Final 350 project

Dependencies:   uzair Camera_LS_Y201 F7_Ethernet LCD_DISCO_F746NG NetworkAPI SDFileSystem mbed

Revision:
0:791a779d6220
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/includes/jcarith.c	Mon Jul 31 09:16:35 2017 +0000
@@ -0,0 +1,944 @@
+/*
+ * jcarith.c
+ *
+ * Developed 1997-2013 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains portable arithmetic entropy encoding routines for JPEG
+ * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
+ *
+ * Both sequential and progressive modes are supported in this single module.
+ *
+ * Suspension is not currently supported in this module.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Expanded entropy encoder object for arithmetic encoding. */
+
+typedef struct {
+  struct jpeg_entropy_encoder pub; /* public fields */
+
+  INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
+  INT32 a;               /* A register, normalized size of coding interval */
+  INT32 sc;        /* counter for stacked 0xFF values which might overflow */
+  INT32 zc;          /* counter for pending 0x00 output values which might *
+                          * be discarded at the end ("Pacman" termination) */
+  int ct;  /* bit shift counter, determines when next byte will be written */
+  int buffer;                /* buffer for most recent output byte != 0xFF */
+
+  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
+
+  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
+  int next_restart_num;		/* next restart number to write (0-7) */
+
+  /* Pointers to statistics areas (these workspaces have image lifespan) */
+  unsigned char * dc_stats[NUM_ARITH_TBLS];
+  unsigned char * ac_stats[NUM_ARITH_TBLS];
+
+  /* Statistics bin for coding with fixed probability 0.5 */
+  unsigned char fixed_bin[4];
+} arith_entropy_encoder;
+
+typedef arith_entropy_encoder * arith_entropy_ptr;
+
+/* The following two definitions specify the allocation chunk size
+ * for the statistics area.
+ * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
+ * 49 statistics bins for DC, and 245 statistics bins for AC coding.
+ *
+ * We use a compact representation with 1 byte per statistics bin,
+ * thus the numbers directly represent byte sizes.
+ * This 1 byte per statistics bin contains the meaning of the MPS
+ * (more probable symbol) in the highest bit (mask 0x80), and the
+ * index into the probability estimation state machine table
+ * in the lower bits (mask 0x7F).
+ */
+
+#define DC_STAT_BINS 64
+#define AC_STAT_BINS 256
+
+/* NOTE: Uncomment the following #define if you want to use the
+ * given formula for calculating the AC conditioning parameter Kx
+ * for spectral selection progressive coding in section G.1.3.2
+ * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
+ * Although the spec and P&M authors claim that this "has proven
+ * to give good results for 8 bit precision samples", I'm not
+ * convinced yet that this is really beneficial.
+ * Early tests gave only very marginal compression enhancements
+ * (a few - around 5 or so - bytes even for very large files),
+ * which would turn out rather negative if we'd suppress the
+ * DAC (Define Arithmetic Conditioning) marker segments for
+ * the default parameters in the future.
+ * Note that currently the marker writing module emits 12-byte
+ * DAC segments for a full-component scan in a color image.
+ * This is not worth worrying about IMHO. However, since the
+ * spec defines the default values to be used if the tables
+ * are omitted (unlike Huffman tables, which are required
+ * anyway), one might optimize this behaviour in the future,
+ * and then it would be disadvantageous to use custom tables if
+ * they don't provide sufficient gain to exceed the DAC size.
+ *
+ * On the other hand, I'd consider it as a reasonable result
+ * that the conditioning has no significant influence on the
+ * compression performance. This means that the basic
+ * statistical model is already rather stable.
+ *
+ * Thus, at the moment, we use the default conditioning values
+ * anyway, and do not use the custom formula.
