Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FATFileSystem mbed-rtos
Dependents: Proyect_Patric_electronic_door_MSC_Ok_ESP
Fork of USBHost by
USBHost.cpp
00001 /* mbed USBHost Library 00002 * Copyright (c) 2006-2013 ARM Limited 00003 * 00004 * Licensed under the Apache License, Version 2.0 (the "License"); 00005 * you may not use this file except in compliance with the License. 00006 * You may obtain a copy of the License at 00007 * 00008 * http://www.apache.org/licenses/LICENSE-2.0 00009 * 00010 * Unless required by applicable law or agreed to in writing, software 00011 * distributed under the License is distributed on an "AS IS" BASIS, 00012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00013 * See the License for the specific language governing permissions and 00014 * limitations under the License. 00015 */ 00016 00017 00018 #include "USBHost.h" 00019 #include "USBHostHub.h" 00020 00021 USBHost * USBHost::instHost = NULL; 00022 00023 #define DEVICE_CONNECTED_EVENT (1 << 0) 00024 #define DEVICE_DISCONNECTED_EVENT (1 << 1) 00025 #define TD_PROCESSED_EVENT (1 << 2) 00026 00027 #define MAX_TRY_ENUMERATE_HUB 3 00028 00029 #define MIN(a, b) ((a > b) ? b : a) 00030 00031 DigitalOut l4(LED4); 00032 00033 /** 00034 * How interrupts are processed: 00035 * - new device connected: 00036 * - a message is queued in queue_usb_event with the id DEVICE_CONNECTED_EVENT 00037 * - when the usb_thread receives the event, it: 00038 * - resets the device 00039 * - reads the device descriptor 00040 * - sets the address of the device 00041 * - if it is a hub, enumerates it 00042 * - device disconnected: 00043 * - a message is queued in queue_usb_event with the id DEVICE_DISCONNECTED_EVENT 00044 * - when the usb_thread receives the event, it: 00045 * - free the device and all its children (hub) 00046 * - td processed 00047 * - a message is queued in queue_usb_event with the id TD_PROCESSED_EVENT 00048 * - when the usb_thread receives the event, it: 00049 * - call the callback attached to the endpoint where the td is attached 00050 */ 00051 void USBHost::usb_process() { 00052 00053 bool controlListState; 00054 bool bulkListState; 00055 bool interruptListState; 00056 USBEndpoint * ep; 00057 uint8_t i, j, res, timeout_set_addr = 10; 00058 uint8_t buf[8]; 00059 bool too_many_hub; 00060 int idx; 00061 00062 #if DEBUG_TRANSFER 00063 uint8_t * buf_transfer; 00064 #endif 00065 00066 #if MAX_HUB_NB 00067 uint8_t k; 00068 #endif 00069 00070 while(1) { 00071 osEvent evt = mail_usb_event.get(); 00072 00073 if (evt.status == osEventMail) { 00074 00075 l4 = !l4; 00076 message_t * usb_msg = (message_t*)evt.value.p; 00077 00078 switch (usb_msg->event_id) { 00079 00080 // a new device has been connected 00081 case DEVICE_CONNECTED_EVENT: 00082 too_many_hub = false; 00083 buf[4] = 0; 00084 00085 usb_mutex.lock(); 00086 00087 for (i = 0; i < MAX_DEVICE_CONNECTED; i++) { 00088 if (!deviceInUse[i]) { 00089 USB_DBG_EVENT("new device connected: %p\r\n", &devices[i]); 00090 devices[i].init(usb_msg->hub, usb_msg->port, usb_msg->lowSpeed); 00091 deviceReset[i] = false; 00092 deviceInited[i] = true; 00093 break; 00094 } 00095 } 00096 00097 if (i == MAX_DEVICE_CONNECTED) { 00098 USB_ERR("Too many device connected!!\r\n"); 00099 usb_mutex.unlock(); 00100 continue; 00101 } 00102 00103 if (!controlEndpointAllocated) { 00104 control = newEndpoint(CONTROL_ENDPOINT, OUT, 0x08, 0x00); 00105 addEndpoint(NULL, 0, (USBEndpoint*)control); 00106 controlEndpointAllocated = true; 00107 } 00108 00109 #if MAX_HUB_NB 00110 if (usb_msg->hub_parent) 00111 devices[i].setHubParent((USBHostHub *)(usb_msg->hub_parent)); 00112 #endif 00113 00114 for (j = 0; j < timeout_set_addr; j++) { 00115 00116 resetDevice(&devices[i]); 00117 00118 // set size of control endpoint 00119 devices[i].setSizeControlEndpoint(8); 00120 00121 devices[i].activeAddress(false); 00122 00123 // get first 8 bit of device descriptor 00124 // and check if we deal with a hub 00125 USB_DBG("usb_thread read device descriptor on dev: %p\r\n", &devices[i]); 00126 res = getDeviceDescriptor(&devices[i], buf, 8); 00127 00128 if (res != USB_TYPE_OK) { 00129 USB_ERR("usb_thread could not read dev descr"); 00130 continue; 00131 } 00132 00133 // set size of control endpoint 00134 devices[i].setSizeControlEndpoint(buf[7]); 00135 00136 // second step: set an address to the device 00137 res = setAddress(&devices[i], devices[i].getAddress()); 00138 00139 if (res != USB_TYPE_OK) { 00140 USB_ERR("SET ADDR FAILED"); 00141 continue; 00142 } 00143 devices[i].activeAddress(true); 00144 USB_DBG("Address