Tarek Lule / VL53L0X_Condensed2
Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers VL53L0X.cpp Source File

VL53L0X.cpp

00001 /**
00002  ******************************************************************************
00003  * @file    VL53L0X_class.cpp
00004  * @author  IMG
00005  * @version V0.0.1
00006  * @date    28-June-2016
00007  * @brief   Implementation file for the VL53L0X driver class
00008  ******************************************************************************
00009  * @attention
00010  *
00011  * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
00012  *
00013  * Redistribution and use in source and binary forms, with or without modification,
00014  * are permitted provided that the following conditions are met:
00015  *   1. Redistributions of source code must retain the above copyright notice,
00016  *      this list of conditions and the following disclaimer.
00017  *   2. Redistributions in binary form must reproduce the above copyright notice,
00018  *      this list of conditions and the following disclaimer in the documentation
00019  *      and/or other materials provided with the distribution.
00020  *   3. Neither the name of STMicroelectronics nor the names of its contributors
00021  *      may be used to endorse or promote products derived from this software
00022  *      without specific prior written permission.
00023  *
00024  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00025  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00026  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
00027  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
00028  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
00029  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
00030  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00031  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
00032  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
00033  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00034  *
00035  ******************************************************************************
00036 */
00037 
00038 /* 
00039 Simplifications versus the original library:
00040 
00041 Replace: 
00042  * "MicroSeconds" or "micro_seconds" by "us" or "_us"
00043  * "MilliSeconds" or "milli_seconds" by "ms" or "_ms"
00044  * "MegaCps" or "MCps" or "_mega_cps" by "MHz" or "_MHz"
00045  * "MicroMeter" by "um" or "_um"
00046  * "FIXEDPNT" by "FP"
00047 
00048 Everything related to histogram_mode seems completely not implemented, so all definitions removed. 
00049 
00050 Everything related to x_talk_compensation seems also not implemented, all removed
00051 
00052 Some example regular expressinos used to simplify the code: 
00053 b)  Search for: \QRead_Byte(\E([A-Za-z_\d]+)[[:punct:]](\s*)\Q&\E([A-Za-z\d_]+)\Q);\E
00054     Replace by: \3 = Read_Byte\(\1\); 
00055     to replace: Read_Byte(0x90,&module_id);  
00056     by this:  module_id = Read_Byte(0x90);
00057 
00058 c)  Search for: ([A-Za-z_\d]+)\Q(\E\r\n(\s*)
00059     Replace by: \1\( 
00060     To join lines where the first line has an open bracket, and the next line starts listing the parameters.
00061     for example: Status = VL53L0X_UpdateByte(V
00062                             L53L0X_REG_VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV, ....
00063     becomes:  Status = VL53L0X_UpdateByte(VL53L0X_REG_VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV, ....
00064 
00065 */
00066 
00067 /* Includes */
00068 #include <stdlib.h>
00069 #include "VL53L0X.h"
00070 
00071 void Report_Range_Infos(VL53L0X_RangingMeasurementData_t RangeResults, Serial *aSerial )
00072 {    
00073     aSerial->printf("\n\r Reporting All  Fields of VL53L0X_RangingMeasurementData_t structure \n\r" ); 
00074     aSerial->printf(" .Range_mm = %dmm; Ranged distance. \n\r",  RangeResults.Range_mm ); 
00075     aSerial->printf(" .RangeDMax_mm = %dmm; maximum detection distance in current setup and environment conditions \n\r",  RangeResults.RangeDMax_mm ); 
00076     aSerial->printf(" .SignalRateRtn_MHz = %3.3fMHz; effectively a measure of target  reflectance \n\r",  RangeResults.SignalRateRtn_MHz / 65535.01); 
00077     aSerial->printf(" .AmbientRateRtn_MHz = %3.3fMHz; effectively a measure of the ambient light \n\r",  RangeResults.AmbientRateRtn_MHz / 65535.01 ); 
00078     aSerial->printf(" .EffectiveSpadRtnCount = %3.3f; effective SPAD count for the return signal \n\r",  RangeResults.EffectiveSpadRtnCount / 256.001 ); 
00079     aSerial->printf(" .RangeFractionalPart = %d; Fractional part of range distance. \n\r",  RangeResults.RangeFractionalPart >> 6 ); 
00080     aSerial->printf(" .RangeStatus = %d[u8];  Status for the current measurement, 0 = value is valid \n\r",  RangeResults.RangeStatus ); 
00081     aSerial->printf(" .SigmaEstimate = %3.2f;  Estimated Sigma - based on ambient & VCSEL rates and signal_total_events \n\r",  RangeResults.SigmaEstimate/ 65535.01 ); 
00082 };
00083 
00084 void Report_Deep_Infos(VL53L0X TOF1, Serial *aSerial)
00085 {   
00086     aSerial->printf("\n\r Reporting All Top Level Infos of the class \n\r" ); 
00087     aSerial->printf("I2cDevAddr  = %d. \n\r",  TOF1.I2cDevAddr  ); 
00088     aSerial->printf("comms_type  = %d. Type of comms: 1=VL53L0X_COMMS_I2C or VL53L0X_COMMS_SPI \n\r",  TOF1.comms_type  ); 
00089     aSerial->printf("comms_speed = %d. Communication speed [kHz] : typically 400kHz for I2C   \n\r",  TOF1.comms_speed_khz  ); 
00090        
00091     aSerial->printf("\n\r Reporting All Infos of the Device_Info structure: \n\r" ); 
00092     aSerial->printf("Device_Info.ProductType = 0x%2X.  VL53L0X = 1, VL53L1 = 2 \n\r",  TOF1.Device_Info.ProductType  );     
00093     aSerial->printf("Device_Info.ProductRevision = %d.%d. Revision NR, major.minor \n\r",  
00094        TOF1.Device_Info.ProductRevisionMajor , TOF1.Device_Info.ProductRevisionMinor  );
00095     aSerial->printf("Device_Info.Name = %s. Name of Device e.g. Left_Distance\n\r",   TOF1.Device_Info.Name  );
00096     aSerial->printf("Device_Info.Type = %s. Type of Device e.g VL53L0X \n\r",   TOF1.Device_Info.Type  );
00097     aSerial->printf("Device_Info.ProductId = %s. Product Identifier String \n\r",   TOF1.Device_Info.ProductId  );
00098 
00099     aSerial->printf("\n\r Reporting All  Fields of CurrentParameters \n\r" ); 
00100     aSerial->printf(" .DeviceMode            = %d. Defines type of measurement to be done for the next measurement \n\r", 
00101        TOF1.CurrentParameters .DeviceMode  ); 
00102     aSerial->printf(" .Measure_Time_Budget_us= %dus.  Allowed total time for a single measurement \n\r", 
00103        TOF1.CurrentParameters .MeasurementTimingBudget_us  ); 
00104     aSerial->printf(" .Measure_Period_ms     = %dms. Time between two consecutive measurements \n\r", 
00105        TOF1.CurrentParameters .InterMeasurementPeriod_ms  ); 
00106     aSerial->printf(" .XTalk_Compens_En      = %d. Crosstalk compensation enable or not (0, default) \n\r", 
00107        TOF1.CurrentParameters .XTalkCompensationEnable  ); 
00108     aSerial->printf(" .XTalk_CompRange_mm    = %dmm. CrossTalk compensation range, seems never used \n\r", 
00109        TOF1.CurrentParameters .XTalkCompensationRange_mm  ); 
00110     aSerial->printf(" .XTalk_CompRate_MHz    = %3.2fMHz. CrossTalk compensation rate . \n\r", 
00111        (float) TOF1.CurrentParameters .XTalkCompensationRate_MHz  / 65536); 
