Code to log MAX30102 sensor data to phone application (Based on Nexpaq)
Dependencies: ds3231 maxim_dev nexpaq_mdk MAX30102
Fork of IO_Demo by
Revision 2:9057c54ae6e9, committed 2016-12-18
- Comitter:
- shettypavank
- Date:
- Sun Dec 18 09:43:33 2016 +0000
- Parent:
- 1:5fb525e83780
- Commit message:
- Code to log max30102 sensor data to phone app
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/algorithm/algorithm.cpp Sun Dec 18 09:43:33 2016 +0000 @@ -0,0 +1,363 @@ +/** \file algorithm.cpp ****************************************************** +* +* Project: MAXREFDES117# +* Filename: algorithm.cpp +* Description: This module calculates the heart rate/SpO2 level +* +* +* -------------------------------------------------------------------- +* +* This code follows the following naming conventions: +* +* char ch_pmod_value +* char (array) s_pmod_s_string[16] +* float f_pmod_value +* int32_t n_pmod_value +* int32_t (array) an_pmod_value[16] +* int16_t w_pmod_value +* int16_t (array) aw_pmod_value[16] +* uint16_t uw_pmod_value +* uint16_t (array) auw_pmod_value[16] +* uint8_t uch_pmod_value +* uint8_t (array) auch_pmod_buffer[16] +* uint32_t un_pmod_value +* int32_t * pn_pmod_value +* +* ------------------------------------------------------------------------- */ +/******************************************************************************* +* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved. +* +* Permission is hereby granted, free of charge, to any person obtaining a +* copy of this software and associated documentation files (the "Software"), +* to deal in the Software without restriction, including without limitation +* the rights to use, copy, modify, merge, publish, distribute, sublicense, +* and/or sell copies of the Software, and to permit persons to whom the +* Software is furnished to do so, subject to the following conditions: +* +* The above copyright notice and this permission notice shall be included +* in all copies or substantial portions of the Software. +* +* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS +* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES +* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR +* OTHER DEALINGS IN THE SOFTWARE. +* +* Except as contained in this notice, the name of Maxim Integrated +* Products, Inc. shall not be used except as stated in the Maxim Integrated +* Products, Inc. Branding Policy. +* +* The mere transfer of this software does not imply any licenses +* of trade secrets, proprietary technology, copyrights, patents, +* trademarks, maskwork rights, or any other form of intellectual +* property whatsoever. Maxim Integrated Products, Inc. retains all +* ownership rights. +******************************************************************************* +*/ +#include "algorithm.h" +#include "mbed.h" + +void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer, int32_t n_ir_buffer_length, uint32_t *pun_red_buffer, int32_t *pn_spo2, int8_t *pch_spo2_valid, + int32_t *pn_heart_rate, int8_t *pch_hr_valid) +/** +* \brief Calculate the heart rate and SpO2 level +* \par Details +* By detecting peaks of PPG cycle and corresponding AC/DC of red/infra-red signal, the ratio