+ *
+#define CALCULATE_SPECTRAL_CONDITIONING
+ */
+
+/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
+ * We assume that int right shift is unsigned if INT32 right shift is,
+ * which should be safe.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define ISHIFT_TEMPS	int ishift_temp;
+#define IRIGHT_SHIFT(x,shft)  \
+	((ishift_temp = (x)) < 0 ? \
+	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
+	 (ishift_temp >> (shft)))
+#else
+#define ISHIFT_TEMPS
+#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
+#endif
+
+
+LOCAL(void)
+emit_byte (int val, j_compress_ptr cinfo)
+/* Write next output byte; we do not support suspension in this module. */
+{
+  struct jpeg_destination_mgr * dest = cinfo->dest;
+
+  *dest->next_output_byte++ = (JOCTET) val;
+  if (--dest->free_in_buffer == 0)
+    if (! (*dest->empty_output_buffer) (cinfo))
+      ERREXIT(cinfo, JERR_CANT_SUSPEND);
+}
+
+
+/*
+ * Finish up at the end of an arithmetic-compressed scan.
+ */
+
+METHODDEF(void)
+finish_pass (j_compress_ptr cinfo)
+{
+  arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
+  INT32 temp;
+
+  /* Section D.1.8: Termination of encoding */
+
+  /* Find the e->c in the coding interval with the largest
+   * number of trailing zero bits */
+  if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
+    e->c = temp + 0x8000L;
+  else
+    e->c = temp;
+  /* Send remaining bytes to output */
+  e->c <<= e->ct;
+  if (e->c & 0xF8000000L) {
+    /* One final overflow has to be handled */
+    if (e->buffer >= 0) {
+      if (e->zc)
+	do emit_byte(0x00, cinfo);
+	while (--e->zc);
+      emit_byte(e->buffer + 1, cinfo);
+      if (e->buffer + 1 == 0xFF)
+	emit_byte(0x00, cinfo);
+    }
+    e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
+    e->sc = 0;
+  } else {
+    if (e->buffer == 0)
+      ++e->zc;
+    else if (e->buffer >= 0) {
+      if (e->zc)
+	do emit_byte(0x00, cinfo);
+	while (--e->zc);
+      emit_byte(e->buffer, cinfo);
+    }
+    if (e->sc) {
+      if (e->zc)
+	do emit_byte(0x00, cinfo);
+	while (--e->zc);
+      do {
+	emit_byte(0xFF, cinfo);
+	emit_byte(0x00, cinfo);
+      } while (--e->sc);
+    }
+  }
+  /* Output final bytes only if they are not 0x00 */
+  if (e->c & 0x7FFF800L) {
+    if (e->zc)  /* output final pending zero bytes */
+      do emit_byte(0x00, cinfo);
+      while (--e->zc);
+    emit_byte((e->c >> 19) & 0xFF, cinfo);
+    if (((e->c >> 19) & 0xFF) == 0xFF)
+      emit_byte(0x00, cinfo);
+    if (e->c & 0x7F800L) {
+      emit_byte((e->c >> 11) & 0xFF, cinfo);
+      if (((e->c >> 11) & 0xFF) == 0xFF)
+	emit_byte(0x00, cinfo);
+    }
+  }
+}
+
+
+/*
+ * The core arithmetic encoding routine (common in JPEG and JBIG).
+ * This needs to go as fast as possible.
+ * Machine-dependent optimization facilities
+ * are not utilized in this portable implementation.
+ * However, this code should be fairly efficient and
+ * may be a good base for further optimizations anyway.
+ *
+ * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
+ *
+ * Note: I've added full "Pacman" termination support to the
+ * byte output routines, which is equivalent to the optional
+ * Discard_final_zeros procedure (Figure D.15) in the spec.
+ * Thus, we always produce the shortest possible output
+ * stream compliant to the spec (no trailing zero bytes,
+ * except for FF stuffing).
+ *
+ * I've also introduced a new scheme for accessing
+ * the probability estimation state machine table,
+ * derived from Markus Kuhn's JBIG implementation.