00112     aSerial->printf(" .RangeOffset_um        = %d. Range offset adjustment (um) last programmed.\n\r", 
00113        TOF1.CurrentParameters .RangeOffset_um  ); 
00114     aSerial->printf(" .LimitChecks ... = SIGMA_FINAL, SIGNAL_RATE_FINAL, SIGNAL_REF_CLIP, IGNORE_THRESHOLD, SIGNAL_RATE_MSRC, SIGNAL_RATE_PRE.\n\r");
00115     aSerial->printf(" .LimitChecksEnable[x]  = %d %d %d %d %d %d. The Limit Checks enabled or not.\n\r", 
00116        TOF1.CurrentParameters .LimitChecksEnable [0],TOF1.CurrentParameters .LimitChecksEnable [1] ,TOF1.CurrentParameters .LimitChecksEnable [2], 
00117        TOF1.CurrentParameters .LimitChecksEnable [3],TOF1.CurrentParameters .LimitChecksEnable [4] ,TOF1.CurrentParameters .LimitChecksEnable [5]  ); 
00118     aSerial->printf(" .LimitChecksStatus[x]  = %d %d %d %d %d %d.  Status of checks of last measurement.\n\r", 
00119        TOF1.CurrentParameters .LimitChecksStatus [0],TOF1.CurrentParameters .LimitChecksStatus [1] ,TOF1.CurrentParameters .LimitChecksStatus [2], 
00120        TOF1.CurrentParameters .LimitChecksStatus [3],TOF1.CurrentParameters .LimitChecksStatus [4] ,TOF1.CurrentParameters .LimitChecksStatus [5]  ); 
00121     aSerial->printf(" .LimitChecksValue[x]   = %d %d %d %d %d %d [FP1616]. The Limit Check values \n\r", 
00122        TOF1.CurrentParameters .LimitChecksValue [0],TOF1.CurrentParameters .LimitChecksValue [1] ,TOF1.CurrentParameters .LimitChecksValue [2], 
00123        TOF1.CurrentParameters .LimitChecksValue [3],TOF1.CurrentParameters .LimitChecksValue [4] ,TOF1.CurrentParameters .LimitChecksValue [5]  ); 
00124     aSerial->printf(" .WrapAroundCheckEnable = %d. Wrap Around Check enabled or not \n\r", 
00125        TOF1.CurrentParameters .WrapAroundCheckEnable  ); 
00126 
00127     aSerial->printf("\n\r Reporting All Fields of VL53L0X_DevData_t Data structure \n\r" ); 
00128     aSerial->printf(" .OscFrequency_MHz          = %3.2fMHz; Frequency used \n\r",  (float) TOF1.Data.OscFrequency_MHz/65536 ); 
00129     aSerial->printf(" .LastEncodedTimeout        = %d[u16]; Last encoded Time out used for timing budget \n\r",  TOF1.Data.LastEncodedTimeout ); 
00130     aSerial->printf(" .Pin0GpioFunctionality     = %d[u8]; functionality of the GPIO: pin0  \n\r",  TOF1.Data.Pin0GpioFunctionality ); 
00131     aSerial->printf(" .FinalRangeTimeout_us      = %d[u32]; Execution time of the final ranging \n\r",  TOF1.Data.FinalRangeTimeout_us ); 
00132     aSerial->printf(" .FinalRangeVcselPulsePeriod= %d[u8]; Vcsel pulse period (pll clocks) for the final range measurement \n\r",  TOF1.Data.FinalRangeVcselPulsePeriod ); 
00133     aSerial->printf(" .PreRangeTimeout_us        = %d[u32]; Execution time of the final range \n\r",  TOF1.Data.PreRangeTimeout_us ); 
00134     aSerial->printf(" .PreRangeVcselPulsePeriod  = %d[u8]; Vcsel pulse period (pll clocks) for the pre-range measurement \n\r",  TOF1.Data.PreRangeVcselPulsePeriod ); 
00135     aSerial->printf(" .ReadDataFromDeviceDone    = %2d;  reads from device has been done (>0) or not. \n\r",  TOF1.Data.ReadDataFromDeviceDone ); 
00136     aSerial->printf(" .ModuleId                  = %X; Module ID \n\r",  TOF1.Data.ModuleId ); 
00137     aSerial->printf(" .Revision                  = %d[u8]; test Revision \n\r",  TOF1.Data.Revision ); 
00138     aSerial->printf(" .ProductId                 = %s[char*]; Product Identifier String  \n\r",  TOF1.Data.ProductId ); 
00139     aSerial->printf(" .ReferenceSpadCount        = %d[u8];  used for ref spad management \n\r",  TOF1.Data.ReferenceSpadCount ); 
00140     aSerial->printf(" .ReferenceSpadType         = %d[u8]; used for ref spad management \n\r",  TOF1.Data.ReferenceSpadType ); 
00141     aSerial->printf(" .RefSpadsInitialised       = %d[u8]; reports if ref spads are initialised. \n\r",  TOF1.Data.RefSpadsInitialised ); 
00142     aSerial->printf(" .PartUIDUpper              = %d[u32];  Unique Part ID Upper \n\r",  TOF1.Data.PartUIDUpper ); 
00143     aSerial->printf(" .PartUIDLower              = %d[u32]; Unique Part ID Lower \n\r",  TOF1.Data.PartUIDLower ); 
00144     aSerial->printf(" .SignalRateMeasFixed400mm  = %3.3f; Peak Signal rate at 400 mm \n\r",  1.0 / 65535.0 * TOF1.Data.SignalRateMeasFixed400mm ); 
00145     aSerial->printf(" .RefSpadEnables[x]         = %X %X %X %X %X %X[hex8]; Reference Spad Enables  \n\r",  
00146         TOF1.Data.RefSpadEnables[0], TOF1.Data.RefSpadEnables[1], TOF1.Data.RefSpadEnables[2], 
00147         TOF1.Data.RefSpadEnables[3], TOF1.Data.RefSpadEnables[4], TOF1.Data.RefSpadEnables[5] ); 
00148     aSerial->printf(" .RefGoodSpadMap[x]         = %X %X %X %X %X %X[hex8];  Reference Spad Good Spad Map\n\r",
00149         TOF1.Data.RefGoodSpadMap[0], TOF1.Data.RefGoodSpadMap[1], TOF1.Data.RefGoodSpadMap[2], 
00150         TOF1.Data.RefGoodSpadMap[3], TOF1.Data.RefGoodSpadMap[4], TOF1.Data.RefGoodSpadMap[5] );     
00151     aSerial->printf(" .Part2PartOffsetNVM_um     = %d[i32]; backed up NVM value \n\r",  TOF1.Data.Part2PartOffsetNVM_um ); 
00152     aSerial->printf(" .Part2PartOffsetAdjustNVM_um= %d[i32]; backed up NVM value of additional offset adjustment \n\r",  TOF1.Data.Part2PartOffsetAdjustNVM_um ); 
00153     aSerial->printf(" .SequenceConfig            = %d[u8]; Internal value for the sequence config  \n\r",   TOF1.Data.SequenceConfig ); 
00154     aSerial->printf(" .RangeFractionalEnable     = %d[u8]; Enable/Disable fractional part of range data  \n\r",  TOF1.Data.RangeFractionalEnable); 
00155     aSerial->printf(" .PalState                  = %d[u8]; Current state of the PAL \n\r",  TOF1.Data.PalState ); 
00156     aSerial->printf(" .PowerMode                 = %d[u8]; Current Power Mode; Stdby1/2, Idle1/2 \n\r",  TOF1.Data.PowerMode ); 
00157     aSerial->printf(" .SigmaEstRefArray          = %d[u16]; Reference array sigma value in 1/100th of [mm] \n\r",  TOF1.Data.SigmaEstRefArray ); 
00158     aSerial->printf(" .SigmaEstEffPulseWidth     = %d[u16]; Effective Pulse width for sigma estimate in 1/100th of ns \n\r", TOF1.Data.SigmaEstEffPulseWidth ); 
00159     aSerial->printf(" .SigmaEstEffAmbWidth       = %d. Effective Ambient width for sigma estimate in 1/100th of ns \n\r",  TOF1.Data.SigmaEstEffAmbWidth ); 
00160     aSerial->printf(" .StopVariable              = %d[u8]; StopVariable used during the stop sequence  \n\r",  TOF1.Data.StopVariable ); 
00161     aSerial->printf(" .targetRefRate             = %d. Target Ambient Rate for Ref spad management \n\r",   TOF1.Data.targetRefRate ); 
00162     aSerial->printf(" .LastSignalRef_MHz         = %3.3fMHz;  Latest Signal ref \n\r",  TOF1.Data.LastSignalRef_MHz / 65535.01 ); 
00163     aSerial->printf(" .UseInternalTuningSetting  = %d[u8]; Indicate if we use  Tuning Settings table  \n\r",    TOF1.Data.UseInternalTuningSettings ); 
00164     aSerial->printf(" .LinearityCorrectiveGain   = %d[u8]; Linearity Corrective Gain value in x1000 \n\r",  TOF1.Data.LinearityCorrectiveGain ); 
00165     aSerial->printf(" .DmaxCalRange_mm           = %dmm; Dmax Calibration Range \n\r",  TOF1.Data.DmaxCalRange_mm );               
00166     aSerial->printf(" .DmaxCalSignalRateRtn_MHz  = %3.3fMHz; Dmax Calibration Signal Rate Return \n\r",  TOF1.Data.DmaxCalSignalRateRtn_MHz / 65535.01 ); 
00167 }
00168 
00169 int VL53L0X::read_id(uint8_t *id)
00170 {   int status = 0;
00171     uint16_t rl_id = 0;
00172 
00173     status = VL53L0X_read_word(VL53L0X_REG_IDENTIFICATION_MODEL_ID, &rl_id);