for the SPO2 is computed. +* Since this algorithm is aiming for Arm M0/M3. formaula for SPO2 did not achieve the accuracy due to register overflow. +* Thus, accurate SPO2 is precalculated and save longo uch_spo2_table[] per each ratio. +* +* \param[in] *pun_ir_buffer - IR sensor data buffer +* \param[in] n_ir_buffer_length - IR sensor data buffer length +* \param[in] *pun_red_buffer - Red sensor data buffer +* \param[out] *pn_spo2 - Calculated SpO2 value +* \param[out] *pch_spo2_valid - 1 if the calculated SpO2 value is valid +* \param[out] *pn_heart_rate - Calculated heart rate value +* \param[out] *pch_hr_valid - 1 if the calculated heart rate value is valid +* +* \retval None +*/ +{ + uint32_t un_ir_mean ,un_only_once ; + int32_t k ,n_i_ratio_count; + int32_t i,s ,m, n_exact_ir_valley_locs_count ,n_middle_idx; + int32_t n_th1, n_npks,n_c_min; + int32_t an_ir_valley_locs[15] ; + int32_t an_exact_ir_valley_locs[15] ; + int32_t an_dx_peak_locs[15] ; + int32_t n_peak_interval_sum; + + int32_t n_y_ac, n_x_ac; + int32_t n_spo2_calc; + int32_t n_y_dc_max, n_x_dc_max; + int32_t n_y_dc_max_idx, n_x_dc_max_idx; + int32_t an_ratio[5],n_ratio_average; + int32_t n_nume, n_denom ; + // remove DC of ir signal + un_ir_mean =0; + for (k=0 ; k<n_ir_buffer_length ; k++ ) un_ir_mean += pun_ir_buffer[k] ; + un_ir_mean =un_ir_mean/n_ir_buffer_length ; + for (k=0 ; k<n_ir_buffer_length ; k++ ) an_x[k] = pun_ir_buffer[k] - un_ir_mean ; + + // 4 pt Moving Average + for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){ + n_denom= ( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3]); + an_x[k]= n_denom/(int32_t)4; + } + + // get difference of smoothed IR signal + + for( k=0; k<BUFFER_SIZE-MA4_SIZE-1; k++) + an_dx[k]= (an_x[k+1]- an_x[k]); + + // 2-pt Moving Average to an_dx + for(k=0; k< BUFFER_SIZE-MA4_SIZE-2; k++){ + an_dx[k] = ( an_dx[k]+an_dx[k+1])/2 ; + } + + // hamming window + // flip wave form so that we can detect valley with peak detector + for ( i=0 ; i<BUFFER_SIZE-HAMMING_SIZE-MA4_SIZE-2 ;i++){ + s= 0; + for( k=i; k<i+ HAMMING_SIZE ;k++){ + s -= an_dx[k] *auw_hamm[k-i] ; + } + an_dx[i]= s/ (int32_t)1146; // divide by sum of auw_hamm + } + + + n_th1=0; // threshold calculation + for ( k=0 ; k<BUFFER_SIZE-HAMMING_SIZE ;k++){ + n_th1 += ((an_dx[k]>0)? an_dx[k] : ((int32_t)0-an_dx[k])) ; + } + n_th1= n_th1/ ( BUFFER_SIZE-HAMMING_SIZE); + // peak location is acutally index for sharpest location of raw signal since we flipped the signal + maxim_find_peaks( an_dx_peak_locs, &n_npks, an_dx, BUFFER_SIZE-HAMMING_SIZE, n_th1, 8, 5 );//peak_height, peak_distance, max_num_peaks + + n_peak_interval_sum =0; + if (n_npks>=2){ + for (k=1; k<n_npks; k++) + n_peak_interval_sum += (an_dx_peak_locs[k]-an_dx_peak_locs[k -1]); + n_peak_interval_sum=n_peak_interval_sum/(n_npks-1); + *pn_heart_rate=(int32_t)(6000/n_peak_interval_sum);// beats per minutes + *pch_hr_valid = 1; + } + else { + *pn_heart_rate = -999; + *pch_hr_valid = 0; + } + + for ( k=0 ; k<n_npks ;k++) + an_ir_valley_locs[k]=an_dx_peak_locs[k]+HAMMING_SIZE/2; + + + // raw value : RED(=y) and IR(=X) + // we need to assess DC and AC value of ir and red PPG. + for (k=0 ; k<n_ir_buffer_length ; k++ ) { + an_x[k] = pun_ir_buffer[k] ; + an_y[k] = pun_red_buffer[k] ; + } + + // find precise min near an_ir_valley_locs + n_exact_ir_valley_locs_count =0; + for(k=0 ; k<n_npks ;k++){ + un_only_once =1; + m=an_ir_valley_locs[k]; + n_c_min= 16777216;//2^24; + if (m+5 < BUFFER_SIZE-HAMMING_SIZE && m-5 >0){ + for(i= m-5;i<m+5; i++) + if (an_x[i]<n_c_min){ + if (un_only_once >0){ + un_only_once =0; + } + n_c_min= an_x[i] ; + an_exact_ir_valley_locs[k]=i; + } + if (un_only_once ==0) + n_exact_ir_valley_locs_count ++ ; + } + } + if (n_exact_ir_valley_locs_count <2 ){ + *pn_spo2 = -999 ; // do not use SPO2 since signal ratio is out of range + *pch_spo2_valid = 0; + return; + } + // 4 pt MA + for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){ + an_x[k]=( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3])/(int32_t)4; + an_y[k]=( an_y[k]+an_y[k+1]+ an_y[k+2]+ an_y[k+3])/(int32_t)4; + } + + //using an_exact_ir_valley_locs , find ir-red DC andir-red AC for SPO2 calibration ratio + //finding AC/DC maximum of raw ir * red between two valley locations + n_ratio_average =0; + n_i_ratio_count =0; + + for(k=0; k< 5; k++) an_ratio[k]=0; + for (k=0; k< n_exact_ir_valley_locs_count; k++){ + if (an_exact_ir_valley_locs[k] > BUFFER_SIZE ){ + *pn_spo2 = -999 ; // do not use SPO2 since valley loc is out of range + *pch_spo2_valid = 0; + return; + } + } + // find max between two valley locations + // and use ratio betwen AC compoent of Ir & Red and DC compoent of Ir & Red for SPO2 + + for (k=0; k< n_exact_ir_valley_locs_count-1; k++){ + n_y_dc_max= -16777216 ; + n_x_dc_max= - 16777216; + if (an_exact_ir_valley_locs[k+1]-an_exact_ir_valley_locs[k] >10){ + for (i=an_exact_ir_valley_locs[k]; i< an_exact_ir_valley_locs[k+1]; i++){ + if (an_x[i]> n_x_dc_max) {n_x_dc_max =an_x[i];n_x_dc_max_idx =i; } + if (an_y[i]> n_y_dc_max) {n_y_dc_max =an_y[i];n_y_dc_max_idx=i;} + } + n_y_ac= (an_y[an_exact_ir_valley_locs[k+1]] - an_y[an_exact_ir_valley_locs[k] ] )*(n_y_dc_max_idx -an_exact_ir_valley_locs[k]); //red + n_y_ac= an_y[an_exact_ir_valley_locs[k]] + n_y_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]) ; + + + n_y_ac= an_y[n_y_dc_max_idx] - n_y_ac; // subracting linear DC compoenents from raw + n_x_ac= (an_x[an_exact_ir_valley_locs[k+1]] - an_x[an_exact_ir_valley_locs[k] ] )*(n_x_dc_max_idx -an_exact_ir_valley_locs[k]); // ir + n_x_ac= an_x[an_exact_ir_valley_locs[k]] + n_x_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]); + n_x_ac= an_x[n_y_dc_max_idx] - n_x_ac; // subracting linear DC compoenents from raw + n_nume=( n_y_ac *n_x_dc_max)>>7 ; //prepare X100 to preserve floating value + n_denom= ( n_x_ac *n_y_dc_max)>>7; + if (n_denom>0 && n_i_ratio_count <5 && n_nume != 0) + { + an_ratio[n_i_ratio_count]= (n_nume*100)/n_denom ; //formular is ( n_y_ac *n_x_dc_max) / ( n_x_ac *n_y_dc_max) ; + n_i_ratio_count++; + } + } + } + + maxim_sort_ascend(an_ratio, n_i_ratio_count); + n_middle_idx= n_i_ratio_count/2; + + if (n_middle_idx >1) + n_ratio_average =( an_ratio[n_middle_idx-1] +an_ratio[n_middle_idx])/2; // use median + else + n_ratio_average = an_ratio[n_middle_idx ]; + + if( n_ratio_average>2 && n_ratio_average <184){ + n_spo2_calc= uch_spo2_table[n_ratio_average] ; + *pn_spo2 = n_spo2_calc ; + *pch_spo2_valid = 1;// float_SPO2 = -45.060*n_ratio_average* n_ratio_average/10000 + 30.354 *n_ratio_average/100 + 94.845 ; // for comparison with table + } + else{ + *pn_spo2 = -999 ; // do not use SPO2 since signal ratio is out of range + *pch_spo2_valid = 0; + } +} + + +void maxim_find_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num) +/** +* \brief Find peaks +* \par Details +* Find at most MAX_NUM peaks above MIN_HEIGHT separated by at least MIN_DISTANCE +* +* \retval None +*/ +{ + maxim_peaks_above_min_height( pn_locs, pn_npks, pn_x, n_size, n_min_height ); + maxim_remove_close_peaks( pn_locs, pn_npks, pn_x, n_min_distance ); + *pn_npks = min( *pn_npks, n_max_num ); +} + +void maxim_peaks_above_min_height(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height) +/** +* \brief Find peaks above n_min_height +* \par Details +* Find all peaks above MIN_HEIGHT +* +* \retval None +*/ +{ + int32_t i = 1, n_width; + *pn_npks = 0; + + while (i < n_size-1){ + if (pn_x[i] > n_min_height && pn_x[i] > pn_x[i-1]){ // find left edge of potential peaks + n_width = 1; + while (i+n_width < n_size && pn_x[i] == pn_x[i+n_width]) // find flat peaks + n_width++; + if (pn_x[i] > pn_x[i+n_width] && (*pn_npks) < 15 ){ // find right edge of peaks + pn_locs[(*pn_npks)++] = i; + // for flat peaks, peak location is left edge + i += n_width+1; + } + else + i += n_width; + } + else + i++; + } +} + + +void maxim_remove_close_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x,int32_t n_min_distance) +/** +* \brief Remove peaks +* \par Details +* Remove peaks separated by less than MIN_DISTANCE +* +* \retval None +*/ +{ + + int32_t i, j, n_old_npks, n_dist; + + /* Order peaks from large to small */ + maxim_sort_indices_descend( pn_x, pn_locs, *pn_npks ); + + for ( i = -1; i < *pn_npks; i++ ){ + n_old_npks = *pn_npks; + *pn_npks = i+1; + for ( j = i+1; j < n_old_npks; j++ ){ + n_dist = pn_locs[j] - ( i == -1 ? -1 : pn_locs[i] ); // lag-zero peak of autocorr is at index -1 + if ( n_dist > n_min_distance || n_dist < -n_min_distance ) + pn_locs[(*pn_npks)++] = pn_locs[j]; + } + } + + // Resort indices longo ascending order + maxim_sort_ascend( pn_locs, *pn_npks ); +} + +void maxim_sort_ascend(int32_t *pn_x,int32_t n_size) +/** +* \brief Sort array +* \par Details +* Sort array in ascending order (insertion sort algorithm) +* +* \retval None +*/ +{ + int32_t i, j, n_temp; + for (i = 1; i < n_size; i++) { + n_temp = pn_x[i]; + for (j = i; j > 0 && n_temp < pn_x[j-1]; j--) + pn_x[j] = pn_x[j-1]; + pn_x[j] = n_temp; + } +} + +void maxim_sort_indices_descend(int32_t *pn_x, int32_t *pn_indx, int32_t n_size) +/** +* \brief Sort indices +* \par Details +* Sort indices according to descending order (insertion sort algorithm) +* +* \retval None +*/ +{ + int32_t i, j, n_temp; + for (i = 1; i < n_size; i++) { + n_temp = pn_indx[i]; + for (j = i; j > 0 && pn_x[n_temp] > pn_x[pn_indx[j-1]]; j--) + pn_indx[j] = pn_indx[j-1]; + pn_indx[j] = n_temp; + } +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/algorithm/algorithm.h Sun Dec 18 09:43:33 2016 +0000 @@ -0,0 +1,100 @@ +/** \file algorithm.h ****************************************************** +* +* Project: MAXREFDES117# +* Filename: algorithm.c +* Description: This module is the heart rate/SpO2 calculation algorithm header file +* +* Revision History: +*\n 1-18-2016 Rev 01.00 SK Initial release. +*\n +* +* -------------------------------------------------------------------- +* +* This code follows the following naming conventions: +* +*\n char ch_pmod_value +*\n char (array) s_pmod_s_string[16] +*\n float f_pmod_value +*\n int32_t n_pmod_value +*\n int32_t (array) an_pmod_value[16] +*\n int16_t w_pmod_value +*\n int16_t (array) aw_pmod_value[16] +*\n uint16_t uw_pmod_value +*\n uint16_t (array) auw_pmod_value[16] +*\n uint8_t uch_pmod_value +*\n uint8_t (array) auch_pmod_buffer[16] +*\n uint32_t un_pmod_value +*\n int32_t * pn_pmod_value +* +* ------------------------------------------------------------------------- */ +/******************************************************************************* +* Copyright (C) 2015 Maxim Integrated Products, Inc., All Rights Reserved. +* +* Permission is hereby granted, free of charge, to any person obtaining a +* copy of this software and associated documentation files (the "Software"), +* to deal in the Software without restriction, including without limitation +* the rights to use, copy, modify, merge, publish, distribute, sublicense, +* and/or sell copies of the Software, and to permit persons to whom the +* Software is furnished to do so, subject to the following conditions: +* +* The above copyright notice and this permission notice shall be included +* in all copies or substantial portions of the Software. +* +* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS +* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES +* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR +* OTHER DEALINGS IN THE SOFTWARE. +* +* Except as contained in this notice, the name of Maxim Integrated +* Products, Inc. shall not be used except as stated in the Maxim Integrated +* Products, Inc. Branding Policy. +* +* The mere transfer of this software does not imply any licenses +* of trade secrets, proprietary technology, copyrights, patents, +* trademarks, maskwork rights, or any other form of intellectual +* property whatsoever. Maxim Integrated Products, Inc. retains all +* ownership rights. +******************************************************************************* +*/ +#ifndef ALGORITHM_H_ +#define ALGORITHM_H_ + +#include "mbed.h" + +#define true 1 +#define false 0 +#define FS 100 +#define BUFFER_SIZE (FS* 5) +#define HR_FIFO_SIZE 7 +#define MA4_SIZE 4 // DO NOT CHANGE +#define HAMMING_SIZE 5// DO NOT CHANGE +#define min(x,y) ((x) < (y) ? (x) : (y)) + +const uint16_t auw_hamm[31]={ 41, 276, 512, 276, 41 }; //Hamm= long16(512* hamming(5)'); +//SPO2table is computed as -45.060*ratioAverage* ratioAverage + 30.354 *ratioAverage + 94.845 ; +const uint8_t uch_spo2_table[184]={ 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, + 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, + 97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, + 90, 90, 89, 89, 89, 88, 88, 87, 87, 86, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81, + 80, 80, 79, 78, 78, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 