr2 = ptr + SIZEOF_STRUCT_MEM + size; 00560 /* create mem2 struct */ 00561 mem2 = (struct mem *)(void *)&ram[ptr2]; 00562 mem2->used = 0; 00563 mem2->next = mem->next; 00564 mem2->prev = ptr; 00565 /* and insert it between mem and mem->next */ 00566 mem->next = ptr2; 00567 mem->used = 1; 00568 00569 if (mem2->next != MEM_SIZE_ALIGNED) { 00570 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2; 00571 } 00572 MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM)); 00573 } else { 00574 /* (a mem2 struct does no fit into the user data space of mem and mem->next will always 00575 * be used at this point: if not we have 2 unused structs in a row, plug_holes should have 00576 * take care of this). 00577 * -> near fit or excact fit: do not split, no mem2 creation 00578 * also can't move mem->next directly behind mem, since mem->next 00579 * will always be used at this point! 00580 */ 00581 mem->used = 1; 00582 MEM_STATS_INC_USED(used, mem->next - (mem_size_t)((u8_t *)mem - ram)); 00583 } 00584 00585 if (mem == lfree) { 00586 /* Find next free block after mem and update lowest free pointer */ 00587 while (lfree->used && lfree != ram_end) { 00588 LWIP_MEM_ALLOC_UNPROTECT(); 00589 /* prevent high interrupt latency... */ 00590 LWIP_MEM_ALLOC_PROTECT(); 00591 lfree = (struct mem *)(void *)&ram[lfree->next]; 00592 } 00593 LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used))); 00594 } 00595 LWIP_MEM_ALLOC_UNPROTECT(); 00596 sys_mutex_unlock(&mem_mutex); 00597 LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.", 00598 (mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end); 00599 LWIP_ASSERT("mem_malloc: allocated memory properly aligned.", 00600 ((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0); 00601 LWIP_ASSERT("mem_malloc: sanity check alignment", 00602 (((mem_ptr_t)mem) & (MEM_ALIGNMENT-1)) == 0); 00603 00604 return (u8_t *)mem + SIZEOF_STRUCT_MEM; 00605 } 00606 } 00607 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00608 /* if we got interrupted by a mem_free, try again */ 00609 } while(local_mem_free_count != 0); 00610 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00611 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size)); 00612 MEM_STATS_INC(err); 00613 LWIP_MEM_ALLOC_UNPROTECT(); 00614 sys_mutex_unlock(&mem_mutex); 00615 return NULL; 00616 } 00617 00618 #endif /* MEM_USE_POOLS */ 00619 /** 00620 * Contiguously allocates enough space for count objects that are size bytes 00621 * of memory each and returns a pointer to the allocated memory. 00622 * 00623 * The allocated memory is filled with bytes of value zero. 00624 * 00625 * @param count number of objects to allocate 00626 * @param size size of the objects to allocate 00627 * @return pointer to allocated memory / NULL pointer if there is an error 00628 */ 00629 void *mem_calloc(mem_size_t count, mem_size_t size) 00630 { 00631 void *p; 00632 00633 /* allocate 'count' objects of size 'size' */ 00634 p = mem_malloc(count * size); 00635 if (p) { 00636 /* zero the memory */ 00637 memset(p, 0, count * size); 00638 } 00639 return p; 00640 } 00641 00642 #endif /* !MEM_LIBC_MALLOC */
Generated on Tue Jul 12 2022 15:26:15 by