00174     if (rl_id == 0xEEAA) {
00175         return status;
00176     }
00177     return -1;
00178 }
00179 
00180 int VL53L0X::init_sensor(uint8_t new_addr)
00181 {   int status;
00182 
00183     VL53L0X_off();
00184     VL53L0X_on();
00185 
00186     // Verify if the device is actually present
00187     uint8_t id = 0;
00188     status = read_id(&id);
00189     if (status != 0) { 
00190         //aSerial->printf("VL53L0X sensor is not present!\n\r");
00191         return 99; } // device is not present
00192     
00193     status = VL53L0X_data_init();
00194     if (status != VL53L0X_ERROR_NONE) {
00195         //aSerial->printf("Failed to init VL53L0X sensor!\n\r");
00196         return status;
00197     }
00198 
00199     // deduce silicon version
00200     status = VL53L0X_get_device_info();
00201 
00202     status = prepare();
00203     if (status != VL53L0X_ERROR_NONE) {
00204         //aSerial->printf("Failed to prepare VL53L0X!\n\r");
00205         return status;
00206     }
00207 
00208     if (new_addr != VL53L0X_DEFAULT_ADDRESS) {
00209         status = set_device_address(new_addr);
00210         if (status) {
00211             //aSerial->printf("Failed to change I2C address!\n\r");
00212             return status;
00213         }
00214     } 
00215     return status;
00216 }
00217 
00218 VL53L0X_Error VL53L0X::VL53L0X_data_init(void)
00219 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
00220     VL53L0X_DeviceParameters_t CurrentParameters ;
00221     int i;
00222     uint8_t StopVariable;
00223 
00224     /* by default the I2C is running at 1V8 if you want to change it you
00225      * need to include this define at compilation level. */
00226 #ifdef USE_I2C_2V8
00227     Status = VL53L0X_UpdateByte(VL53L0X_REG_VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV,0xFE,0x01);
00228 #endif
00229 
00230     /* Set I2C standard mode */
00231     if (status == VL53L0X_ERROR_NONE) {
00232         status = VL53L0X_write_byte( 0x88, 0x00);  }
00233 
00234     Data.ReadDataFromDeviceDone = 0;
00235     Data.ReadDataFromDeviceDone = 0;
00236 
00237 #ifdef USE_IQC_STATION
00238     if (Status == VL53L0X_ERROR_NONE) {
00239         Status = VL53L0X_apply_offset_adjustment();
00240     }
00241 #endif
00242 
00243     /* Default value is 1000 for Linearity Corrective Gain */
00244     Data.LinearityCorrectiveGain = 1000;
00245 
00246     /* Dmax default Parameter */
00247     Data.DmaxCalRange_mm = 400;
00248     Data.DmaxCalSignalRateRtn_MHz = (FixPoint1616_t)((0x00016B85)); /* 1.42 No Cover Glass*/
00249 
00250     /* Set Default static parameters
00251      *set first temporary values 9.44_MHz * 65536 = 618660 */
00252     Data.OscFrequency_MHz = 618660;
00253 
00254     /* Set Default XTalkCompensationRate_MHz to 0  */
00255     CurrentParameters.XTalkCompensationRate_MHz  = 0;
00256 
00257     /* Get default parameters */
00258     status = VL53L0X_get_device_parameters( &CurrentParameters);
00259     if (status == VL53L0X_ERROR_NONE) {
00260         /* initialize PAL values */
00261         CurrentParameters.DeviceMode  = VL53L0X_DEVICEMODE_SINGLE_RANGING;
00262         CurrentParameters = CurrentParameters ;
00263     }
00264 
00265     /* Sigma estimator variable */
00266     Data.SigmaEstRefArray = 100;
00267     Data.SigmaEstEffPulseWidth = 900;
00268     Data.SigmaEstEffAmbWidth = 500;
00269     Data.targetRefRate = 0x0A00; /* 20 MHz in 9:7 format */
00270 
00271     /* Use internal default settings */
00272     Data.UseInternalTuningSettings = 1;
00273 
00274     status |= VL53L0X_write_byte( 0x80, 0x01);
00275     status |= VL53L0X_write_byte( 0xFF, 0x01);
00276     status |= VL53L0X_write_byte( 0x00, 0x00);
00277     status |= VL53L0X_read_byte( 0x91, &StopVariable);
00278     Data.StopVariable = StopVariable;
00279     status |= VL53L0X_write_byte( 0x00, 0x01);
00280     status |= VL53L0X_write_byte( 0xFF, 0x00);
00281     status |= VL53L0X_write_byte( 0x80, 0x00);
00282 
00283     /* Enable all check */
00284     for (i = 0; i < VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS; i++) {
00285         if (status == VL53L0X_ERROR_NONE) {
00286             status |= VL53L0X_set_limit_check_enable( i, 1);
00287         } else { break; }
00288     }
00289 
00290     /* Disable the following checks */
00291     if (status == VL53L0X_ERROR_NONE)
00292         status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP, 0);
00293 
00294     if (status == VL53L0X_ERROR_NONE)
00295         status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD, 0);
00296 
00297     if (status == VL53L0X_ERROR_NONE)
00298         status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC, 0);
00299 
00300     if (status == VL53L0X_ERROR_NONE)
00301         status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE, 0);
00302 
00303     /* Limit default values */
00304     if (status == VL53L0X_ERROR_NONE) {
00305         status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
00306                                                (FixPoint1616_t)(18 * 65536));
00307     }
00308     if (status == VL53L0X_ERROR_NONE) {
00309         status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
00310                                                (FixPoint1616_t)(25 * 65536 / 100)); /* 0.25 * 65536 */
00311     }
00312 
00313     if (status == VL53L0X_ERROR_NONE) {
00314         status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
00315                                                (FixPoint1616_t)(35 * 65536));
00316     }
00317 
00318     if (status == VL53L0X_ERROR_NONE) {
00319         status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
00320                                                (FixPoint1616_t)(0 * 65536));
00321     }
00322 
00323     if (status == VL53L0X_ERROR_NONE) {
00324         Data.SequenceConfig = 0xFF;
00325         status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,0xFF);
00326 
00327         /* Set PAL state to tell that we are waiting for call to VL53L0X_StaticInit */
00328         Data.PalState = VL53L0X_STATE_WAIT_STATICINIT;
00329     }
00330 
00331     if (status == VL53L0X_ERROR_NONE) {
00332         Data.RefSpadsInitialised = 0;
00333     }
00334     
00335     return status;
00336 }
00337 
00338 int VL53L0X::prepare()
00339 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
00340     uint32_t ref_spad_count;
00341     uint8_t is_aperture_spads;
00342     uint8_t vhv_settings;
00343     uint8_t phase_cal;
00344 
00345     if (status == VL53L0X_ERROR_NONE) {
00346         status = VL53L0X_static_init();   // Device Initialization
00347     }
00348 
00349     if (status == VL53L0X_ERROR_NONE) {
00350         status = VL53L0X_perform_ref_calibration(&vhv_settings, &phase_cal);  // Device Initialization
00351     }
00352 
00353     if (status == VL53L0X_ERROR_NONE) {
00354         status = VL53L0X_perform_ref_spad_management(&ref_spad_count, &is_aperture_spads);  // Device Initialization
00355     }
00356 
00357     return status;
00358 }
00359 
00360 int VL53L0X::start_measurement(OperatingMode operating_mode, void (*fptr)(void), 
00361                                VL53L0X_RangingConfig rangingConfig)
00362 {   int Status = VL53L0X_ERROR_NONE;
00363     int ClrStatus;
00364 
00365     uint8_t VhvSettings;
00366     uint8_t PhaseCal;
00367     // default settings, for normal range.
