yes Spada / Mbed 2 deprecated PS6_uplink

Dependencies:   mbed

main.cpp

Committer:
spadaaa
Date:
2020-03-10
Revision:
2:b51532683489
Parent:
0:e73fe93596e9
Child:
3:514c9faeba80

File content as of revision 2:b51532683489:

/**
 * Copyright (c) 2017, Arm Limited and affiliates.
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "stdio.h"
#include "mbed.h"
#include "math.h"
#include "stm32l0xx_hal_rcc.h"
#include "lorawan/LoRaWANInterface.h"
#include "lorawan/system/lorawan_data_structures.h"
#include "events/EventQueue.h"
#include "SX1276_LoRaRadio.h"
// Application helpers
#include "DummySensor.h"
#include "lora_radio_helper.h"
#include "trace_helper.h"

//Init variable
int countAck = 1;
int countFailAck = 0;
double moyESP = 4000.0;
double nbrACK = 5.0;
double greenLimit = 115.0;
double blueLimit = 120.0;


//init LED
DigitalOut myled1(LED1);
DigitalOut myled2(LED2);
DigitalOut myled3(LED3);
DigitalOut myled4(LED4);

bool ledStatus = true; //Statut pour le toggle led

int id = 0; //Id value to kill action

//Start/stop led
int ledStart = 0;
static void StartLed1(){
    myled1=1;
    myled3=0;
    myled4=0;
    ledStart = 1;
}
static void StartLed3(){
    myled1=0;
    myled3=1;
    myled4=0;
    ledStart = 3;
}
static void StartLed4(){
    myled1=0;
    myled3=0;
    myled4=1;
    ledStart = 4;
}

static void toggleLed(DigitalOut led) {
    if(ledStatus){
     led = 1;
     ledStatus = false;
    }
    else{
     led = 0;
     ledStatus = true;
    }
}

using namespace events;

//Button configuration
InterruptIn mybutton(USER_BUTTON);

// Max payload size can be LORAMAC_PHY_MAXPAYLOAD.
// This example only communicates with much shorter messages (<30 bytes).
// If longer messages are used, these buffers must be changed accordingly.
uint8_t tx_buffer[128];
uint8_t rx_buffer[128];
uint8_t buttonVal = 0;
/*
 * Sets up an application dependent transmission timer in ms. Used only when Duty Cycling is off for testing
 */
#define TX_TIMER                        12000

/**
 * Maximum number of events for the event queue.
 * 10 is the safe number for the stack events, however, if application
 * also uses the queue for whatever purposes, this number should be increased.
 */
#define MAX_NUMBER_OF_EVENTS            10

/**
 * Maximum number of retries for CONFIRMED messages before giving up
 */
#define CONFIRMED_MSG_RETRY_COUNTER     2

/**
 * Dummy pin for dummy sensor
 */
#define PC_9                            0

/**
 * Dummy sensor class object
 */
DS1820  ds1820(PC_9);

/**
* This event queue is the global event queue for both the
* application and stack. To conserve memory, the stack is designed to run
* in the same thread as the application and the application is responsible for
* providing an event queue to the stack that will be used for ISR deferment as
* well as application information event queuing.
*/
static EventQueue ev_queue(MAX_NUMBER_OF_EVENTS *EVENTS_EVENT_SIZE);

/**
 * Event handler.
 *
 * This will be passed to the LoRaWAN stack to queue events for the
 * application which in turn drive the application.
 */
static void lora_event_handler(lorawan_event_t event);

/**
 * Constructing Mbed LoRaWANInterface and passing it the radio object from lora_radio_helper.
 */
static LoRaWANInterface lorawan(radio);

/**
 * Application specific callbacks
 */
static lorawan_app_callbacks_t callbacks;

/**
 * Entry point for application
 */

 /* //Set the button for active or deactive ADR
  static void mod_lowRecept(){
     if(buttonVal == 0){
         lorawan.disable_adaptive_datarate ();
         lorawan.set_datarate(0);
         buttonVal = 1;
         printf("\r\n ADR disable \r\n");
     }
     else{
        lorawan.enable_adaptive_datarate ();
        buttonVal = 0;
        printf("\r\n ADR enable \r\n");
     }
 }
 */
 //Change the settings for send more than 5 packet
 static void modBigTest(){
    if(buttonVal == 0){
         nbrACK = 100;
         printf("Mode big test activated");
     }
     else{
         nbrACK = 5;
         printf("Mode big test deactivitad");
     }
 }
 //Do the ESP average and set led
 static void testEnd(){
     if(buttonVal !=1){
        myled2 = 0;
        moyESP/=nbrACK;
       // printf("Count ack = %d // CountfailAck = %d /// moyESP = %f", countAck, countFailAck, moyESP);
    if(moyESP<=greenLimit){
        StartLed1();
     }
    else if (moyESP<=blueLimit && moyESP>greenLimit){
         StartLed3();
     }
    else{
         StartLed4();
     }
    lorawan.disconnect();
  }
  moyESP = 0;
}
int main(void)
{
    // setup tracing
    setup_trace();