of %p: %d", &devices[i], devices[i].getAddress()); 00145 00146 // try to read again the device descriptor to check if the device 00147 // answers to its new address 00148 res = getDeviceDescriptor(&devices[i], buf, 8); 00149 00150 if (res == USB_TYPE_OK) { 00151 break; 00152 } 00153 00154 Thread::wait(100); 00155 } 00156 00157 USB_INFO("New device connected: %p [hub: %d - port: %d]", &devices[i], usb_msg->hub, usb_msg->port); 00158 00159 #if MAX_HUB_NB 00160 if (buf[4] == HUB_CLASS) { 00161 for (k = 0; k < MAX_HUB_NB; k++) { 00162 if (hub_in_use[k] == false) { 00163 for (uint8_t j = 0; j < MAX_TRY_ENUMERATE_HUB; j++) { 00164 if (hubs[k].connect(&devices[i])) { 00165 devices[i].hub = &hubs[k]; 00166 hub_in_use[k] = true; 00167 break; 00168 } 00169 } 00170 if (hub_in_use[k] == true) 00171 break; 00172 } 00173 } 00174 00175 if (k == MAX_HUB_NB) { 00176 USB_ERR("Too many hubs connected!!\r\n"); 00177 too_many_hub = true; 00178 } 00179 } 00180 00181 if (usb_msg->hub_parent) 00182 ((USBHostHub *)(usb_msg->hub_parent))->deviceConnected(&devices[i]); 00183 #endif 00184 00185 if ((i < MAX_DEVICE_CONNECTED) && !too_many_hub) { 00186 deviceInUse[i] = true; 00187 } 00188 00189 usb_mutex.unlock(); 00190 00191 break; 00192 00193 // a device has been disconnected 00194 case DEVICE_DISCONNECTED_EVENT: 00195 00196 usb_mutex.lock(); 00197 00198 controlListState = disableList(CONTROL_ENDPOINT); 00199 bulkListState = disableList(BULK_ENDPOINT); 00200 interruptListState = disableList(INTERRUPT_ENDPOINT); 00201 00202 idx = findDevice(usb_msg->hub, usb_msg->port, (USBHostHub *)(usb_msg->hub_parent)); 00203 if (idx != -1) { 00204 freeDevice((USBDeviceConnected*)&devices[idx]); 00205 } 00206 00207 if (controlListState) enableList(CONTROL_ENDPOINT); 00208 if (bulkListState) enableList(BULK_ENDPOINT); 00209 if (interruptListState) enableList(INTERRUPT_ENDPOINT); 00210 00211 usb_mutex.unlock(); 00212 00213 break; 00214 00215 // a td has been processed 00216 // call callback on the ed associated to the td 00217 // we are not in ISR -> users can use printf in their callback method 00218 case TD_PROCESSED_EVENT: 00219 ep = (USBEndpoint *) ((HCTD *)usb_msg->td_addr)->ep; 00220 if (usb_msg->td_state == USB_TYPE_IDLE) { 00221 USB_DBG_EVENT("call callback on td %p [ep: %p state: %s - dev: %p - %s]", usb_msg->td_addr, ep, ep->getStateString(), ep->dev, ep->dev->getName(ep->getIntfNb())); 00222 00223 #if DEBUG_TRANSFER 00224 if (ep->getDir() == IN) { 00225 buf_transfer = ep->getBufStart(); 00226 printf("READ SUCCESS [%d bytes transferred - td: 0x%08X] on ep: [%p - addr: %02X]: ", ep->getLengthTransferred(), usb_msg->td_addr, ep, ep->getAddress()); 00227 for (int i = 0; i < ep->getLengthTransferred(); i++) 00228 printf("%02X ", buf_transfer[i]); 00229 printf("\r\n\r\n"); 00230 } 00231 #endif 00232 ep->call(); 00233 } else { 00234 idx = findDevice(ep->dev); 00235 if (idx != -1) { 00236 if (deviceInUse[idx]) { 00237 USB_WARN("td %p processed but not in idle state: %s [ep: %p - dev: %p - %s]", usb_msg->td_addr, ep->getStateString(), ep, ep->dev, ep->dev->getName(ep->getIntfNb())); 00238 ep->setState(USB_TYPE_IDLE); 00239 } 00240 } 00241 } 00242 break; 00243 } 00244 00245 mail_usb_event.free(usb_msg); 00246 } 00247 } 00248 } 00249 00250 /* static */void USBHost::usb_process_static(void const * arg) { 00251 ((USBHost *)arg)->usb_process(); 00252 } 00253 00254 USBHost::USBHost() : usbThread(USBHost::usb_process_static, (void *)this, osPriorityNormal, USB_THREAD_STACK) 00255 { 00256 headControlEndpoint = NULL; 00257 headBulkEndpoint = NULL; 00258 headInterruptEndpoint = NULL; 00259 tailControlEndpoint = NULL; 00260 tailBulkEndpoint = NULL; 00261 tailInterruptEndpoint = NULL; 00262 00263 lenReportDescr = 0; 00264 00265 controlEndpointAllocated = false; 00266 00267 for (uint8_t i = 0; i < MAX_DEVICE_CONNECTED; i++) { 00268 deviceInUse[i] = false; 00269 devices[i].setAddress(i + 1); 00270 deviceReset[i] = false; 00271 deviceInited[i] = false; 00272 for (uint8_t j = 0; j < MAX_INTF; j++) 00273 deviceAttachedDriver[i][j] = false; 00274 } 00275 00276 #if MAX_HUB_NB 00277 for (uint8_t i = 0; i < MAX_HUB_NB; i++) { 00278 hubs[i].setHost(this); 00279 hub_in_use[i] = false; 00280 } 00281 #endif 00282 } 00283 00284 00285 void USBHost::transferCompleted(volatile uint32_t addr) 00286 { 00287 uint8_t state; 00288 00289 if(addr == 0) 00290 return; 00291 00292 volatile HCTD* tdList = NULL; 00293 00294 //First we must reverse the list order and dequeue each TD 00295 do { 00296 volatile HCTD* td = (volatile HCTD*)addr; 00297 addr = (uint32_t)td->nextTD; //Dequeue from physical list 00298 td->nextTD = tdList; //Enqueue into reversed list 00299 tdList = td; 00300 } while(addr); 00301 00302 while(tdList != NULL) { 00303 volatile HCTD* td = tdList; 00304 tdList = (volatile HCTD*)td->nextTD; //Dequeue element now as it could be modified below 00305 if (td->ep != NULL) { 00306 USBEndpoint * ep = (USBEndpoint *)(td->ep); 00307 00308 if (((HCTD *)td)->control >> 28) { 00309 state = ((HCTD *)td)->control >> 28; 00310 } else { 00311 if (td->currBufPtr) 00312 ep->setLengthTransferred((uint32_t)td->currBufPtr - (uint32_t)ep->getBufStart()); 00313 state = 16 /*USB_TYPE_IDLE*/; 00314 } 00315 00316 ep->unqueueTransfer(td); 00317 00318 if (ep->getType() != CONTROL_ENDPOINT) { 00319 // callback on the processed td will be called from the usb_thread (not in ISR) 00320 message_t * usb_msg = mail_usb_event.alloc(); 00321 usb_msg->event_id = TD_PROCESSED_EVENT; 00322 usb_msg->td_addr = (void *)td; 00323 usb_msg->td_state = state; 00324 mail_usb_event.put(usb_msg); 00325 } 00326 ep->setState(state); 00327 ep->ep_queue.put((uint8_t*)1); 00328 } 00329 } 00330 } 00331 00332 USBHost * USBHost::getHostInst() 00333 { 00334 if (instHost == NULL) { 00335 instHost = new USBHost(); 00336 instHost->init(); 00337 } 00338 return instHost; 00339 } 00340 00341 00342 /* 00343 * Called when a device has been connected 00344 * Called in ISR!!!! (no printf) 00345 */ 00346 /* virtual */ void USBHost::deviceConnected(int hub, int port, bool lowSpeed, USBHostHub * hub_parent) 00347 { 00348 // be sure that the new device connected is not already connected... 00349 int idx = findDevice(hub, port, hub_parent); 00350 if (idx != -1) { 00351 if (deviceInited[idx]) 00352 return; 00353 } 00354 00355 message_t * usb_msg = mail_usb_event.alloc(); 00356 usb_msg->event_id = DEVICE_CONNECTED_EVENT; 00357 usb_msg->hub = hub; 00358 usb_msg->port = port; 00359 usb_msg->lowSpeed = lowSpeed; 00360 usb_msg->hub_parent = hub_parent; 00361 mail_usb_event.put(usb_msg); 00362 } 00363 00364 /* 00365 * Called when a device has been disconnected 00366 * Called in ISR!!!! (no printf) 00367 */ 00368 /* virtual */ void USBHost::deviceDisconnected(int hub, int port, USBHostHub * hub_parent, volatile uint32_t addr) 00369 { 00370 // be sure that the device disconnected is connected... 00371 int idx = findDevice(hub, port, hub_parent); 00372 if (idx != -1) { 00373 if (!deviceInUse[idx]) 00374 return; 00375 } else { 00376 return; 00377 } 00378 00379 message_t * usb_msg = mail_usb_event.alloc(); 00380 usb_msg->event_id = DEVICE_DISCONNECTED_EVENT; 00381 usb_msg->hub = hub; 00382 usb_msg->port = port; 00383 usb_msg->hub_parent = hub_parent; 00384 mail_usb_event.put(usb_msg); 00385 } 00386 00387 void USBHost::freeDevice(USBDeviceConnected * dev) 00388 { 00389 USBEndpoint * ep = NULL; 00390 HCED * ed = NULL; 00391 00392 #if MAX_HUB_NB 00393 if (dev->getClass() == HUB_CLASS) { 00394 if (dev->hub == NULL) { 00395 USB_ERR("HUB NULL!!!!!\r\n"); 00396 } else { 00397 dev->hub->hubDisconnected(); 00398 for (uint8_t i = 0; i < MAX_HUB_NB; i++) { 00399 if (dev->hub == &hubs[i]) { 00400 hub_in_use[i] = false; 00401 break; 00402 } 00403 } 00404 } 00405 } 00406 00407 // notify hub parent that this device has been disconnected 00408 if (dev->getHubParent()) 00409 dev->getHubParent()->deviceDisconnected(dev); 00410 00411 #endif 00412 00413 int idx = findDevice(dev); 00414 if (idx != -1) { 00415 deviceInUse[idx] = false; 00416 deviceReset[idx] = false; 00417 00418 for (uint8_t j = 0; j < MAX_INTF; j++) { 00419 deviceAttachedDriver[idx][j] = false; 00420 if (dev->getInterface(j) != NULL) { 00421 USB_DBG("FREE INTF %d on dev: %p, %p, nb_endpot: %d, %s", j, (void *)dev->getInterface(j), dev, dev->getInterface(j)->nb_endpoint, dev->getName(j)); 00422 for (int i = 0; i < dev->getInterface(j)->nb_endpoint; i++) { 00423 if ((ep = dev->getEndpoint(j, i)) != NULL) { 00424 ed = (HCED *)ep->getHCED(); 00425 ed->control |= (1 << 14); //sKip bit 00426 unqueueEndpoint(ep); 00427 00428 freeTD((volatile uint8_t*)ep->getTDList()[0]); 00429 freeTD((volatile uint8_t*)ep->getTDList()[1]); 00430 00431 freeED((uint8_t *)ep->getHCED()); 00432 } 00433 printList(BULK_ENDPOINT); 00434 printList(INTERRUPT_ENDPOINT); 00435 } 00436 USB_INFO("Device disconnected [%p - %s - hub: %d - port: %d]", dev, dev->getName(j), dev->getHub(), dev->getPort()); 00437 } 00438 } 00439 dev->disconnect(); 00440 } 00441 } 00442 00443 00444 void USBHost::unqueueEndpoint(USBEndpoint * ep) 00445 { 00446 USBEndpoint * prec = NULL; 00447 USBEndpoint * current = NULL; 00448 