00368     FixPoint1616_t signalLimit = (FixPoint1616_t)(0.25 * 65536);
00369     FixPoint1616_t sigmaLimit = (FixPoint1616_t)(25 * 65536);
00370     uint32_t timingBudget = 33000;
00371     uint8_t preRangeVcselPeriod = 14;
00372     uint8_t finalRangeVcselPeriod = 10;
00373 
00374     if (operating_mode == range_continuous_interrupt) {
00375         if (_gpio1Int == NULL) {
00376             //aSerial->printf("GPIO1 Error\r\n");
00377             return 1;
00378         }
00379 
00380         Status = VL53L0X_stop_measurement(); // it is safer to do this while sensor is stopped
00381 
00382 //        Status = VL53L0X_SetInterruptThresholds(Device, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING, 0, 300);
00383 
00384         Status = VL53L0X_set_gpio_config(0, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
00385                                          VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY,
00386                                          VL53L0X_INTERRUPTPOLARITY_HIGH);
00387 
00388         if (Status == VL53L0X_ERROR_NONE) {
00389             attach_interrupt_measure_detection_irq(fptr);
00390             enable_interrupt_measure_detection_irq();
00391         }
00392 
00393         ClrStatus = clear_interrupt(VL53L0X_REG_RESULT_INTERRUPT_STATUS | VL53L0X_REG_RESULT_RANGE_STATUS);
00394         if (ClrStatus) { Status = 97; } // VL53L0X_ClearErrorInterrupt fail
00395 
00396         if (Status == VL53L0X_ERROR_NONE) {
00397             CurrentParameters .DeviceMode  = VL53L0X_DEVICEMODE_CONTINUOUS_RANGING; // Setup in continuous ranging mode
00398             Status = VL53L0X_start_measurement();
00399         }
00400     }
00401 
00402     if (operating_mode == range_single_shot_polling) {
00403         // singelshot, polled ranging
00404         if (Status == VL53L0X_ERROR_NONE) {
00405             // no need to do this when we use VL53L0X_PerformSingleRangingMeasurement
00406             CurrentParameters .DeviceMode  = VL53L0X_DEVICEMODE_SINGLE_RANGING; // Setup in single ranging mode
00407             // Enable/Disable Sigma and Signal check
00408             Status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, 1);
00409         }
00410         if (Status == VL53L0X_ERROR_NONE) {
00411             Status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, 1);
00412         }
00413 
00414     /* Preselected Ranging configurations */
00415     switch(rangingConfig) {
00416         case Range_Config_DEFAULT:
00417             // default settings, for normal range.
00418             signalLimit = (FixPoint1616_t)(0.25 * 65536);
00419             sigmaLimit = (FixPoint1616_t)(16 * 65536);
00420             timingBudget = 33000;
00421             preRangeVcselPeriod = 14;
00422             finalRangeVcselPeriod = 10;
00423             break;
00424         case Range_Config_LONG_RANGE: // *** from mass market cube expansion v1.1, ranging with satellites.
00425             signalLimit = (FixPoint1616_t)(0.1 * 65536);
00426             sigmaLimit = (FixPoint1616_t)(60 * 65536);
00427             timingBudget = 33000;
00428             preRangeVcselPeriod = 18;
00429             finalRangeVcselPeriod = 14;
00430             break;
00431         case Range_Config_HIGH_ACCURACY:
00432             signalLimit = (FixPoint1616_t)(0.25*65536);
00433             sigmaLimit = (FixPoint1616_t)(18*65536);
00434             timingBudget = 200000;
00435             preRangeVcselPeriod = 14;
00436             finalRangeVcselPeriod = 10;
00437             break;
00438         case Range_Config_HIGH_SPEED:
00439             signalLimit = (FixPoint1616_t)(0.25*65536);
00440             sigmaLimit = (FixPoint1616_t)(60*65536);
00441             timingBudget = 20000;
00442             preRangeVcselPeriod = 14;
00443             finalRangeVcselPeriod = 10;
00444             break;
00445         default:                
00446             Status = 96; // Config Not Supported
00447         }
00448 
00449         if (Status == VL53L0X_ERROR_NONE) {
00450             Status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, signalLimit);}
00451 
00452         if (Status == VL53L0X_ERROR_NONE) {
00453             Status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, sigmaLimit);}
00454 
00455         if (Status == VL53L0X_ERROR_NONE) {
00456             Status = VL53L0X_set_measurement_timing_budget_us( timingBudget);}
00457 
00458         if (Status == VL53L0X_ERROR_NONE) {
00459             Status = VL53L0X_set_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE, preRangeVcselPeriod);}
00460 
00461         if (Status == VL53L0X_ERROR_NONE) {
00462             Status = VL53L0X_set_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_FINAL_RANGE, finalRangeVcselPeriod);}
00463 
00464         if (Status == VL53L0X_ERROR_NONE) {
00465             Status = VL53L0X_perform_ref_calibration( &VhvSettings, &PhaseCal);}
00466 
00467     }
00468 
00469     if (operating_mode == range_continuous_polling) {
00470         if (Status == VL53L0X_ERROR_NONE) {
00471             CurrentParameters .DeviceMode  = VL53L0X_DEVICEMODE_CONTINUOUS_RANGING; // Setup in continuous ranging mode
00472             Status = VL53L0X_start_measurement();
00473         }
00474     }
00475     return Status;
00476 }
00477 
00478 int VL53L0X::range_meas_int_continuous_mode(void (*fptr)(void))
00479 {   int status, clr_status;
00480 
00481     status = VL53L0X_stop_measurement(); // it is safer to do this while sensor is stopped
00482 
00483 //   status = VL53L0X_SetInterruptThresholds(Device, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING, 0, 300);
00484 
00485     status = VL53L0X_set_gpio_config( 0, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
00486         VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY, VL53L0X_INTERRUPTPOLARITY_HIGH);
00487 
00488     if (!status) {
00489         attach_interrupt_measure_detection_irq(fptr);
00490         enable_interrupt_measure_detection_irq();
00491     }
00492 
00493     clr_status = clear_interrupt(VL53L0X_REG_RESULT_INTERRUPT_STATUS | VL53L0X_REG_RESULT_RANGE_STATUS);
00494     if (clr_status!=0) { status = 98; } // VL53L0X_ClearErrorInterrupt_fail;
00495 
00496     if (!status) {
00497         status = range_start_continuous_mode();
00498     }
00499     return status;
00500 }
00501 
00502 VL53L0X_Error VL53L0X::wait_measurement_data_ready(void)
00503 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
00504     uint8_t new_dat_ready = 0;
00505     uint32_t loop_nb;
00506 
00507     // Wait until it finished
00508     // use timeout to avoid deadlock
00509     if (status == VL53L0X_ERROR_NONE) {
00510         loop_nb = 0;
00511         do {
00512             status = VL53L0X_get_measurement_data_ready( &new_dat_ready);
00513             if ((new_dat_ready == 0x01) || status != VL53L0X_ERROR_NONE) {
00514                 break;
00515             }
00516             loop_nb = loop_nb + 1;
00517             VL53L0X_polling_delay();
00518         } while (loop_nb < VL53L0X_DEFAULT_MAX_LOOP);
00519 
00520         if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
00521             status = VL53L0X_ERROR_TIME_OUT;
00522         }
00523     }
00524 
00525     return status;
00526 }
00527 
00528 int VL53L0X::get_distance(uint32_t *p_data)
00529 {
00530     int status = 0;
00531     VL53L0X_RangingMeasurementData_t p_ranging_measurement_data;
00532 
00533     status = start_measurement(range_single_shot_polling, NULL, Range_Config_DEFAULT);
00534     if (!status) {
00535         status = get_measurement(range_single_shot_polling, &p_ranging_measurement_data);
00536     }
00537     if (p_ranging_measurement_data.RangeStatus == 0) { // we have a valid range.