+ */
+
+LOCAL(void)
+arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) 
+{
+  register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
+  register unsigned char nl, nm;
+  register INT32 qe, temp;
+  register int sv;
+
+  /* Fetch values from our compact representation of Table D.3(D.2):
+   * Qe values and probability estimation state machine
+   */
+  sv = *st;
+  qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
+  nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
+  nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
+
+  /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
+  e->a -= qe;
+  if (val != (sv >> 7)) {
+    /* Encode the less probable symbol */
+    if (e->a >= qe) {
+      /* If the interval size (qe) for the less probable symbol (LPS)
+       * is larger than the interval size for the MPS, then exchange
+       * the two symbols for coding efficiency, otherwise code the LPS
+       * as usual: */
+      e->c += e->a;
+      e->a = qe;
+    }
+    *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
+  } else {
+    /* Encode the more probable symbol */
+    if (e->a >= 0x8000L)
+      return;  /* A >= 0x8000 -> ready, no renormalization required */
+    if (e->a < qe) {
+      /* If the interval size (qe) for the less probable symbol (LPS)
+       * is larger than the interval size for the MPS, then exchange
+       * the two symbols for coding efficiency: */
+      e->c += e->a;
+      e->a = qe;
+    }
+    *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
+  }
+
+  /* Renormalization & data output per section D.1.6 */
+  do {
+    e->a <<= 1;
+    e->c <<= 1;
+    if (--e->ct == 0) {
+      /* Another byte is ready for output */
+      temp = e->c >> 19;
+      if (temp > 0xFF) {
+	/* Handle overflow over all stacked 0xFF bytes */
+	if (e->buffer >= 0) {
+	  if (e->zc)
+	    do emit_byte(0x00, cinfo);
+	    while (--e->zc);
+	  emit_byte(e->buffer + 1, cinfo);
+	  if (e->buffer + 1 == 0xFF)
+	    emit_byte(0x00, cinfo);
+	}
+	e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
+	e->sc = 0;
+	/* Note: The 3 spacer bits in the C register guarantee
+	 * that the new buffer byte can't be 0xFF here
+	 * (see page 160 in the P&M JPEG book). */
+	e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
+      } else if (temp == 0xFF) {
+	++e->sc;  /* stack 0xFF byte (which might overflow later) */
+      } else {
+	/* Output all stacked 0xFF bytes, they will not overflow any more */
+	if (e->buffer == 0)
+	  ++e->zc;
+	else if (e->buffer >= 0) {
+	  if (e->zc)
+	    do emit_byte(0x00, cinfo);
+	    while (--e->zc);
+	  emit_byte(e->buffer, cinfo);
+	}
+	if (e->sc) {
+	  if (e->zc)
+	    do emit_byte(0x00, cinfo);
+	    while (--e->zc);
+	  do {
+	    emit_byte(0xFF, cinfo);
+	    emit_byte(0x00, cinfo);
+	  } while (--e->sc);
+	}
+	e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
+      }
+      e->c &= 0x7FFFFL;
+      e->ct += 8;
+    }
+  } while (e->a < 0x8000L);
+}
+
+
+/*
+ * Emit a restart marker & resynchronize predictions.
+ */
+
+LOCAL(void)
+emit_restart (j_compress_ptr cinfo, int restart_num)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  int ci;
+  jpeg_component_info * compptr;
+
+  finish_pass(cinfo);
+
+  emit_byte(0xFF, cinfo);
+  emit_byte(JPEG_RST0 + restart_num, cinfo);
+
+  /* Re-initialize statistics areas */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    /* DC needs no table for refinement scan */
+    if (cinfo->Ss == 0 && cinfo->Ah == 0) {
+      MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
+      /* Reset DC predictions to 0 */
+      entropy->last_dc_val[ci] = 0;
+      entropy->dc_context[ci] = 0;
+    }
+    /* AC needs no table when not present */
+    if (cinfo->Se) {
+      MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
+    }
+  }
+
+  /* Reset arithmetic encoding variables */
+  entropy->c = 0;
+  entropy->a = 0x10000L;
+  entropy->sc = 0;
+  entropy->zc = 0;
+  entropy->ct = 11;
+  entropy->buffer = -1;  /* empty */
+}
+
+
+/*
+ * MCU encoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  unsigned char *st;
+  int blkn, ci, tbl;
+  int v, v2, m;
+  ISHIFT_TEMPS
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      emit_restart(cinfo, entropy->next_restart_num);
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  /* Encode the MCU data blocks */
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    ci = cinfo->MCU_membership[blkn];
+    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
+
+    /* Compute the DC value after the required point transform by Al.
