Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: uzair Camera_LS_Y201 F7_Ethernet LCD_DISCO_F746NG NetworkAPI SDFileSystem mbed
jfdctfst.c
00001 /* 00002 * jfdctfst.c 00003 * 00004 * Copyright (C) 1994-1996, Thomas G. Lane. 00005 * Modified 2003-2015 by Guido Vollbeding. 00006 * This file is part of the Independent JPEG Group's software. 00007 * For conditions of distribution and use, see the accompanying README file. 00008 * 00009 * This file contains a fast, not so accurate integer implementation of the 00010 * forward DCT (Discrete Cosine Transform). 00011 * 00012 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT 00013 * on each column. Direct algorithms are also available, but they are 00014 * much more complex and seem not to be any faster when reduced to code. 00015 * 00016 * This implementation is based on Arai, Agui, and Nakajima's algorithm for 00017 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in 00018 * Japanese, but the algorithm is described in the Pennebaker & Mitchell 00019 * JPEG textbook (see REFERENCES section in file README). The following code 00020 * is based directly on figure 4-8 in P&M. 00021 * While an 8-point DCT cannot be done in less than 11 multiplies, it is 00022 * possible to arrange the computation so that many of the multiplies are 00023 * simple scalings of the final outputs. These multiplies can then be 00024 * folded into the multiplications or divisions by the JPEG quantization 00025 * table entries. The AA&N method leaves only 5 multiplies and 29 adds 00026 * to be done in the DCT itself. 00027 * The primary disadvantage of this method is that with fixed-point math, 00028 * accuracy is lost due to imprecise representation of the scaled 00029 * quantization values. The smaller the quantization table entry, the less 00030 * precise the scaled value, so this implementation does worse with high- 00031 * quality-setting files than with low-quality ones. 00032 */ 00033 00034 #define JPEG_INTERNALS 00035 #include "jinclude.h" 00036 #include "jpeglib.h" 00037 #include "jdct.h" /* Private declarations for DCT subsystem */ 00038 00039 #ifdef DCT_IFAST_SUPPORTED 00040 00041 00042 /* 00043 * This module is specialized to the case DCTSIZE = 8. 00044 */ 00045 00046 #if DCTSIZE != 8 00047 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 00048 #endif 00049 00050 00051 /* Scaling decisions are generally the same as in the LL&M algorithm; 00052 * see jfdctint.c for more details. However, we choose to descale 00053 * (right shift) multiplication products as soon as they are formed, 00054 * rather than carrying additional fractional bits into subsequent additions. 00055 * This compromises accuracy slightly, but it lets us save a few shifts. 00056 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) 00057 * everywhere except in the multiplications proper; this saves a good deal 00058 * of work on 16-bit-int machines. 00059 * 00060 * Again to save a few shifts, the intermediate results between pass 1 and 00061 * pass 2 are not upscaled, but are represented only to integral precision. 00062 * 00063 * A final compromise is to represent the multiplicative constants to only 00064 * 8 fractional bits, rather than 13. This saves some shifting work on some 00065 * machines, and may also reduce the cost of multiplication (since there 00066 * are fewer one-bits in the constants). 00067 */ 00068 00069 #define CONST_BITS 8 00070 00071 00072 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus 00073 * causing a lot of useless floating-point operations at run time. 00074 * To get around this we use the following pre-calculated constants. 00075 * If you change CONST_BITS you may want to add appropriate values. 00076 * (With a reasonable C compiler, you can just rely on the FIX() macro...) 00077 */ 00078 00079 #if CONST_BITS == 8 00080 #define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */ 00081 #define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */ 00082 #define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */ 00083 #define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */ 00084 #else 00085 #define FIX_0_382683433 FIX(0.382683433) 00086 #define FIX_0_541196100 FIX(0.541196100) 00087 #define FIX_0_707106781 FIX(0.707106781) 00088 #define FIX_1_306562965 FIX(1.306562965) 00089 #endif 00090 00091 00092 /* We can gain a little more speed, with a further compromise in accuracy, 00093 * by omitting the addition in a descaling shift. This yields an incorrectly 00094 * rounded result half the time... 00095 */ 00096 00097 #ifndef USE_ACCURATE_ROUNDING 00098 #undef DESCALE 00099 #define DESCALE(x,n) RIGHT_SHIFT(x, n) 00100 #endif 00101 00102 00103 /* Multiply a DCTELEM variable by an INT32 constant, and immediately 00104 * descale to yield a DCTELEM result. 