00538         *p_data = p_ranging_measurement_data.Range_mm;
00539     } else {
00540         *p_data = 0;
00541         status = VL53L0X_ERROR_RANGE_ERROR;
00542     }
00543     stop_measurement(range_single_shot_polling);
00544     return status;
00545 }
00546 
00547 VL53L0X_Error VL53L0X::wait_stop_completed(void)
00548 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
00549     uint32_t stop_completed = 0;
00550     uint32_t loop_nb;
00551 
00552     // Wait until it finished
00553     // use timeout to avoid deadlock
00554     if (status == VL53L0X_ERROR_NONE) {
00555         loop_nb = 0;
00556         do {
00557             status = VL53L0X_get_stop_completed_status( &stop_completed);
00558             if ((stop_completed == 0x00) || status != VL53L0X_ERROR_NONE) {
00559                 break;
00560             }
00561             loop_nb = loop_nb + 1;
00562             VL53L0X_polling_delay();
00563         } while (loop_nb < VL53L0X_DEFAULT_MAX_LOOP);
00564 
00565         if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
00566             status = VL53L0X_ERROR_TIME_OUT;
00567         }
00568     }
00569 
00570     return status;
00571 }
00572 
00573 int VL53L0X::get_measurement(OperatingMode operating_mode, VL53L0X_RangingMeasurementData_t *p_data)
00574 {   int Status = VL53L0X_ERROR_NONE;
00575 
00576     if (operating_mode == range_single_shot_polling) {
00577         Status = VL53L0X_perform_single_ranging_measurement( p_data);
00578     }
00579 
00580     if (operating_mode == range_continuous_polling) {
00581         if (Status == VL53L0X_ERROR_NONE) {
00582             Status = VL53L0X_measurement_poll_for_completion();
00583         }
00584 
00585         if (Status == VL53L0X_ERROR_NONE) {
00586             Status = VL53L0X_get_ranging_measurement_data( p_data);
00587 
00588             // Clear the interrupt
00589             VL53L0X_clear_interrupt_mask( VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY);
00590             VL53L0X_polling_delay();
00591         }
00592     }
00593 
00594     if (operating_mode == range_continuous_interrupt) {
00595         Status = VL53L0X_get_ranging_measurement_data( p_data);
00596         VL53L0X_clear_interrupt_mask( VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR | VL53L0X_REG_RESULT_INTERRUPT_STATUS);
00597     }
00598 
00599     return Status;
00600 }
00601 
00602 int VL53L0X::stop_measurement(OperatingMode operating_mode)
00603 {   int status = VL53L0X_ERROR_NONE;
00604 
00605     // don't need to stop for a singleshot range!
00606     if (operating_mode == range_single_shot_polling) {
00607     }
00608 
00609     if (operating_mode == range_continuous_interrupt || operating_mode == range_continuous_polling) {
00610         // continuous mode
00611         if (status == VL53L0X_ERROR_NONE) {
00612             //aSerial->printf("Call of VL53L0X_StopMeasurement\n");
00613             status = VL53L0X_stop_measurement();
00614         }
00615 
00616         if (status == VL53L0X_ERROR_NONE) {
00617             //aSerial->printf("Wait Stop to be competed\n");
00618             status = wait_stop_completed();
00619         }
00620 
00621         if (status == VL53L0X_ERROR_NONE)
00622             status = VL53L0X_clear_interrupt_mask(VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY);
00623     }
00624 
00625     return status;
00626 }
00627 
00628 int VL53L0X::handle_irq(OperatingMode operating_mode, VL53L0X_RangingMeasurementData_t *data)
00629 {   int status;
00630     status = get_measurement(operating_mode, data);
00631     enable_interrupt_measure_detection_irq();
00632     return status;
00633 }
00634 
00635 int VL53L0X::range_start_continuous_mode()
00636 {   CurrentParameters .DeviceMode  =  VL53L0X_DEVICEMODE_CONTINUOUS_RANGING;
00637 
00638     return VL53L0X_start_measurement();
00639 
00640 }
00641 
00642 VL53L0X_Error VL53L0X::VL53L0X_device_read_strobe(void)
00643 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
00644     uint8_t strobe;
00645     uint32_t loop_nb;
00646 
00647     status |= VL53L0X_write_byte( 0x83, 0x00);
00648 
00649     /* polling
00650      * use timeout to avoid deadlock*/
00651     if (status == VL53L0X_ERROR_NONE) {
00652         loop_nb = 0;
00653         do {
00654             status = VL53L0X_read_byte( 0x83, &strobe);
00655             if ((strobe != 0x00) || status != VL53L0X_ERROR_NONE) {
00656                 break;
00657             }
00658 
00659             loop_nb = loop_nb + 1;
00660         } while (loop_nb < VL53L0X_DEFAULT_MAX_LOOP);
00661 
00662         if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
00663             status = VL53L0X_ERROR_TIME_OUT;
00664         }
00665     }
00666 
00667     status |= VL53L0X_write_byte( 0x83, 0x01);
00668     
00669     return status;
00670 }
00671 
00672 VL53L0X_Error VL53L0X::VL53L0X_get_info_from_device( uint8_t option)
00673 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
00674     uint8_t byte;
00675     uint32_t tmp_dword;
00676     uint8_t module_id;
00677     uint8_t revision;
00678     uint8_t reference_spad_count = 0;
00679     uint8_t reference_spad_type = 0;
00680     uint32_t part_uid_upper = 0;
00681     uint32_t part_uid_lower = 0;
00682     uint32_t offset_fixed1104_mm = 0;
00683     int16_t offset_micro_meters = 0;
00684     uint32_t dist_meas_tgt_fixed1104_mm = 400 << 4;
00685     uint32_t dist_meas_fixed1104_400_mm = 0;
00686     uint32_t signal_rate_meas_fixed1104_400_mm = 0;
00687     char product_id[19];
00688     char *product_id_tmp;
00689     uint8_t read_data_from_device_done;
00690     FixPoint1616_t signal_rate_meas_fixed400_mm_fix = 0;
00691     uint8_t nvm_ref_good_spad_map[VL53L0X_REF_SPAD_BUFFER_SIZE];
00692     int i;
00693 
00694     read_data_from_device_done = Data.ReadDataFromDeviceDone;
00695     read_data_from_device_done = Data.ReadDataFromDeviceDone;
00696     read_data_from_device_done = Data.ReadDataFromDeviceDone;
00697 
00698     /* This access is done only once after that a GetDeviceInfo or
00699      * datainit is done*/
00700     if (read_data_from_device_done != 7) {
00701 
00702         status |= VL53L0X_write_byte( 0x80, 0x01);
00703         status |= VL53L0X_write_byte( 0xFF, 0x01);
00704         status |= VL53L0X_write_byte( 0x00, 0x00);
00705         status |= VL53L0X_write_byte( 0xFF, 0x06);
00706         status |= VL53L0X_read_byte ( 0x83, &byte);
00707         status |= VL53L0X_write_byte( 0x83, byte | 4);
00708         status |= VL53L0X_write_byte( 0xFF, 0x07);
00709         status |= VL53L0X_write_byte( 0x81, 0x01);
00710 
00711         status |= VL53L0X_polling_delay();
00712 
00713         status |= VL53L0X_write_byte( 0x80, 0x01);
00714 
00715         if (((option & 1) == 1) &&
00716                 ((read_data_from_device_done & 1) == 0)) {
00717             status |= VL53L0X_write_byte( 0x94, 0x6b);
00718             status |= VL53L0X_device_read_strobe();
00719             status |= VL53L0X_read_dword( 0x90, &tmp_dword);
00720 
00721             reference_spad_count = (uint8_t)((tmp_dword >> 8) & 0x07f);
00722             reference_spad_type  = (uint8_t)((tmp_dword >> 15) & 0x01);
00723 
00724             status |= VL53L0X_write_byte( 0x94, 0x24);