00449 for (int i = 0; i < 2; i++) { 00450 current = (i == 0) ? (USBEndpoint*)headBulkEndpoint : (USBEndpoint*)headInterruptEndpoint; 00451 prec = current; 00452 while (current != NULL) { 00453 if (current == ep) { 00454 if (current->nextEndpoint() != NULL) { 00455 prec->queueEndpoint(current->nextEndpoint()); 00456 if (current == headBulkEndpoint) { 00457 updateBulkHeadED((uint32_t)current->nextEndpoint()->getHCED()); 00458 headBulkEndpoint = current->nextEndpoint(); 00459 } else if (current == headInterruptEndpoint) { 00460 updateInterruptHeadED((uint32_t)current->nextEndpoint()->getHCED()); 00461 headInterruptEndpoint = current->nextEndpoint(); 00462 } 00463 } 00464 // here we are dequeuing the queue of ed 00465 // we need to update the tail pointer 00466 else { 00467 prec->queueEndpoint(NULL); 00468 if (current == headBulkEndpoint) { 00469 updateBulkHeadED(0); 00470 headBulkEndpoint = current->nextEndpoint(); 00471 } else if (current == headInterruptEndpoint) { 00472 updateInterruptHeadED(0); 00473 headInterruptEndpoint = current->nextEndpoint(); 00474 } 00475 00476 // modify tail 00477 switch (current->getType()) { 00478 case BULK_ENDPOINT: 00479 tailBulkEndpoint = prec; 00480 break; 00481 case INTERRUPT_ENDPOINT: 00482 tailInterruptEndpoint = prec; 00483 break; 00484 default: 00485 break; 00486 } 00487 } 00488 current->setState(USB_TYPE_FREE); 00489 return; 00490 } 00491 prec = current; 00492 current = current->nextEndpoint(); 00493 } 00494 } 00495 } 00496 00497 00498 USBDeviceConnected * USBHost::getDevice(uint8_t index) 00499 { 00500 if ((index >= MAX_DEVICE_CONNECTED) || (!deviceInUse[index])) { 00501 return NULL; 00502 } 00503 return (USBDeviceConnected*)&devices[index]; 00504 } 00505 00506 // create an USBEndpoint descriptor. the USBEndpoint is not linked 00507 USBEndpoint * USBHost::newEndpoint(ENDPOINT_TYPE type, ENDPOINT_DIRECTION dir, uint32_t size, uint8_t addr) 00508 { 00509 int i = 0; 00510 HCED * ed = (HCED *)getED(); 00511 HCTD* td_list[2] = { (HCTD*)getTD(), (HCTD*)getTD() }; 00512 00513 memset((void *)td_list[0], 0x00, sizeof(HCTD)); 00514 memset((void *)td_list[1], 0x00, sizeof(HCTD)); 00515 00516 // search a free USBEndpoint 00517 for (i = 0; i < MAX_ENDPOINT; i++) { 00518 if (endpoints[i].getState() == USB_TYPE_FREE) { 00519 endpoints[i].init(ed, type, dir, size, addr, td_list); 00520 USB_DBG("USBEndpoint created (%p): type: %d, dir: %d, size: %d, addr: %d, state: %s", &endpoints[i], type, dir, size, addr, endpoints[i].getStateString()); 00521 return &endpoints[i]; 00522 } 00523 } 00524 USB_ERR("could not allocate more endpoints!!!!"); 00525 return NULL; 00526 } 00527 00528 00529 USB_TYPE USBHost::resetDevice(USBDeviceConnected * dev) 00530 { 00531 int index = findDevice(dev); 00532 if (index != -1) { 00533 USB_DBG("Resetting hub %d, port %d\n", dev->getHub(), dev->getPort()); 00534 Thread::wait(100); 00535 if (dev->getHub() == 0) { 00536 resetRootHub(); 00537 } 00538 #if MAX_HUB_NB 00539 else { 00540 dev->getHubParent()->portReset(dev->getPort()); 00541 } 00542 #endif 00543 Thread::wait(100); 00544 deviceReset[index] = true; 00545 return USB_TYPE_OK; 00546 } 00547 00548 return USB_TYPE_ERROR; 00549 } 00550 00551 // link the USBEndpoint to the linked list and attach an USBEndpoint to a device 00552 bool USBHost::addEndpoint(USBDeviceConnected * dev, uint8_t intf_nb, USBEndpoint * ep) 00553 { 00554 00555 if (ep == NULL) { 00556 return false; 00557 } 00558 00559 HCED * prevEd; 00560 00561 // set device address in the USBEndpoint descriptor 00562 if (dev == NULL) { 00563 ep->setDeviceAddress(0); 00564 } else { 00565 ep->setDeviceAddress(dev->getAddress()); 00566 } 00567 00568 if ((dev != NULL) && dev->getSpeed()) { 00569 ep->setSpeed(dev->getSpeed()); 00570 } 00571 00572 ep->setIntfNb(intf_nb); 00573 00574 // queue the new USBEndpoint on the ED list 00575 switch (ep->getType()) { 00576 00577 case CONTROL_ENDPOINT: 00578 prevEd = ( HCED*) controlHeadED(); 00579 if (!prevEd) { 00580 updateControlHeadED((uint32_t) ep->getHCED()); 00581 USB_DBG_TRANSFER("First control USBEndpoint: %08X", (uint32_t) ep->getHCED()); 00582 headControlEndpoint = ep; 00583 tailControlEndpoint = ep; 00584 return true; 00585 } 00586 tailControlEndpoint->queueEndpoint(ep); 00587 tailControlEndpoint = ep; 00588 return true; 00589 00590 case BULK_ENDPOINT: 00591 prevEd = ( HCED*) bulkHeadED(); 00592 if (!prevEd) { 00593 updateBulkHeadED((uint32_t) ep->getHCED()); 00594 USB_DBG_TRANSFER("First bulk USBEndpoint: %08X\r\n", (uint32_t) ep->getHCED()); 00595 headBulkEndpoint = ep; 00596 tailBulkEndpoint = ep; 00597 break; 00598 } 00599 USB_DBG_TRANSFER("Queue BULK Ed %p after %p\r\n",ep->getHCED(), prevEd); 00600 tailBulkEndpoint->queueEndpoint(ep); 00601 tailBulkEndpoint = ep; 00602 break; 00603 00604 case INTERRUPT_ENDPOINT: 00605 prevEd = ( HCED*) interruptHeadED(); 00606 if (!prevEd) { 00607 updateInterruptHeadED((uint32_t) ep->getHCED()); 00608 USB_DBG_TRANSFER("First interrupt USBEndpoint: %08X\r\n", (uint32_t) ep->getHCED()); 00609 headInterruptEndpoint = ep; 00610 tailInterruptEndpoint = ep; 00611 break; 00612 } 00613 USB_DBG_TRANSFER("Queue INTERRUPT Ed %p after %p\r\n",ep->getHCED(), prevEd); 00614 tailInterruptEndpoint->queueEndpoint(ep); 00615 tailInterruptEndpoint = ep; 00616 break; 00617 default: 00618 return false; 00619 } 00620 00621 ep->dev = dev; 00622 dev->addEndpoint(intf_nb, ep); 00623 00624 return true; 00625 } 00626 00627 00628 int USBHost::findDevice(USBDeviceConnected * dev) 00629 { 00630 for (int i = 0; i < MAX_DEVICE_CONNECTED; i++) { 00631 if (dev == &devices[i]) { 00632 return i; 00633 } 00634 } 00635 return -1; 00636 } 00637 00638 int USBHost::findDevice(uint8_t hub, uint8_t port, USBHostHub * hub_parent) 00639 { 00640 for (int i = 0; i < MAX_DEVICE_CONNECTED; i++) { 00641 if (devices[i].getHub() == hub && devices[i].getPort() == port) { 00642 if (hub_parent != NULL) { 00643 if (hub_parent == devices[i].getHubParent()) 00644 return i; 00645 } else { 00646 return i; 00647 } 00648 } 00649 } 00650 return -1; 00651 } 00652 00653 void USBHost::printList(ENDPOINT_TYPE type) 00654 { 00655 #if DEBUG_EP_STATE 00656 volatile HCED * hced; 00657 switch(type) { 00658 case CONTROL_ENDPOINT: 00659 hced = (HCED *)controlHeadED(); 00660 break; 00661 case BULK_ENDPOINT: 00662 hced = (HCED *)bulkHeadED(); 00663 break; 00664 case INTERRUPT_ENDPOINT: 00665 hced = (HCED *)interruptHeadED(); 00666 break; 00667 } 00668 volatile HCTD * hctd = NULL; 00669 const char * type_str = (type == BULK_ENDPOINT) ? "BULK" : 00670 ((type == INTERRUPT_ENDPOINT) ? "INTERRUPT" : 00671 ((type == CONTROL_ENDPOINT) ? "CONTROL" : "ISOCHRONOUS")); 00672 printf("State of %s:\r\n", type_str); 00673 while (hced != NULL) { 00674 uint8_t dir = ((hced->control & (3 << 11)) >> 11); 00675 printf("hced: %p [ADDR: %d, DIR: %s, EP_NB: 0x%X]\r\n", hced, 00676 hced->control & 0x7f, 00677 (dir == 1) ? "OUT" : ((dir == 0) ? "FROM_TD":"IN"), 00678 (hced->control & (0xf << 7)) >> 7); 00679 hctd = (HCTD *)((uint32_t)(hced->headTD) & ~(0xf)); 00680 while (hctd != hced->tailTD) { 00681 printf("\thctd: %p [DIR: %s]\r\n", hctd, ((hctd->control & (3 << 19)) >> 19) == 1 ? "OUT" : "IN"); 00682 hctd = hctd->nextTD; 00683 } 00684 printf("\thctd: %p\r\n", hctd); 00685 hced = hced->nextED; 00686 } 00687 printf("\r\n\r\n"); 00688 #endif 00689 } 00690 00691 00692 // add a transfer on the TD linked list 00693 USB_TYPE USBHost::addTransfer(USBEndpoint * ed, uint8_t * buf, uint32_t len) 00694 { 00695 td_mutex.lock(); 00696 00697 // allocate a TD which will be freed in TDcompletion 00698 volatile HCTD * td = ed->getNextTD(); 00699 if (td == NULL) { 00700 return USB_TYPE_ERROR; 00701 } 00702 00703 uint32_t token = (ed->isSetup() ? TD_SETUP : ( (ed->getDir() == IN) ? TD_IN : TD_OUT )); 00704 00705 uint32_t td_toggle; 00706 00707 if (ed->getType() == CONTROL_ENDPOINT) { 00708 if (ed->isSetup()) { 00709 td_toggle = TD_TOGGLE_0; 00710 } else { 00711 td_toggle = TD_TOGGLE_1; 00712 } 00713 } else { 00714 td_toggle = 0; 00715 } 00716 00717 td->control = (TD_ROUNDING | token | TD_DELAY_INT(0) | td_toggle | TD_CC); 00718 td->currBufPtr = buf; 00719 td->bufEnd = (buf + (len - 1)); 00720 00721 ENDPOINT_TYPE type = ed->getType(); 00722 00723 disableList(type); 00724 ed->queueTransfer(); 00725 printList(type); 00726 enableList(type); 00727 00728 td_mutex.unlock(); 00729 00730 return USB_TYPE_PROCESSING; 00731 } 00732 00733 00734 00735 USB_TYPE USBHost::getDeviceDescriptor(USBDeviceConnected * dev, uint8_t * buf, uint16_t max_len_buf, uint16_t * len_dev_descr) 00736 { 00737 USB_TYPE t = controlRead( dev, 00738 USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE, 00739 GET_DESCRIPTOR, 00740 (DEVICE_DESCRIPTOR << 8) | (0), 00741 0, buf, MIN(DEVICE_DESCRIPTOR_LENGTH, max_len_buf)); 00742 if (len_dev_descr) 00743 *len_dev_descr = MIN(DEVICE_DESCRIPTOR_LENGTH, max_len_buf); 00744 00745 return t; 00746 } 00747 00748 USB_TYPE USBHost::getConfigurationDescriptor(USBDeviceConnected * dev, uint8_t * buf, uint16_t max_len_buf, uint16_t * len_conf_descr) 00749 { 00750 USB_TYPE res; 00751 uint16_t total_conf_descr_length = 0; 00752 00753 // fourth step: get the