00105 */ 00106 00107 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) 00108 00109 00110 /* 00111 * Perform the forward DCT on one block of samples. 00112 * 00113 * cK represents cos(K*pi/16). 00114 */ 00115 00116 GLOBAL(void) 00117 jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) 00118 { 00119 DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 00120 DCTELEM tmp10, tmp11, tmp12, tmp13; 00121 DCTELEM z1, z2, z3, z4, z5, z11, z13; 00122 DCTELEM *dataptr; 00123 JSAMPROW elemptr; 00124 int ctr; 00125 SHIFT_TEMPS 00126 00127 /* Pass 1: process rows. */ 00128 00129 dataptr = data; 00130 for (ctr = 0; ctr < DCTSIZE; ctr++) { 00131 elemptr = sample_data[ctr] + start_col; 00132 00133 /* Load data into workspace */ 00134 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); 00135 tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); 00136 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); 00137 tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); 00138 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); 00139 tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); 00140 tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); 00141 tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); 00142 00143 /* Even part */ 00144 00145 tmp10 = tmp0 + tmp3; /* phase 2 */ 00146 tmp13 = tmp0 - tmp3; 00147 tmp11 = tmp1 + tmp2; 00148 tmp12 = tmp1 - tmp2; 00149 00150 /* Apply unsigned->signed conversion. */ 00151 dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ 00152 dataptr[4] = tmp10 - tmp11; 00153 00154 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ 00155 dataptr[2] = tmp13 + z1; /* phase 5 */ 00156 dataptr[6] = tmp13 - z1; 00157 00158 /* Odd part */ 00159 00160 tmp10 = tmp4 + tmp5; /* phase 2 */ 00161 tmp11 = tmp5 + tmp6; 00162 tmp12 = tmp6 + tmp7; 00163 00164 /* The rotator is modified from fig 4-8 to avoid extra negations. */ 00165 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ 00166 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ 00167 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ 00168 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ 00169 00170 z11 = tmp7 + z3; /* phase 5 */ 00171 z13 = tmp7 - z3; 00172 00173 dataptr[5] = z13 + z2; /* phase 6 */ 00174 dataptr[3] = z13 - z2; 00175 dataptr[1] = z11 + z4; 00176 dataptr[7] = z11 - z4; 00177 00178 dataptr += DCTSIZE; /* advance pointer to next row */ 00179 } 00180 00181 /* Pass 2: process columns. */ 00182 00183 dataptr = data; 00184 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 00185 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; 00186 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; 00187 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; 00188 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; 00189 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; 00190 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; 00191 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; 00192 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; 00193 00194 /* Even part */ 00195 00196 tmp10 = tmp0 + tmp3; /* phase 2 */ 00197 tmp13 = tmp0 - tmp3; 00198 tmp11 = tmp1 + tmp2; 00199 tmp12 = tmp1 - tmp2; 00200 00201 dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ 00202 dataptr[DCTSIZE*4] = tmp10 - tmp11; 00203 00204 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ 00205 dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ 00206 dataptr[DCTSIZE*6] = tmp13 - z1; 00207 00208 /* Odd part */ 00209 00210 tmp10 = tmp4 + tmp5; /* phase 2 */ 00211 tmp11 = tmp5 + tmp6; 00212 tmp12 = tmp6 + tmp7; 00213 00214 /* The rotator is modified from fig 4-8 to avoid extra negations. */ 00215 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ 00216 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ 00217 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ 00218 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ 00219 00220 z11 = tmp7 + z3; /* phase 5 */ 00221 z13 = tmp7 - z3; 00222 00223 dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ 00224 dataptr[DCTSIZE*3] = z13 - z2; 00225 dataptr[DCTSIZE*1] = z11 + z4; 00226 dataptr[DCTSIZE*7] = z11 - z4; 00227 00228 dataptr++; /* advance pointer to next column */ 00229 } 00230 } 00231 00232 #endif /* DCT_IFAST_SUPPORTED */
Generated on Wed Jul 13 2022 18:56:09 by