70, 69, 69, 68, 67, + 66, 66, 65, 64, 63, 62, 62, 61, 60, 59, 58, 57, 56, 56, 55, 54, 53, 52, 51, 50, + 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29, + 28, 27, 26, 25, 23, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 10, 9, 7, 6, 5, + 3, 2, 1 } ; +static int32_t an_dx[ BUFFER_SIZE-MA4_SIZE]; // delta +static int32_t an_x[ BUFFER_SIZE]; //ir +static int32_t an_y[ BUFFER_SIZE]; //red + + +void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer , int32_t n_ir_buffer_length, uint32_t *pun_red_buffer , int32_t *pn_spo2, int8_t *pch_spo2_valid , int32_t *pn_heart_rate , int8_t *pch_hr_valid); +void maxim_find_peaks( int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num ); +void maxim_peaks_above_min_height( int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height ); +void maxim_remove_close_peaks( int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance ); +void maxim_sort_ascend( int32_t *pn_x, int32_t n_size ); +void maxim_sort_indices_descend( int32_t *pn_x, int32_t *pn_indx, int32_t n_size); + +#endif /* ALGORITHM_H_ */ \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ds3231.lib Sun Dec 18 09:43:33 2016 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/teams/Maxim-Integrated/code/ds3231/#11630748e2f2
--- a/main.cpp Wed Nov 09 16:44:59 2016 +0000 +++ b/main.cpp Sun Dec 18 09:43:33 2016 +0000 @@ -1,9 +1,31 @@ #include "mbed.h" #include "nexpaq_mdk.h" +#include "ds3231.h" +#include "algorithm.h" +#include "MAX30102.h" -PwmOut ledR(P2_4); -PwmOut ledG(P2_5); -PwmOut ledB(P2_6); +#define I2C_SDA P1_6 +#define I2C_SCL P1_7 + +#define FUNCTION_TABLE_NUM 2 +#define UUID_NUM 16 // UUID number is 16, don't change it +#define LOOP_DELAY 1000 + +DigitalOut ledR(P2_4, LED_OFF); +DigitalOut ledG(P2_5, LED_OFF); +DigitalOut ledB(P2_6, LED_OFF); + +uint32_t aun_ir_buffer[500]; //IR LED sensor data +int32_t n_ir_buffer_length; //data length +uint32_t aun_red_buffer[500]; //Red LED sensor data +int32_t n_sp02; //SPO2 value +int8_t ch_spo2_valid; //indicator to show if the SP02 calculation is valid +int32_t n_heart_rate; //heart rate value +int8_t ch_hr_valid; //indicator to show if the heart rate calculation is valid +uint8_t uch_dummy; + +DigitalIn INT(P4_1); + AnalogIn aIn0(AIN_0); AnalogIn aIn1(AIN_1); AnalogIn aIn2(AIN_2); @@ -30,14 +52,17 @@ }; unsigned char dataOut[10]; - +Ds3231 temp_sense(P3_4, P3_5); +DigitalOut cs(P1_3); +//vitals +int spo2=50,heart_rate=120,Resp_rate=12,tmp=25; /***** Functions *****/ void my_function_CMD_2700(unsigned char *pData, unsigned char len) { unsigned char response = 0x00; - ledR = 1.0f - (pData[0] / 255.0f); +/* ledR = 1.0f - (pData[0] / 255.0f); ledG = 1.0f - (pData[1] / 255.0f); - ledB = 1.0f - (pData[2] / 255.0f); + ledB = 1.0f - (pData[2] / 255.0f);*/ np_api_upload(0x2701, &response, 1); } @@ -85,7 +110,7 @@ if ( np_api_register((MDK_REGISTER_CMD*)my_cmd_func_table, FUNCTION_TABLE_NUM) == MDK_REGISTER_FAILD ) { // Register failed handle code } - ledR = 1.0f; +/* ledR = 1.0f; ledG = 1.0f; ledB = 1.0f; for (i = 0; i < 16; i++) { @@ -94,26 +119,29 @@ } for (i = 0; i < 10; i++) { dataOut[i] = 0xFF; - } + }*/ + + //instantiate rtc object + + } void