+     * This is simply an arithmetic right shift.
+     */
+    m = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
+
+    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
+
+    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+    /* Figure F.4: Encode_DC_DIFF */
+    if ((v = m - entropy->last_dc_val[ci]) == 0) {
+      arith_encode(cinfo, st, 0);
+      entropy->dc_context[ci] = 0;	/* zero diff category */
+    } else {
+      entropy->last_dc_val[ci] = m;
+      arith_encode(cinfo, st, 1);
+      /* Figure F.6: Encoding nonzero value v */
+      /* Figure F.7: Encoding the sign of v */
+      if (v > 0) {
+	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
+	st += 2;			/* Table F.4: SP = S0 + 2 */
+	entropy->dc_context[ci] = 4;	/* small positive diff category */
+      } else {
+	v = -v;
+	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
+	st += 3;			/* Table F.4: SN = S0 + 3 */
+	entropy->dc_context[ci] = 8;	/* small negative diff category */
+      }
+      /* Figure F.8: Encoding the magnitude category of v */
+      m = 0;
+      if (v -= 1) {
+	arith_encode(cinfo, st, 1);
+	m = 1;
+	v2 = v;
+	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
+	while (v2 >>= 1) {
+	  arith_encode(cinfo, st, 1);
+	  m <<= 1;
+	  st += 1;
+	}
+      }
+      arith_encode(cinfo, st, 0);
+      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+	entropy->dc_context[ci] = 0;	/* zero diff category */
+      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+	entropy->dc_context[ci] += 8;	/* large diff category */
+      /* Figure F.9: Encoding the magnitude bit pattern of v */
+      st += 14;
+      while (m >>= 1)
+	arith_encode(cinfo, st, (m & v) ? 1 : 0);
+    }
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * MCU encoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  const int * natural_order;
+  JBLOCKROW block;
+  unsigned char *st;
+  int tbl, k, ke;
+  int v, v2, m;
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      emit_restart(cinfo, entropy->next_restart_num);
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  natural_order = cinfo->natural_order;
+
+  /* Encode the MCU data block */
+  block = MCU_data[0];
+  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+  /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
+
+  /* Establish EOB (end-of-block) index */
+  ke = cinfo->Se;
+  do {
+    /* We must apply the point transform by Al.  For AC coefficients this
+     * is an integer division with rounding towards 0.  To do this portably
+     * in C, we shift after obtaining the absolute value.
+     */
+    if ((v = (*block)[natural_order[ke]]) >= 0) {
+      if (v >>= cinfo->Al) break;
+    } else {
+      v = -v;
+      if (v >>= cinfo->Al) break;
+    }
+  } while (--ke);
+
+  /* Figure F.5: Encode_AC_Coefficients */
+  for (k = cinfo->Ss - 1; k < ke;) {
+    st = entropy->ac_stats[tbl] + 3 * k;
+    arith_encode(cinfo, st, 0);		/* EOB decision */
+    for (;;) {
+      if ((v = (*block)[natural_order[++k]]) >= 0) {
+	if (v >>= cinfo->Al) {
+	  arith_encode(cinfo, st + 1, 1);
+	  arith_encode(cinfo, entropy->fixed_bin, 0);
+	  break;
+	}
+      } else {
+	v = -v;
+	if (v >>= cinfo->Al) {
+	  arith_encode(cinfo, st + 1, 1);
+	  arith_encode(cinfo, entropy->fixed_bin, 1);
+	  break;
+	}
+      }
+      arith_encode(cinfo, st + 1, 0);
+      st += 3;
+    }
+    st += 2;
+    /* Figure F.8: Encoding the magnitude category of v */
+    m = 0;
+    if (v -= 1) {
+      arith_encode(cinfo, st, 1);
+      m = 1;
+      v2 = v;
+      if (v2 >>= 1) {
+	arith_encode(cinfo, st, 1);
+	m <<= 1;
+	st = entropy->ac_stats[tbl] +
+	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+	while (v2 >>= 1) {
+	  arith_encode(cinfo, st, 1);
+	  m <<= 1;
+	  st += 1;
+	}
+      }
+    }
+    arith_encode(cinfo, st, 0);
+    /* Figure F.9: Encoding the magnitude bit pattern of v */
+    st += 14;
+    while (m >>= 1)
+      arith_encode(cinfo, st, (m & v) ? 1 : 0);
+  }
+  /* Encode EOB decision only if k < cinfo->Se */
+  if (k < cinfo->Se) {
+    st = entropy->ac_stats[tbl] + 3 * k;
+    arith_encode(cinfo, st, 1);
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * MCU encoding for DC successive approximation refinement scan.
