Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
targets/hal/TARGET_Freescale/TARGET_KSDK2_MCUS/TARGET_KL27Z/serial_api.c
- Committer:
- mbed_official
- Date:
- 2016-05-03
- Revision:
- 121:7f86b4238bec
File content as of revision 121:7f86b4238bec:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "serial_api.h" #if DEVICE_SERIAL // math.h required for floating point operations for baud rate calculation #include <math.h> #include "mbed_assert.h" #include <string.h> #include "cmsis.h" #include "pinmap.h" #include "fsl_lpuart.h" #include "peripheral_clock_defines.h" #include "PeripheralPins.h" #include "fsl_clock_config.h" static uint32_t serial_irq_ids[FSL_FEATURE_SOC_LPUART_COUNT] = {0}; static uart_irq_handler irq_handler; /* Array of UART peripheral base address. */ static LPUART_Type *const uart_addrs[] = LPUART_BASE_PTRS; /* Array of LPUART bus clock frequencies */ static clock_name_t const uart_clocks[] = LPUART_CLOCK_FREQS; int stdio_uart_inited = 0; serial_t stdio_uart; void serial_init(serial_t *obj, PinName tx, PinName rx) { uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX); uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX); obj->index = pinmap_merge(uart_tx, uart_rx); MBED_ASSERT((int)obj->index != NC); // Need to initialize the clocks here as ticker init gets called before mbed_sdk_init if (SystemCoreClock == DEFAULT_SYSTEM_CLOCK) BOARD_BootClockRUN(); /* Set the LPUART clock source */ if (obj->index == LPUART_0) { CLOCK_SetLpuart0Clock(1U); } else { CLOCK_SetLpuart1Clock(1U); } lpuart_config_t config; LPUART_GetDefaultConfig(&config); config.baudRate_Bps = 9600; config.enableTx = false; config.enableRx = false; LPUART_Init(uart_addrs[obj->index], &config, CLOCK_GetFreq(uart_clocks[obj->index])); pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); if (tx != NC) { LPUART_EnableTx(uart_addrs[obj->index], true); pin_mode(tx, PullUp); } if (rx != NC) { LPUART_EnableRx(uart_addrs[obj->index], true); pin_mode(rx, PullUp); } if (obj->index == STDIO_UART) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } } void serial_free(serial_t *obj) { LPUART_Deinit(uart_addrs[obj->index]); serial_irq_ids[obj->index] = 0; } void serial_baud(serial_t *obj, int baudrate) { LPUART_SetBaudRate(uart_addrs[obj->index], (uint32_t)baudrate, CLOCK_GetFreq(uart_clocks[obj->index])); } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { LPUART_Type *base = uart_addrs[obj->index]; uint8_t temp; /* Set bit count and parity mode. */ temp = base->CTRL & ~(LPUART_CTRL_PE_MASK | LPUART_CTRL_PT_MASK | LPUART_CTRL_M_MASK); if (parity != ParityNone) { /* Enable Parity */ temp |= (LPUART_CTRL_PE_MASK | LPUART_CTRL_M_MASK); if (parity == ParityOdd) { temp |= LPUART_CTRL_PT_MASK; } else { // Hardware does not support forced parity MBED_ASSERT(0); } } base->CTRL = temp; #if defined(FSL_FEATURE_LPUART_HAS_STOP_BIT_CONFIG_SUPPORT) && FSL_FEATURE_LPUART_HAS_STOP_BIT_CONFIG_SUPPORT /* set stop bit per char */ temp = base->BAUD & ~LPUART_BAUD_SBNS_MASK; base->BAUD = temp | LPUART_BAUD_SBNS((uint8_t)--stop_bits); #endif } /****************************************************************************** * INTERRUPTS HANDLING ******************************************************************************/ static inline void