beginning of the configuration descriptor to have the total length of the conf descr 00754 res = controlRead( dev, 00755 USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE, 00756 GET_DESCRIPTOR, 00757 (CONFIGURATION_DESCRIPTOR << 8) | (0), 00758 0, buf, CONFIGURATION_DESCRIPTOR_LENGTH); 00759 00760 if (res != USB_TYPE_OK) { 00761 USB_ERR("GET CONF 1 DESCR FAILED"); 00762 return res; 00763 } 00764 total_conf_descr_length = buf[2] | (buf[3] << 8); 00765 total_conf_descr_length = MIN(max_len_buf, total_conf_descr_length); 00766 00767 if (len_conf_descr) 00768 *len_conf_descr = total_conf_descr_length; 00769 00770 USB_DBG("TOTAL_LENGTH: %d \t NUM_INTERF: %d", total_conf_descr_length, buf[4]); 00771 00772 return controlRead( dev, 00773 USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE, 00774 GET_DESCRIPTOR, 00775 (CONFIGURATION_DESCRIPTOR << 8) | (0), 00776 0, buf, total_conf_descr_length); 00777 } 00778 00779 00780 USB_TYPE USBHost::setAddress(USBDeviceConnected * dev, uint8_t address) { 00781 return controlWrite( dev, 00782 USB_HOST_TO_DEVICE | USB_RECIPIENT_DEVICE, 00783 SET_ADDRESS, 00784 address, 00785 0, NULL, 0); 00786 00787 } 00788 00789 USB_TYPE USBHost::setConfiguration(USBDeviceConnected * dev, uint8_t conf) 00790 { 00791 return controlWrite( dev, 00792 USB_HOST_TO_DEVICE | USB_RECIPIENT_DEVICE, 00793 SET_CONFIGURATION, 00794 conf, 00795 0, NULL, 0); 00796 } 00797 00798 uint8_t USBHost::numberDriverAttached(USBDeviceConnected * dev) { 00799 int index = findDevice(dev); 00800 uint8_t cnt = 0; 00801 if (index == -1) 00802 return 0; 00803 for (uint8_t i = 0; i < MAX_INTF; i++) { 00804 if (deviceAttachedDriver[index][i]) 00805 cnt++; 00806 } 00807 return cnt; 00808 } 00809 00810 // enumerate a device with the control USBEndpoint 00811 USB_TYPE USBHost::enumerate(USBDeviceConnected * dev, IUSBEnumerator* pEnumerator) 00812 { 00813 uint16_t total_conf_descr_length = 0; 00814 USB_TYPE res; 00815 00816 usb_mutex.lock(); 00817 00818 // don't enumerate a device which all interfaces are registered to a specific driver 00819 int index = findDevice(dev); 00820 00821 if (index == -1) { 00822 usb_mutex.unlock(); 00823 return USB_TYPE_ERROR; 00824 } 00825 00826 uint8_t nb_intf_attached = numberDriverAttached(dev); 00827 USB_DBG("dev: %p nb_intf: %d", dev, dev->getNbIntf()); 00828 USB_DBG("dev: %p nb_intf_attached: %d", dev, nb_intf_attached); 00829 if ((nb_intf_attached != 0) && (dev->getNbIntf() == nb_intf_attached)) { 00830 USB_DBG("Don't enumerate dev: %p because all intf are registered with a driver", dev); 00831 usb_mutex.unlock(); 00832 return USB_TYPE_OK; 00833 } 00834 00835 USB_DBG("Enumerate dev: %p", dev); 00836 00837 // third step: get the whole device descriptor to see vid, pid 00838 res = getDeviceDescriptor(dev, data, DEVICE_DESCRIPTOR_LENGTH); 00839 00840 if (res != USB_TYPE_OK) { 00841 USB_DBG("GET DEV DESCR FAILED"); 00842 usb_mutex.unlock(); 00843 return res; 00844 } 00845 00846 dev->setClass(data[4]); 00847 dev->setSubClass(data[5]); 00848 dev->setProtocol(data[6]); 00849 dev->setVid(data[8] | (data[9] << 8)); 00850 dev->setPid(data[10] | (data[11] << 8)); 00851 USB_DBG("CLASS: %02X \t VID: %04X \t PID: %04X", data[4], data[8] | (data[9] << 8), data[10] | (data[11] << 8)); 00852 00853 pEnumerator->setVidPid( data[8] | (data[9] << 8), data[10] | (data[11] << 8) ); 00854 00855 res = getConfigurationDescriptor(dev, data, 300, &total_conf_descr_length); 00856 if (res != USB_TYPE_OK) { 00857 usb_mutex.unlock(); 00858 return res; 00859 } 00860 00861 #if DEBUG 00862 USB_DBG("CONFIGURATION DESCRIPTOR:\r\n"); 00863 for (int i = 0; i < total_conf_descr_length; i++) 00864 printf("%02X ", data[i]); 00865 printf("\r\n\r\n"); 00866 #endif 00867 00868 // Parse the configuration descriptor 00869 parseConfDescr(dev, data, total_conf_descr_length, pEnumerator); 00870 00871 // only set configuration if not enumerated before 00872 if (!dev->isEnumerated()) { 00873 00874 USB_DBG("Set configuration 1 on dev: %p", dev); 00875 // sixth step: set configuration (only 1 supported) 00876 res = setConfiguration(dev, 1); 00877 00878 if (res != USB_TYPE_OK) { 00879 USB_DBG("SET CONF FAILED"); 00880 usb_mutex.unlock(); 00881 return res; 00882 } 00883 } 00884 00885 dev->setEnumerated(); 00886 00887 // Now the device is enumerated! 00888 USB_DBG("dev %p is enumerated\r\n", dev); 00889 usb_mutex.unlock(); 00890 00891 // Some devices may require this delay 00892 wait_ms(100); 00893 00894 return USB_TYPE_OK; 00895 } 00896 // this method fills the USBDeviceConnected object: class,.... . It also add endpoints found in the descriptor. 