00725             status |= VL53L0X_device_read_strobe();
00726             status |= VL53L0X_read_dword( 0x90, &tmp_dword);
00727 
00728             nvm_ref_good_spad_map[0] = (uint8_t)((tmp_dword >> 24) & 0xff);
00729             nvm_ref_good_spad_map[1] = (uint8_t)((tmp_dword >> 16) & 0xff);
00730             nvm_ref_good_spad_map[2] = (uint8_t)((tmp_dword >> 8)  & 0xff);
00731             nvm_ref_good_spad_map[3] = (uint8_t)(tmp_dword & 0xff);
00732 
00733             status |= VL53L0X_write_byte( 0x94, 0x25);
00734             status |= VL53L0X_device_read_strobe();
00735             status |= VL53L0X_read_dword( 0x90, &tmp_dword);
00736 
00737             nvm_ref_good_spad_map[4] = (uint8_t)((tmp_dword >> 24) & 0xff);
00738             nvm_ref_good_spad_map[5] = (uint8_t)((tmp_dword >> 16) & 0xff);
00739         }
00740 
00741         if (((option & 2) == 2) &&
00742                 ((read_data_from_device_done & 2) == 0)) {
00743 
00744             status |= VL53L0X_write_byte( 0x94, 0x02);
00745             status |= VL53L0X_device_read_strobe();
00746             status |= VL53L0X_read_byte( 0x90, &module_id);
00747 
00748             status |= VL53L0X_write_byte( 0x94, 0x7B);
00749             status |= VL53L0X_device_read_strobe();
00750             status |= VL53L0X_read_byte( 0x90, &revision);
00751 
00752             status |= VL53L0X_write_byte( 0x94, 0x77);
00753             status |= VL53L0X_device_read_strobe();
00754             status |= VL53L0X_read_dword( 0x90, &tmp_dword);
00755 
00756             product_id[0] = (char)((tmp_dword >> 25) & 0x07f);
00757             product_id[1] = (char)((tmp_dword >> 18) & 0x07f);
00758             product_id[2] = (char)((tmp_dword >> 11) & 0x07f);
00759             product_id[3] = (char)((tmp_dword >> 4) & 0x07f);
00760 
00761             byte = (uint8_t)((tmp_dword & 0x00f) << 3);
00762 
00763             status |= VL53L0X_write_byte( 0x94, 0x78);
00764             status |= VL53L0X_device_read_strobe();
00765             status |= VL53L0X_read_dword( 0x90, &tmp_dword);
00766 
00767             product_id[4] = (char)(byte +
00768                                    ((tmp_dword >> 29) & 0x07f));
00769             product_id[5] = (char)((tmp_dword >> 22) & 0x07f);
00770             product_id[6] = (char)((tmp_dword >> 15) & 0x07f);
00771             product_id[7] = (char)((tmp_dword >> 8) & 0x07f);
00772             product_id[8] = (char)((tmp_dword >> 1) & 0x07f);
00773 
00774             byte = (uint8_t)((tmp_dword & 0x001) << 6);
00775 
00776             status |= VL53L0X_write_byte( 0x94, 0x79);
00777 
00778             status |= VL53L0X_device_read_strobe();
00779 
00780             status |= VL53L0X_read_dword( 0x90, &tmp_dword);
00781 
00782             product_id[9] = (char)(byte +
00783                                    ((tmp_dword >> 26) & 0x07f));
00784             product_id[10] = (char)((tmp_dword >> 19) & 0x07f);
00785             product_id[11] = (char)((tmp_dword >> 12) & 0x07f);
00786             product_id[12] = (char)((tmp_dword >> 5) & 0x07f);
00787 
00788             byte = (uint8_t)((tmp_dword & 0x01f) << 2);
00789 
00790             status |= VL53L0X_write_byte( 0x94, 0x7A);
00791 
00792             status |= VL53L0X_device_read_strobe();
00793 
00794             status |= VL53L0X_read_dword( 0x90, &tmp_dword);
00795 
00796             product_id[13] = (char)(byte +
00797                                     ((tmp_dword >> 30) & 0x07f));
00798             product_id[14] = (char)((tmp_dword >> 23) & 0x07f);
00799             product_id[15] = (char)((tmp_dword >> 16) & 0x07f);
00800             product_id[16] = (char)((tmp_dword >> 9) & 0x07f);
00801             product_id[17] = (char)((tmp_dword >> 2) & 0x07f);
00802             product_id[18] = '\0';
00803 
00804         }
00805 
00806         if (((option & 4) == 4) &&
00807                 ((read_data_from_device_done & 4) == 0)) {
00808 
00809             status |= VL53L0X_write_byte( 0x94, 0x7B);
00810             status |= VL53L0X_device_read_strobe();
00811             status |= VL53L0X_read_dword( 0x90, &part_uid_upper);
00812             status |= VL53L0X_write_byte( 0x94, 0x7C);
00813             status |= VL53L0X_device_read_strobe();
00814             status |= VL53L0X_read_dword( 0x90, &part_uid_lower);
00815 
00816             status |= VL53L0X_write_byte( 0x94, 0x73);
00817             status |= VL53L0X_device_read_strobe();
00818             status |= VL53L0X_read_dword( 0x90, &tmp_dword);
00819             signal_rate_meas_fixed1104_400_mm = (tmp_dword & 0x0000000ff) << 8;
00820 
00821             status |= VL53L0X_write_byte( 0x94, 0x74);
00822             status |= VL53L0X_device_read_strobe();
00823             status |= VL53L0X_read_dword( 0x90, &tmp_dword);
00824             signal_rate_meas_fixed1104_400_mm |= ((tmp_dword & 0xff000000) >> 24);
00825 
00826             status |= VL53L0X_write_byte( 0x94, 0x75);
00827             status |= VL53L0X_device_read_strobe();
00828             status |= VL53L0X_read_dword( 0x90, &tmp_dword);
00829             dist_meas_fixed1104_400_mm = (tmp_dword & 0x0000000ff) << 8;
00830 
00831             status |= VL53L0X_write_byte( 0x94, 0x76);
00832             status |= VL53L0X_device_read_strobe();
00833             status |= VL53L0X_read_dword( 0x90, &tmp_dword);
00834             dist_meas_fixed1104_400_mm |= ((tmp_dword & 0xff000000) >> 24);
00835         }
00836 
00837         status |= VL53L0X_write_byte( 0x81, 0x00);
00838         status |= VL53L0X_write_byte( 0xFF, 0x06);
00839         status |= VL53L0X_read_byte( 0x83, &byte);
00840         status |= VL53L0X_write_byte( 0x83, byte & 0xfb);
00841         status |= VL53L0X_write_byte( 0xFF, 0x01);
00842         status |= VL53L0X_write_byte( 0x00, 0x01);
00843         status |= VL53L0X_write_byte( 0xFF, 0x00);
00844         status |= VL53L0X_write_byte( 0x80, 0x00);
00845     }
00846 
00847     if ((status == VL53L0X_ERROR_NONE) &&
00848             (read_data_from_device_done != 7)) {
00849         /* Assign to variable if status is ok */
00850         if (((option & 1) == 1) &&
00851                 ((read_data_from_device_done & 1) == 0)) {
00852             Data.ReferenceSpadCount = reference_spad_count;
00853             Data.ReferenceSpadType = reference_spad_type;
00854 
00855             for (i = 0; i < VL53L0X_REF_SPAD_BUFFER_SIZE; i++) {
00856                 Data.RefGoodSpadMap[i] =
00857                     nvm_ref_good_spad_map[i];
00858             }
00859         }
00860 
00861         if (((option & 2) == 2) &&
00862                 ((read_data_from_device_done & 2) == 0)) {
00863             Data.ModuleId = module_id;
00864             Data.Revision = revision;
00865             product_id_tmp = Data.ProductId;
00866             VL53L0X_COPYSTRING(product_id_tmp, product_id);
00867         }
00868 
00869         if (((option & 4) == 4) &&
00870                 ((read_data_from_device_done & 4) == 0)) {
00871             Data.PartUIDUpper = part_uid_upper;
00872             Data.PartUIDLower = part_uid_lower;
00873             signal_rate_meas_fixed400_mm_fix =
00874                 VL53L0X_FP97TOFP1616(signal_rate_meas_fixed1104_400_mm);