uart_irq(uint32_t transmit_empty, uint32_t receive_full, uint32_t index) { LPUART_Type *base = uart_addrs[index]; /* If RX overrun. */ if (LPUART_STAT_OR_MASK & base->STAT) { /* Read base->D, otherwise the RX does not work. */ (void)base->DATA; LPUART_ClearStatusFlags(base, kLPUART_RxOverrunFlag); } if (serial_irq_ids[index] != 0) { if (transmit_empty) irq_handler(serial_irq_ids[index], TxIrq); if (receive_full) irq_handler(serial_irq_ids[index], RxIrq); } } void uart0_irq() { uint32_t status_flags = LPUART0->STAT; uart_irq((status_flags & kLPUART_TxDataRegEmptyFlag), (status_flags & kLPUART_RxDataRegFullFlag), 0); } void uart1_irq() { uint32_t status_flags = LPUART1->STAT; uart_irq((status_flags & kLPUART_TxDataRegEmptyFlag), (status_flags & kLPUART_RxDataRegFullFlag), 1); } void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; serial_irq_ids[obj->index] = id; } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { IRQn_Type uart_irqs[] = LPUART_RX_TX_IRQS; uint32_t vector = 0; switch (obj->index) { case 0: vector = (uint32_t)&uart0_irq; break; case 1: vector = (uint32_t)&uart1_irq; break; default: break; } if (enable) { switch (irq) { case RxIrq: LPUART_EnableInterrupts(uart_addrs[obj->index], kLPUART_RxDataRegFullInterruptEnable); break; case TxIrq: LPUART_EnableInterrupts(uart_addrs[obj->index], kLPUART_TxDataRegEmptyInterruptEnable); break; default: break; } NVIC_SetVector(uart_irqs[obj->index], vector); NVIC_EnableIRQ(uart_irqs[obj->index]); } else { // disable int all_disabled = 0; SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq); switch (irq) { case RxIrq: LPUART_DisableInterrupts(uart_addrs[obj->index], kLPUART_RxDataRegFullInterruptEnable); break; case TxIrq: LPUART_DisableInterrupts(uart_addrs[obj->index], kLPUART_TxDataRegEmptyInterruptEnable); break; default: break; } switch (other_irq) { case RxIrq: all_disabled = ((LPUART_GetEnabledInterrupts(uart_addrs[obj->index]) & kLPUART_RxDataRegFullInterruptEnable) == 0); break; case TxIrq: all_disabled = ((LPUART_GetEnabledInterrupts(uart_addrs[obj->index]) & kLPUART_TxDataRegEmptyInterruptEnable) == 0); break; default: break; } if (all_disabled) NVIC_DisableIRQ(uart_irqs[obj->index]); } } int serial_getc(serial_t *obj) { uint8_t data; LPUART_ReadBlocking(uart_addrs[obj->index], &data, 1); return data; } void serial_putc(serial_t *obj, int c) { while (!serial_writable(obj)); LPUART_WriteByte(uart_addrs[obj->index], (uint8_t)c); } int serial_readable(serial_t *obj) { uint32_t status_flags = LPUART_GetStatusFlags(uart_addrs[obj->index]); if (status_flags & kLPUART_RxOverrunFlag) LPUART_ClearStatusFlags(uart_addrs[obj->index], kLPUART_RxOverrunFlag); return (status_flags & kLPUART_RxDataRegFullFlag); } int serial_writable(serial_t *obj) { uint32_t status_flags = LPUART_GetStatusFlags(uart_addrs[obj->index]); if (status_flags & kLPUART_RxOverrunFlag) LPUART_ClearStatusFlags(uart_addrs[obj->index], kLPUART_RxOverrunFlag); return (status_flags & kLPUART_TxDataRegEmptyFlag); } void serial_clear(serial_t *obj) { } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } void serial_break_set(serial_t *obj) { uart_addrs[obj->index]->CTRL |= LPUART_CTRL_SBK_MASK; } void serial_break_clear(serial_t *obj) { uart_addrs[obj->index]->CTRL &= ~LPUART_CTRL_SBK_MASK; } #endif