+ * Note: we assume such scans can be multi-component,
+ * although the spec is not very clear on the point.
+ */
+
+METHODDEF(boolean)
+encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  unsigned char *st;
+  int Al, blkn;
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      emit_restart(cinfo, entropy->next_restart_num);
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  st = entropy->fixed_bin;	/* use fixed probability estimation */
+  Al = cinfo->Al;
+
+  /* Encode the MCU data blocks */
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    /* We simply emit the Al'th bit of the DC coefficient value. */
+    arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * MCU encoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  const int * natural_order;
+  JBLOCKROW block;
+  unsigned char *st;
+  int tbl, k, ke, kex;
+  int v;
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      emit_restart(cinfo, entropy->next_restart_num);
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  natural_order = cinfo->natural_order;
+
+  /* Encode the MCU data block */
+  block = MCU_data[0];
+  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+  /* Section G.1.3.3: Encoding of AC coefficients */
+
+  /* Establish EOB (end-of-block) index */
+  ke = cinfo->Se;
+  do {
+    /* We must apply the point transform by Al.  For AC coefficients this
+     * is an integer division with rounding towards 0.  To do this portably
+     * in C, we shift after obtaining the absolute value.
+     */
+    if ((v = (*block)[natural_order[ke]]) >= 0) {
+      if (v >>= cinfo->Al) break;
+    } else {
+      v = -v;
+      if (v >>= cinfo->Al) break;
+    }
+  } while (--ke);
+
+  /* Establish EOBx (previous stage end-of-block) index */
+  for (kex = ke; kex > 0; kex--)
+    if ((v = (*block)[natural_order[kex]]) >= 0) {
+      if (v >>= cinfo->Ah) break;
+    } else {
+      v = -v;
+      if (v >>= cinfo->Ah) break;
+    }
+
+  /* Figure G.10: Encode_AC_Coefficients_SA */
+  for (k = cinfo->Ss - 1; k < ke;) {
+    st = entropy->ac_stats[tbl] + 3 * k;
+    if (k >= kex)
+      arith_encode(cinfo, st, 0);	/* EOB decision */
+    for (;;) {
+      if ((v = (*block)[natural_order[++k]]) >= 0) {
+	if (v >>= cinfo->Al) {
+	  if (v >> 1)			/* previously nonzero coef */
+	    arith_encode(cinfo, st + 2, (v & 1));
+	  else {			/* newly nonzero coef */
+	    arith_encode(cinfo, st + 1, 1);
+	    arith_encode(cinfo, entropy->fixed_bin, 0);
+	  }
+	  break;
+	}
+      } else {
+	v = -v;
+	if (v >>= cinfo->Al) {
+	  if (v >> 1)			/* previously nonzero coef */
+	    arith_encode(cinfo, st + 2, (v & 1));
+	  else {			/* newly nonzero coef */
+	    arith_encode(cinfo, st + 1, 1);
+	    arith_encode(cinfo, entropy->fixed_bin, 1);
+	  }
+	  break;
+	}
+      }
+      arith_encode(cinfo, st + 1, 0);
+      st += 3;
+    }
+  }
+  /* Encode EOB decision only if k < cinfo->Se */
+  if (k < cinfo->Se) {
+    st = entropy->ac_stats[tbl] + 3 * k;
+    arith_encode(cinfo, st, 1);
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * Encode and output one MCU's worth of arithmetic-compressed coefficients.