00875             Data.SignalRateMeasFixed400mm = signal_rate_meas_fixed400_mm_fix;
00876 
00877             offset_micro_meters = 0;
00878             if (dist_meas_fixed1104_400_mm != 0) {
00879                 offset_fixed1104_mm =
00880                     dist_meas_fixed1104_400_mm -
00881                     dist_meas_tgt_fixed1104_mm;
00882                 offset_micro_meters = (offset_fixed1104_mm
00883                                        * 1000) >> 4;
00884                 offset_micro_meters *= -1;
00885             }
00886 
00887             Data.Part2PartOffsetAdjustNVM_um = offset_micro_meters;
00888         }
00889         byte = (uint8_t)(read_data_from_device_done | option);
00890         Data.ReadDataFromDeviceDone = byte;
00891     }
00892     return status;
00893 }
00894 
00895 VL53L0X_Error VL53L0X::VL53L0X_get_offset_calibration_data_micro_meter(int32_t *p_offset_calibration_data_micro_meter)
00896 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
00897     uint16_t range_offset_register;
00898     int16_t c_max_offset = 2047;
00899     int16_t c_offset_range = 4096;
00900 
00901     /* Note, that offset has 10.2 format */
00902     status = VL53L0X_read_word(VL53L0X_REG_ALGO_PART_TO_PART_RANGE_OFFSET_MM,
00903                                &range_offset_register);
00904 
00905     if (status == VL53L0X_ERROR_NONE) {
00906         range_offset_register = (range_offset_register & 0x0fff);
00907 
00908         /* Apply 12 bit 2's compliment conversion */
00909         if (range_offset_register > c_max_offset) {
00910             *p_offset_calibration_data_micro_meter =
00911                 (int16_t)(range_offset_register - c_offset_range) * 250;
00912         } else {
00913             *p_offset_calibration_data_micro_meter =
00914                 (int16_t)range_offset_register * 250; }
00915     }
00916 
00917     return status;
00918 }
00919 
00920 VL53L0X_Error VL53L0X::VL53L0X_set_offset_calibration_data_micro_meter(int32_t offset_calibration_data_micro_meter)
00921 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
00922     int32_t c_max_offset_micro_meter = 511000;
00923     int32_t c_min_offset_micro_meter = -512000;
00924     int16_t c_offset_range = 4096;
00925     uint32_t encoded_offset_val;
00926 
00927     if (offset_calibration_data_micro_meter > c_max_offset_micro_meter) {
00928         offset_calibration_data_micro_meter = c_max_offset_micro_meter;
00929     } else {
00930         if (offset_calibration_data_micro_meter < c_min_offset_micro_meter) {
00931             offset_calibration_data_micro_meter = c_min_offset_micro_meter;
00932         }
00933     }
00934 
00935     /* The offset register is 10.2 format and units are mm
00936      * therefore conversion is applied by a division of 250. */
00937     if (offset_calibration_data_micro_meter >= 0) {
00938         encoded_offset_val = offset_calibration_data_micro_meter / 250;
00939     } else {
00940         encoded_offset_val =
00941             c_offset_range + offset_calibration_data_micro_meter / 250;
00942     }
00943 
00944     status = VL53L0X_write_word(VL53L0X_REG_ALGO_PART_TO_PART_RANGE_OFFSET_MM,
00945                                 encoded_offset_val);
00946     return status;
00947 }
00948 
00949 VL53L0X_Error VL53L0X::VL53L0X_apply_offset_adjustment(void)
00950 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
00951     int32_t corrected_offset_micro_meters;
00952     int32_t current_offset_micro_meters;
00953 
00954     /* if we run on this function we can read all the NVM info used by the API */
00955     status = VL53L0X_get_info_from_device( 7);
00956 
00957     /* Read back current device offset */
00958     if (status == VL53L0X_ERROR_NONE) {
00959         status = VL53L0X_get_offset_calibration_data_micro_meter(&current_offset_micro_meters);
00960     }
00961 
00962     /* Apply Offset Adjustment derived from 400mm measurements */
00963     if (status == VL53L0X_ERROR_NONE) {
00964 
00965         /* Store initial device offset */
00966         Data.Part2PartOffsetNVM_um = current_offset_micro_meters;
00967 
00968         corrected_offset_micro_meters = current_offset_micro_meters +
00969                                         (int32_t)Data.Part2PartOffsetAdjustNVM_um;
00970 
00971         status = VL53L0X_set_offset_calibration_data_micro_meter(corrected_offset_micro_meters);
00972 
00973         /* store current, adjusted offset */
00974         if (status == VL53L0X_ERROR_NONE) {
00975             CurrentParameters .RangeOffset_um  = corrected_offset_micro_meters;
00976         }
00977     }
00978     return status;
00979 }
00980 
00981 VL53L0X_Error VL53L0X::VL53L0X_get_inter_measurement_period_ms(uint32_t *p_inter_measurement_period_ms)
00982 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
00983     uint16_t osc_calibrate_val;
00984     uint32_t im_period_ms;
00985 
00986     
00987 
00988     status = VL53L0X_read_word( VL53L0X_REG_OSC_CALIBRATE_VAL,
00989                                &osc_calibrate_val);
00990 
00991     if (status == VL53L0X_ERROR_NONE) {
00992         status = VL53L0X_read_dword(VL53L0X_REG_SYSTEM_INTERMEASUREMENT_PERIOD,
00993                                     &im_period_ms);
00994     }
00995 
00996     if (status == VL53L0X_ERROR_NONE) {
00997         if (osc_calibrate_val != 0) {
00998             *p_inter_measurement_period_ms =
00999                 im_period_ms / osc_calibrate_val;
01000         }
01001         CurrentParameters .InterMeasurementPeriod_ms  = *p_inter_measurement_period_ms;
01002     }
01003     
01004     return status;
01005 }
01006 
01007 VL53L0X_Error VL53L0X::VL53L0X_get_x_talk_compensation_rate_MHz(FixPoint1616_t *p_xtalk_compensation_rate_MHz)
01008 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01009     uint16_t value;
01010     FixPoint1616_t temp_fix1616;
01011 
01012     status = VL53L0X_read_word(VL53L0X_REG_CROSSTALK_COMPENSATION_PEAK_RATE_MHz, (uint16_t *)&value);
01013     if (status == VL53L0X_ERROR_NONE) {
01014         if (value == 0) {
01015             /* the Xtalk is disabled return value from memory */
01016             temp_fix1616 = CurrentParameters .XTalkCompensationRate_MHz  ;
01017             *p_xtalk_compensation_rate_MHz = temp_fix1616;
01018             CurrentParameters .XTalkCompensationEnable  = 0;
01019         } else {
01020             temp_fix1616 = VL53L0X_FP313TOFP1616(value);
01021             *p_xtalk_compensation_rate_MHz = temp_fix1616;
01022             CurrentParameters .XTalkCompensationRate_MHz  = temp_fix1616;
01023             CurrentParameters .XTalkCompensationEnable  = 1;
01024         }
01025     }
01026 
01027     return status;
01028 }
01029 
01030 VL53L0X_Error VL53L0X::VL53L0X_get_limit_check_value( uint16_t limit_check_id,
01031         FixPoint1616_t *p_limit_check_value)
01032 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01033     uint8_t enable_zero_value = 0;
01034     uint16_t temp16;
01035     FixPoint1616_t temp_fix1616;
01036 
01037     switch (limit_check_id) {
01038 
01039         case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
01040             /* internal computation: */