    // stores the status of a call to LoRaWAN protocol
    lorawan_status_t retcode;

    // Initialize LoRaWAN stack
    if (lorawan.initialize(&ev_queue) != LORAWAN_STATUS_OK) {
        printf("\r\n LoRa initialization failed! \r\n");
        return -1;
    }
    printf("\r\n Mbed LoRaWANStack initialized \r\n");
    id = ev_queue.call_every(200, &toggleLed, myled2);
    // prepare application callbacks
    callbacks.events = mbed::callback(lora_event_handler);
    lorawan.add_app_callbacks(&callbacks);

    // Set number of retries in case of CONFIRMED messages
    if (lorawan.set_confirmed_msg_retries(CONFIRMED_MSG_RETRY_COUNTER)
            != LORAWAN_STATUS_OK) {
        printf("\r\n set_confirmed_msg_retries failed! \r\n\r\n");
        return -1;
    }

    //printf("\r\n CONFIRMED message retries : %d \r\n",
         //  CONFIRMED_MSG_RETRY_COUNTER);
    //Enable adaptive data rate
    if (lorawan.enable_adaptive_datarate() != LORAWAN_STATUS_OK) {
        printf("\r\n enable_adaptive_datarate failed! \r\n");
        return -1;
    }

    //printf("\r\n Adaptive data  rate (ADR) - Enabled \r\n");
    retcode = lorawan.connect();

    if (retcode == LORAWAN_STATUS_OK ||
            retcode == LORAWAN_STATUS_CONNECT_IN_PROGRESS) {
    } else {
        printf("\r\n Connection error, code = %d \r\n", retcode);
        return -1;
    }
    mybutton.rise(ev_queue.event(modBigTest));
    printf("\r\n Connection - In Progress ...\r\n");

    // make your event queue dispatching events forever
    ev_queue.dispatch_forever();

    return 0;
}

/**
 * Sends a message to the Network Server
 */
static void send_message()
{
    uint16_t packet_len;
    int16_t retcode;
    int32_t sensor_value;

    if (ds1820.begin()) {
        ds1820.startConversion();
        sensor_value = ds1820.read();
        //printf("\r\n Dummy Sensor Value = %d \r\n", sensor_value);
        ds1820.startConversion();
    } else {
        printf("\r\n No sensor found \r\n");
        return;
    }

    packet_len = sprintf((char *) tx_buffer, "ack");

    retcode = lorawan.send(MBED_CONF_LORA_APP_PORT, tx_buffer, packet_len,
                           MSG_CONFIRMED_FLAG);

    if (retcode < 0) {
       //retcode == LORAWAN_STATUS_WOULD_BLOCK; // printf("send - WOULD BLOCK\r\n")
        // printf("\r\n send() - Error code %d \r\n", retcode);

        if (retcode == LORAWAN_STATUS_WOULD_BLOCK) {
            //retry in 3 seconds
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                ev_queue.call_in(3000, send_message);
            }
        }
        return;
    }
    //printf("\r\n %d bytes scheduled for transmission \r\n", retcode);
    memset(tx_buffer, 0, sizeof(tx_buffer));
}

/**
 * Receive a message from the Network Server
 */
static void receive_message()
{
    uint8_t port;
    int flags;
    int16_t retcode = lorawan.receive(rx_buffer, sizeof(rx_buffer), port, flags);

    if (retcode < 0) {
        //printf("\r\n receive() - Error code %d \r\n", retcode);
        return;
    }
    //printf(" RX Data on port %u (%d bytes): ", port, retcode);