+ */
+
+METHODDEF(boolean)
+encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  const int * natural_order;
+  JBLOCKROW block;
+  unsigned char *st;
+  int tbl, k, ke;
+  int v, v2, m;
+  int blkn, ci;
+  jpeg_component_info * compptr;
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      emit_restart(cinfo, entropy->next_restart_num);
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  natural_order = cinfo->natural_order;
+
+  /* Encode the MCU data blocks */
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    block = MCU_data[blkn];
+    ci = cinfo->MCU_membership[blkn];
+    compptr = cinfo->cur_comp_info[ci];
+
+    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
+
+    tbl = compptr->dc_tbl_no;
+
+    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+    /* Figure F.4: Encode_DC_DIFF */
+    if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
+      arith_encode(cinfo, st, 0);
+      entropy->dc_context[ci] = 0;	/* zero diff category */
+    } else {
+      entropy->last_dc_val[ci] = (*block)[0];
+      arith_encode(cinfo, st, 1);
+      /* Figure F.6: Encoding nonzero value v */
+      /* Figure F.7: Encoding the sign of v */
+      if (v > 0) {
+	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
+	st += 2;			/* Table F.4: SP = S0 + 2 */
+	entropy->dc_context[ci] = 4;	/* small positive diff category */
+      } else {
+	v = -v;
+	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
+	st += 3;			/* Table F.4: SN = S0 + 3 */
+	entropy->dc_context[ci] = 8;	/* small negative diff category */
+      }
+      /* Figure F.8: Encoding the magnitude category of v */
+      m = 0;
+      if (v -= 1) {
+	arith_encode(cinfo, st, 1);
+	m = 1;
+	v2 = v;
+	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
+	while (v2 >>= 1) {
+	  arith_encode(cinfo, st, 1);
+	  m <<= 1;
+	  st += 1;
+	}
+      }
+      arith_encode(cinfo, st, 0);
+      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+	entropy->dc_context[ci] = 0;	/* zero diff category */
+      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+	entropy->dc_context[ci] += 8;	/* large diff category */
+      /* Figure F.9: Encoding the magnitude bit pattern of v */
+      st += 14;
+      while (m >>= 1)
+	arith_encode(cinfo, st, (m & v) ? 1 : 0);
+    }
+
+    /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
+
+    if ((ke = cinfo->lim_Se) == 0) continue;
+    tbl = compptr->ac_tbl_no;
+
+    /* Establish EOB (end-of-block) index */
+    do {
+      if ((*block)[natural_order[ke]]) break;
+    } while (--ke);
+
+    /* Figure F.5: Encode_AC_Coefficients */
+    for (k = 0; k < ke;) {
+      st = entropy->ac_stats[tbl] + 3 * k;
+      arith_encode(cinfo, st, 0);	/* EOB decision */
+      while ((v = (*block)[natural_order[++k]]) == 0) {
+	arith_encode(cinfo, st + 1, 0);
+	st += 3;
+      }
+      arith_encode(cinfo, st + 1, 1);
+      /* Figure F.6: Encoding nonzero value v */
+      /* Figure F.7: Encoding the sign of v */
+      if (v > 0) {
+	arith_encode(cinfo, entropy->fixed_bin, 0);
+      } else {
+	v = -v;
+	arith_encode(cinfo, entropy->fixed_bin, 1);
+      }
+      st += 2;
+      /* Figure F.8: Encoding the magnitude category of v */
+      m = 0;
+      if (v -= 1) {
+	arith_encode(cinfo, st, 1);
+	m = 1;
+	v2 = v;
+	if (v2 >>= 1) {
+	  arith_encode(cinfo, st, 1);
+	  m <<= 1;
+	  st = entropy->ac_stats[tbl] +
+	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+	  while (v2 >>= 1) {
+	    arith_encode(cinfo, st, 1);
+	    m <<= 1;
+	    st += 1;
+	  }
+	}
+      }
+      arith_encode(cinfo, st, 0);
+      /* Figure F.9: Encoding the magnitude bit pattern of v */
+      st += 14;
+      while (m >>= 1)
+	arith_encode(cinfo, st, (m & v) ? 1 : 0);
+    }
+    /* Encode EOB decision only if k < cinfo->lim_Se */
+    if (k < cinfo->lim_Se) {
+      st = entropy->ac_stats[tbl] + 3 * k;
+      arith_encode(cinfo, st, 1);
+    }
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * Initialize for an arithmetic-compressed scan.