00897 void USBHost::parseConfDescr(USBDeviceConnected * dev, uint8_t * conf_descr, uint32_t len, IUSBEnumerator* pEnumerator) 00898 { 00899 uint32_t index = 0; 00900 uint32_t len_desc = 0; 00901 uint8_t id = 0; 00902 int nb_endpoints_used = 0; 00903 USBEndpoint * ep = NULL; 00904 uint8_t intf_nb = 0; 00905 bool parsing_intf = false; 00906 uint8_t current_intf = 0; 00907 00908 while (index < len) { 00909 len_desc = conf_descr[index]; 00910 id = conf_descr[index+1]; 00911 switch (id) { 00912 case CONFIGURATION_DESCRIPTOR: 00913 USB_DBG("dev: %p has %d intf", dev, conf_descr[4]); 00914 dev->setNbIntf(conf_descr[4]); 00915 break; 00916 case INTERFACE_DESCRIPTOR: 00917 if(pEnumerator->parseInterface(conf_descr[index + 2], conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7])) { 00918 if (intf_nb++ <= MAX_INTF) { 00919 current_intf = conf_descr[index + 2]; 00920 dev->addInterface(current_intf, conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7]); 00921 nb_endpoints_used = 0; 00922 USB_DBG("ADD INTF %d on device %p: class: %d, subclass: %d, proto: %d", current_intf, dev, conf_descr[index + 5],conf_descr[index + 6],conf_descr[index + 7]); 00923 } else { 00924 USB_DBG("Drop intf..."); 00925 } 00926 parsing_intf = true; 00927 } else { 00928 parsing_intf = false; 00929 } 00930 break; 00931 case ENDPOINT_DESCRIPTOR: 00932 if (parsing_intf && (intf_nb <= MAX_INTF) ) { 00933 if (nb_endpoints_used < MAX_ENDPOINT_PER_INTERFACE) { 00934 if( pEnumerator->useEndpoint(current_intf, (ENDPOINT_TYPE)(conf_descr[index + 3] & 0x03), (ENDPOINT_DIRECTION)((conf_descr[index + 2] >> 7) + 1)) ) { 00935 // if the USBEndpoint is isochronous -> skip it (TODO: fix this) 00936 if ((conf_descr[index + 3] & 0x03) != ISOCHRONOUS_ENDPOINT) { 00937 ep = newEndpoint((ENDPOINT_TYPE)(conf_descr[index+3] & 0x03), 00938 (ENDPOINT_DIRECTION)((conf_descr[index + 2] >> 7) + 1), 00939 conf_descr[index + 4] | (conf_descr[index + 5] << 8), 00940 conf_descr[index + 2] & 0x0f); 00941 USB_DBG("ADD USBEndpoint %p, on interf %d on device %p", ep, current_intf, dev); 00942 if (ep != NULL && dev != NULL) { 00943 addEndpoint(dev, current_intf, ep); 00944 } else { 00945 USB_DBG("EP NULL"); 00946 } 00947 nb_endpoints_used++; 00948 } else { 00949 USB_DBG("ISO USBEndpoint NOT SUPPORTED"); 00950 } 00951 } 00952 } 00953 } 00954 break; 00955 case HID_DESCRIPTOR: 00956 lenReportDescr = conf_descr[index + 7] | (conf_descr[index + 8] << 8); 00957 break; 00958 default: 00959 break; 00960 } 00961 index += len_desc; 00962 } 00963 } 00964 00965 00966 USB_TYPE USBHost::bulkWrite(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) 00967 { 00968 return generalTransfer(dev, ep, buf, len, blocking, BULK_ENDPOINT, true); 00969 } 00970 00971 USB_TYPE USBHost::bulkRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) 00972 { 00973 return generalTransfer(dev, ep, buf, len, blocking, BULK_ENDPOINT, false); 00974 } 00975 00976 USB_TYPE USBHost::interruptWrite(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) 00977 { 00978 return generalTransfer(dev, ep, buf, len, blocking, INTERRUPT_ENDPOINT, true); 00979 } 00980 00981 USB_TYPE USBHost::interruptRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) 00982 { 00983 return generalTransfer(dev, ep, buf, len, blocking, INTERRUPT_ENDPOINT, false); 00984 } 00985 00986 USB_TYPE USBHost::generalTransfer(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking, ENDPOINT_TYPE type, bool write) { 00987 00988 #if DEBUG_TRANSFER 00989 const char * type_str = (type == BULK_ENDPOINT) ? "BULK" : ((type == INTERRUPT_ENDPOINT) ? "INTERRUPT" : "ISOCHRONOUS"); 00990 USB_DBG_TRANSFER("----- %s %s [dev: %p - %s - hub: %d - port: %d - addr: %d - ep: %02X]------", type_str, (write) ? "WRITE" : "READ", dev, dev->getName(ep->getIntfNb()), dev->getHub(), dev->getPort(), dev->getAddress(), ep->getAddress()); 00991 #endif 00992 00993 usb_mutex.lock(); 00994 00995 USB_TYPE res; 00996 ENDPOINT_DIRECTION dir = (write) ? OUT : IN; 00997 00998 if (dev == NULL) { 00999 USB_ERR("dev NULL"); 01000 usb_mutex.unlock(); 01001 return USB_TYPE_ERROR; 01002 } 01003 01004 if (ep == NULL) { 01005 USB_ERR("ep NULL"); 01006 usb_mutex.unlock(); 01007 return USB_TYPE_ERROR; 01008 } 01009 01010 if (ep->getState() != USB_TYPE_IDLE) { 01011 USB_WARN("[ep: %p - dev: %p - %s] NOT IDLE: %s", ep, ep->dev, ep->dev->getName(ep->getIntfNb()), ep->getStateString()); 01012 usb_mutex.unlock(); 01013 return ep->getState(); 01014 } 01015 01016 if ((ep->getDir() != dir) || (ep->getType() != type)) { 01017 USB_ERR("[ep: %p - dev: %p] wrong dir or bad USBEndpoint type", ep, ep->dev); 01018 usb_mutex.unlock(); 01019 return USB_TYPE_ERROR; 01020 } 01021 01022 if (dev->getAddress() != ep->getDeviceAddress()) { 01023 USB_ERR("[ep: %p - dev: %p] USBEndpoint addr and device addr don't match", ep, ep->dev); 01024 usb_mutex.unlock(); 01025 return USB_TYPE_ERROR; 01026 } 01027 01028 #if DEBUG_TRANSFER 01029 if (write) { 01030 USB_DBG_TRANSFER("%s WRITE buffer", type_str); 01031 for (int i = 0; i < ep->getLengthTransferred(); i++) 01032 printf("%02X ", buf[i]); 01033 printf("\r\n\r\n"); 01034 } 01035 #endif 01036 addTransfer(ep, buf, len); 01037 01038 if (blocking) { 01039 01040 ep->ep_queue.get(); 01041 res = ep->getState(); 01042 01043 USB_DBG_TRANSFER("%s TRANSFER res: %s on ep: %p\r\n", type_str, ep->getStateString(), ep); 01044 01045 if (res != USB_TYPE_IDLE) { 01046 usb_mutex.unlock(); 01047 return res; 01048 } 01049 01050 usb_mutex.unlock(); 01051 return USB_TYPE_OK; 01052 } 01053 01054 usb_mutex.unlock(); 01055 return USB_TYPE_PROCESSING; 01056 01057 } 01058 01059 01060 USB_TYPE USBHost::controlRead(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { 01061 return controlTransfer(dev, requestType, request, value, index, buf, len, false); 01062 } 01063 01064 USB_TYPE USBHost::controlWrite(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { 01065 return controlTransfer(dev, requestType, request, value, index, buf, len, true); 01066 } 01067 01068 USB_TYPE USBHost::controlTransfer(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len, bool write) 01069 { 01070 usb_mutex.lock(); 01071 USB_DBG_TRANSFER("----- CONTROL %s [dev: %p - hub: %d - port: %d] ------", (write) ? "WRITE" : "READ", dev, dev->getHub(), dev->getPort()); 01072 01073 int length_transfer = len; 01074 USB_TYPE res; 01075 uint32_t token; 01076 01077 control->setSpeed(dev->getSpeed()); 01078 control->setSize(dev->getSizeControlEndpoint()); 01079 if (dev->isActiveAddress()) { 01080 control->setDeviceAddress(dev->getAddress()); 01081 } else { 01082 control->setDeviceAddress(0); 01083 } 01084 01085 USB_DBG_TRANSFER("Control transfer on device: %d\r\n", control->getDeviceAddress()); 01086 fillControlBuf(requestType, request, value, index, len); 01087 01088 #if DEBUG_TRANSFER 01089 USB_DBG_TRANSFER("SETUP PACKET: "); 01090 for (int i = 0; i < 8; i++) 01091 printf("%01X ", setupPacket[i]); 01092 printf("\r\n"); 01093 #endif 01094 01095 control->setNextToken(TD_SETUP); 01096 addTransfer(control, (uint8_t*)setupPacket, 8); 01097 01098 control->ep_queue.get(); 01099 res = control->getState(); 01100 01101 USB_DBG_TRANSFER("CONTROL setup stage %s", control->getStateString()); 01102 01103 if (res != USB_TYPE_IDLE) { 01104 usb_mutex.unlock(); 01105 return res; 01106 } 01107 01108 if (length_transfer) { 01109 token = (write) ? TD_OUT : TD_IN; 01110 control->setNextToken(token); 01111 addTransfer(control, (uint8_t *)buf, length_transfer); 01112 01113 control->ep_queue.get(); 01114 res = control->getState(); 01115 01116 #if DEBUG_TRANSFER 01117 USB_DBG_TRANSFER("CONTROL %s stage %s", (write) ? "WRITE" : "READ", control->getStateString()); 01118 if (write) { 01119 USB_DBG_TRANSFER("CONTROL WRITE buffer"); 01120 for (int i = 0; i < control->getLengthTransferred(); i++) 01121 printf("%02X ", buf[i]); 01122 printf("\r\n\r\n"); 01123 } else { 01124 USB_DBG_TRANSFER("CONTROL READ SUCCESS [%d bytes transferred]", control->getLengthTransferred()); 01125 for (int i = 0; i < control->getLengthTransferred(); i++) 01126 printf("%02X ", buf[i]); 01127 printf("\r\n\r\n"); 01128 } 01129 #endif 01130 01131 if (res != USB_TYPE_IDLE) { 01132 usb_mutex.unlock(); 01133 return res; 01134 } 01135 } 01136 01137 token = (write) ? TD_IN : TD_OUT; 01138 control->setNextToken(token); 01139 addTransfer(control, NULL, 0); 01140 01141 control->ep_queue.get(); 01142 res = control->getState(); 01143 01144 USB_DBG_TRANSFER("CONTROL ack stage %s", control->getStateString()); 01145 usb_mutex.unlock(); 01146 01147 if (res != USB_TYPE_IDLE) 01148 return res; 01149 01150 return USB_TYPE_OK; 01151 } 01152 01153 01154 void USBHost::fillControlBuf(uint8_t requestType, uint8_t request, uint16_t value, uint16_t index, int len) 01155 { 01156 setupPacket[0] = requestType; 01157 setupPacket[1] = request; 01158 setupPacket[2] = (uint8_t) value; 01159 setupPacket[3] = (uint8_t) (value >> 8); 01160 setupPacket[4] = (uint8_t) index; 01161 setupPacket[5] = (uint8_t) (index >> 8); 01162 setupPacket[6] = (uint8_t) len; 01163 setupPacket[7] = (uint8_t) (len >> 8); 01164 }
Generated on Tue Jul 12 2022 19:55:23 by
1.7.2