    for (uint8_t i = 0; i < retcode; i++) {
        //printf("%02x ", rx_buffer[i]);
    }
   // printf("\r\n");
    memset(rx_buffer, 0, sizeof(rx_buffer));
}
/*
* Set led after the test of the sent packet
 */
static void show(double esp){
     if(esp<=120.0){ 
        StartLed1();
    }
    else if(esp<125.0 && esp>120.0){
        StartLed3();
    }
    else{
        StartLed4();
    }
 }
/*
 * Calcul rx data
 */
   static void receive_data_calcul(int16_t rssi, int16_t snr){
     //RSSI − 10∗LOG(1+10^(−SNR/100)).
     //Convertie les valeurs pour effectuer les calculs
     double s = (int) snr;
     printf(" Original RSSI & SNR:\n  %d  \n %f\n", rssi, s/10);
     if(rssi>0){
         rssi=-rssi;
     }
     //Algo II
     switch(rssi) {
              case -115:
              case -116:
              case -117: 
                 rssi +=2;
                 s +=20;
                break;
              case -118:
              case -119: 
                 rssi +=3;
                 s +=20;
                break;  
              case -120:
              case -121:
                 rssi +=5;
                 s +=20;
                break;
              case -122:
              case -123:
                     rssi +=6;
                     s +=40;
                    break;  
              case -124:
                     rssi +=8;
                     s +=50;
                    break; 
              case -125:
                     rssi +=8;
                     s +=40;
                    break;
              case -126:
                     rssi +=8;
                     s +=40;
                    break;
              case -127:
                     rssi +=8;
                    break;
              case -128:
                     rssi +=8;
                     s -=20;
                    break;
              case -129:
              case -130:
              case -131:
              case -132:
              case -133:
              case -134:
              case -135:
                     rssi +=8;
                     s -=40;
                    break;
            }
     //printf(" Filtred RSSI & SNR %d %f\n", rssi, s/10);
     double rs = (int) rssi;
     s = -s;
     s /= 100.0;
     double p = pow(10, s);
     p+=1.0;
     double snrLog = log10(p); 
     double esp = rs - (10.0*snrLog);
     //printf(" ESP value %f\n", esp);
     printf(" Numero de trame %d\r\n", countAck);
     esp*=-1;
     moyESP+=esp; //Fais la moyenne de ESP
     //printf(" moyenne esp %f\n", moyESP);
     show(esp); //Envois la valeur de l'esp à la méthode qui va allumer les led correspondantes
 }
 /*
 * get rx data
 */
 static void receive_data(){
     lorawan_rx_metadata rxMetadata;
     lorawan.get_rx_metadata(rxMetadata); //Get info of the downlink communcitation
     receive_data_calcul(rxMetadata.rssi, rxMetadata.snr); //Send the value of RSSI & SNR to the next step
 }
/**
 * Event handler
 */
static void lora_event_handler(lorawan_event_t event)
{
    switch (event) {
        case CONNECTED:
            /* Enable this for fix sf to 12
            printf("\r\n ADR disable");
            lorawan.disable_adaptive_datarate();
            lorawan.set_datarate(0); */
            //printf("\r\n Connection - Successful \r\n");
            ev_queue.cancel(id);
            myled1 = 1;
            myled2 = 1;
            myled3 = 1;
            myled4 = 1;
            moyESP = 0; //Set la valeur de l'ESP à 0 pour commencer les test
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            } else {
                ev_queue.call_every(TX_TIMER, send_message);
            }
            break;
        case DISCONNECTED:
            ev_queue.break_dispatch();
            printf("\r\n Disconnected Successfully \r\n");
            break;
        case TX_DONE:
            //printf("\r\n Message Sent to Network Server \r\n");
            receive_data();
            ev_queue.cancel(id);
            if(countAck==nbrACK){
                //testEnd();
            }
            //----------------------------------------------------ATTENTION !!
            countAck++;
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            }
            break;
        case TX_TIMEOUT:
        case TX_ERROR:
        case TX_CRYPTO_ERROR:
        case TX_SCHEDULING_ERROR:
            printf("\r\n Transmission Error - EventCode = %d \r\n", event);
            if(countFailAck==5){ //IF more than 5 ackfail
                moyESP = 4000; //Set esp in red
                testEnd(); //end of the test
            }
            countFailAck++;
            //Set blink led if ack fail
            if(ledStart == 1){
                ev_queue.cancel(id);
                id = ev_queue.call_every(500, &toggleLed, myled1);
            }
            else if(ledStart == 3){
                ev_queue.cancel(id);
                id = ev_queue.call_every(500, &toggleLed, myled3);
            }
            else if(ledStart == 4){
                ev_queue.cancel(id);
                id = ev_queue.call_every(500, &toggleLed, myled4);
            }
            else{
                ev_queue.cancel(id);
                id = ev_queue.call_every(200, &toggleLed, myled4);
            }
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            }
            break;
        case RX_DONE:
           // printf("\r\n Received message from Network Server \r\n");
            receive_message();
            break;
        case RX_TIMEOUT:
        case RX_ERROR:
            printf("\r\n Error in reception - Code = %d \r\n", event);
            break;
        case JOIN_FAILURE:
            printf("\r\n OTAA Failed - Check Keys \r\n");
            testEnd();
            break;
        case UPLINK_REQUIRED:
            printf("\r\n Uplink required by NS \r\n");
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            }
            break;
        default:
            MBED_ASSERT("Unknown Event");
    }
}