+ */
+
+METHODDEF(void)
+start_pass (j_compress_ptr cinfo, boolean gather_statistics)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  int ci, tbl;
+  jpeg_component_info * compptr;
+
+  if (gather_statistics)
+    /* Make sure to avoid that in the master control logic!
+     * We are fully adaptive here and need no extra
+     * statistics gathering pass!
+     */
+    ERREXIT(cinfo, JERR_NOT_COMPILED);
+
+  /* We assume jcmaster.c already validated the progressive scan parameters. */
+
+  /* Select execution routines */
+  if (cinfo->progressive_mode) {
+    if (cinfo->Ah == 0) {
+      if (cinfo->Ss == 0)
+	entropy->pub.encode_mcu = encode_mcu_DC_first;
+      else
+	entropy->pub.encode_mcu = encode_mcu_AC_first;
+    } else {
+      if (cinfo->Ss == 0)
+	entropy->pub.encode_mcu = encode_mcu_DC_refine;
+      else
+	entropy->pub.encode_mcu = encode_mcu_AC_refine;
+    }
+  } else
+    entropy->pub.encode_mcu = encode_mcu;
+
+  /* Allocate & initialize requested statistics areas */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    /* DC needs no table for refinement scan */
+    if (cinfo->Ss == 0 && cinfo->Ah == 0) {
+      tbl = compptr->dc_tbl_no;
+      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+      if (entropy->dc_stats[tbl] == NULL)
+	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
+      MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
+      /* Initialize DC predictions to 0 */
+      entropy->last_dc_val[ci] = 0;
+      entropy->dc_context[ci] = 0;
+    }
+    /* AC needs no table when not present */
+    if (cinfo->Se) {
+      tbl = compptr->ac_tbl_no;
+      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+      if (entropy->ac_stats[tbl] == NULL)
+	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
+      MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
+#ifdef CALCULATE_SPECTRAL_CONDITIONING
+      if (cinfo->progressive_mode)
+	/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
+	cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
+#endif
+    }
+  }
+
+  /* Initialize arithmetic encoding variables */
+  entropy->c = 0;
+  entropy->a = 0x10000L;
+  entropy->sc = 0;
+  entropy->zc = 0;
+  entropy->ct = 11;
+  entropy->buffer = -1;  /* empty */
+
+  /* Initialize restart stuff */
+  entropy->restarts_to_go = cinfo->restart_interval;
+  entropy->next_restart_num = 0;
+}
+
+
+/*
+ * Module initialization routine for arithmetic entropy encoding.
+ */
+
+GLOBAL(void)
+jinit_arith_encoder (j_compress_ptr cinfo)
+{
+  arith_entropy_ptr entropy;
+  int i;
+
+  entropy = (arith_entropy_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(arith_entropy_encoder));
+  cinfo->entropy = &entropy->pub;
+  entropy->pub.start_pass = start_pass;
+  entropy->pub.finish_pass = finish_pass;
+
+  /* Mark tables unallocated */
+  for (i = 0; i < NUM_ARITH_TBLS; i++) {
+    entropy->dc_stats[i] = NULL;
+    entropy->ac_stats[i] = NULL;
+  }
+
+  /* Initialize index for fixed probability estimation */
+  entropy->fixed_bin[0] = 113;
+}