app_loop() -{ - int anaData; - anaData = aIn4.read_u16(); - dataOut[0] = anaData; - dataOut[1] = anaData>>8; - anaData = aIn5.read_u16(); - dataOut[2] = anaData; - dataOut[3] = anaData>>8; - anaData = aIn2.read_u16(); - anaData = anaData/10; - dataOut[4] = anaData; - dataOut[5] = anaData>>8; - anaData = aIn3.read_u16(); - anaData = anaData/10; - dataOut[6] = anaData; - dataOut[7] = anaData>>8; +{ + if((n_heart_rate>20)&&(n_heart_rate<220)) + heart_rate=n_heart_rate; + if((n_sp02>60)&&(n_sp02<120)) + spo2=n_sp02; + + tmp = temp_sense.get_temperature(); + dataOut[0] = heart_rate; + dataOut[1] = heart_rate>>8; + dataOut[2] = tmp; + dataOut[3] = tmp>>8; + dataOut[4] = spo2; + dataOut[5] = spo2>>8; + dataOut[6] = Resp_rate; + dataOut[7] = Resp_rate>>8; dataOut[8] = (digPin[7].read()<<7) + (digPin[6].read()<<6) + @@ -131,15 +159,91 @@ (digPin[10].read()<<2) + (digPin[9].read()<<1) + (digPin[8].read()); + sendStatus(); } int main(void) { + uint32_t un_min, un_max, un_prev_data; //variables to calculate the on-board LED brightness that reflects the heartbeats + int i; + maxim_max30102_reset(); + maxim_max30102_read_reg(0,&uch_dummy); + maxim_max30102_init(); + un_min=0x3FFFF; + un_max=0; + n_ir_buffer_length=500; np_api_init(); app_setup(); np_api_start(); + + for(i=0;i<n_ir_buffer_length;i++) + { + while(INT.read()==1); //wait until the interrupt pin asserts + + maxim_max30102_read_fifo((aun_red_buffer+i), (aun_ir_buffer+i)); //read from MAX30102 FIFO + + if(un_min>aun_red_buffer[i]) + un_min=aun_red_buffer[i]; //update signal min + if(un_max<aun_red_buffer[i]) + un_max=aun_red_buffer[i]; + } + un_prev_data=aun_red_buffer[i]; + maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid); + while(1) { + i=0; + un_min=0x3FFFF; + un_max=0; + + //dumping the first 100 sets of samples in the memory and shift the last 400 sets of samples to the top + for(i=100;i<500;i++) + { + aun_red_buffer[i-100]=aun_red_buffer[i]; + aun_ir_buffer[i-100]=aun_ir_buffer[i]; + + //update the signal min and max + if(un_min>aun_red_buffer[i]) + un_min=aun_red_buffer[i]; + if(un_max<aun_red_buffer[i]) + un_max=aun_red_buffer[i]; + } + + for(i=400;i<500;i++) + { + un_prev_data=aun_red_buffer[i-1]; + while(INT.read()==1); + maxim_max30102_read_fifo((aun_red_buffer+i), (aun_ir_buffer+i)); + + /* if(aun_red_buffer[i]>un_prev_data) + { + f_temp=aun_red_buffer[i]-un_prev_data; + f_temp/=(un_max-un_min); + f_temp*=MAX_BRIGHTNESS; + n_brightness-=(int)f_temp; + if(n_brightness<0) + n_brightness=0; + } + else + { + f_temp=un_prev_data-aun_red_buffer[i]; + f_temp/=(un_max-un_min); + f_temp*=MAX_BRIGHTNESS; + n_brightness+=(int)f_temp; + if(n_brightness>MAX_BRIGHTNESS) + n_brightness=MAX_BRIGHTNESS; + }*/ + + //led.write(1-(float)n_brightness/256); + + //send samples and calculation result to terminal program through UART + + } +// ledR=LED_OFF; +// ledG=LED_ON; + maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid); + + ledR = LED_ON; app_loop(); np_api_bsl_chk(); Thread::wait(LOOP_DELAY);
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/max30102/MAX30102.lib Sun Dec 18 09:43:33 2016 +0000 @@ -0,0 +1,1 @@ +https://developer.mbed.org/users/shettypavank/code/MAX30102/#162320d6f658