01041             temp_fix1616 = CurrentParameters .LimitChecksValue [VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE];
01042             enable_zero_value = 0;
01043             break;
01044 
01045         case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
01046             status = VL53L0X_read_word(VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, &temp16);
01047             if (status == VL53L0X_ERROR_NONE) {
01048                 temp_fix1616 = VL53L0X_FP97TOFP1616(temp16);
01049             }
01050             enable_zero_value = 1;
01051             break;
01052 
01053         case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:
01054             /* internal computation: */
01055             temp_fix1616 = CurrentParameters .LimitChecksValue [VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP];
01056             enable_zero_value = 0;
01057             break;
01058 
01059         case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:
01060             /* internal computation: */
01061             temp_fix1616 = CurrentParameters .LimitChecksValue [VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD];
01062             enable_zero_value = 0;
01063             break;
01064 
01065         case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
01066         case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
01067             status = VL53L0X_read_word(VL53L0X_REG_PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT,
01068                                        &temp16);
01069             if (status == VL53L0X_ERROR_NONE) {
01070                 temp_fix1616 = VL53L0X_FP97TOFP1616(temp16);
01071             }
01072 
01073             enable_zero_value = 0;
01074             break;
01075 
01076         default:
01077             status = VL53L0X_ERROR_INVALID_PARAMS;
01078 
01079     }
01080 
01081     if (status == VL53L0X_ERROR_NONE) {
01082         if (enable_zero_value == 1) {
01083 
01084             if (temp_fix1616 == 0) {
01085                 /* disabled: return value from memory */
01086                 temp_fix1616 = CurrentParameters .LimitChecksValue [limit_check_id];
01087                 *p_limit_check_value = temp_fix1616;
01088                 CurrentParameters .LimitChecksEnable [limit_check_id] = 0;
01089             } else {
01090                 *p_limit_check_value = temp_fix1616;
01091                 CurrentParameters .LimitChecksValue [limit_check_id] = temp_fix1616;
01092                 CurrentParameters .LimitChecksEnable [limit_check_id] = 1;
01093             }
01094         } else { *p_limit_check_value = temp_fix1616; }
01095     }
01096 
01097     return status;
01098 }
01099 
01100 VL53L0X_Error VL53L0X::VL53L0X_get_limit_check_enable( uint16_t limit_check_id,
01101         uint8_t *p_limit_check_enable)
01102 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01103     uint8_t temp8;
01104 
01105     if (limit_check_id >= VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS) {
01106         status = VL53L0X_ERROR_INVALID_PARAMS;
01107         *p_limit_check_enable = 0;
01108     } else {
01109         temp8 = CurrentParameters .LimitChecksEnable [limit_check_id];
01110         *p_limit_check_enable = temp8;
01111     }
01112 
01113     return status;
01114 }
01115 
01116 VL53L0X_Error VL53L0X::VL53L0X_get_wrap_around_check_enable(uint8_t *p_wrap_around_check_enable)
01117 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01118     uint8_t data;
01119 
01120     status = VL53L0X_read_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &data);
01121     if (status == VL53L0X_ERROR_NONE) {
01122         Data.SequenceConfig = data;
01123         if (data & (0x01 << 7)) {
01124             *p_wrap_around_check_enable = 0x01;
01125         } else {
01126             *p_wrap_around_check_enable = 0x00;
01127         }
01128     }
01129     if (status == VL53L0X_ERROR_NONE) {
01130         CurrentParameters .WrapAroundCheckEnable  = *p_wrap_around_check_enable;
01131     }
01132 
01133     return status;
01134 }
01135 
01136 VL53L0X_Error VL53L0X::sequence_step_enabled(VL53L0X_SequenceStepId sequence_step_id, uint8_t sequence_config,
01137         uint8_t *p_sequence_step_enabled)
01138 {   VL53L0X_Error Status = VL53L0X_ERROR_NONE;
01139     *p_sequence_step_enabled = 0;
01140     
01141     switch (sequence_step_id) {
01142         case VL53L0X_SEQUENCESTEP_TCC:
01143             *p_sequence_step_enabled = (sequence_config & 0x10) >> 4;
01144             break;
01145         case VL53L0X_SEQUENCESTEP_DSS:
01146             *p_sequence_step_enabled = (sequence_config & 0x08) >> 3;
01147             break;
01148         case VL53L0X_SEQUENCESTEP_MSRC:
01149             *p_sequence_step_enabled = (sequence_config & 0x04) >> 2;
01150             break;
01151         case VL53L0X_SEQUENCESTEP_PRE_RANGE:
01152             *p_sequence_step_enabled = (sequence_config & 0x40) >> 6;
01153             break;
01154         case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
01155             *p_sequence_step_enabled = (sequence_config & 0x80) >> 7;
01156             break;
01157         default:
01158             Status = VL53L0X_ERROR_INVALID_PARAMS;
01159     }
01160     return Status;
01161 }
01162 
01163 VL53L0X_Error VL53L0X::VL53L0X_get_sequence_step_enables(VL53L0X_SchedulerSequenceSteps_t *p_scheduler_sequence_steps)
01164 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01165     uint8_t sequence_config = 0;
01166     
01167     status = VL53L0X_read_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
01168                                &sequence_config);
01169 
01170     if (status == VL53L0X_ERROR_NONE) {
01171         status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_TCC, sequence_config,
01172                                        &p_scheduler_sequence_steps->TccOn);
01173     }
01174     if (status == VL53L0X_ERROR_NONE) {
01175         status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_DSS, sequence_config,
01176                                        &p_scheduler_sequence_steps->DssOn);
01177     }
01178     if (status == VL53L0X_ERROR_NONE) {
01179         status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_MSRC, sequence_config,
01180                                        &p_scheduler_sequence_steps->MsrcOn);
01181     }
01182     if (status == VL53L0X_ERROR_NONE) {
01183         status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_PRE_RANGE, sequence_config,
01184                                        &p_scheduler_sequence_steps->PreRangeOn);
01185     }
01186     if (status == VL53L0X_ERROR_NONE) {
01187         status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_FINAL_RANGE, sequence_config,
01188                                        &p_scheduler_sequence_steps->FinalRangeOn);
01189     }
01190     return status;
01191 }
01192 
01193 uint8_t VL53L0X::VL53L0X_decode_vcsel_period (uint8_t vcsel_period_reg)
01194 {   /*! Converts the encoded VCSEL period register value into the real period in PLL clocks  */
01195     uint8_t vcsel_period_pclks = 0;
01196 
01197     vcsel_period_pclks = (vcsel_period_reg + 1) << 1;
01198 
01199     return vcsel_period_pclks;
01200 }
01201 
01202 uint8_t VL53L0X::lv53l0x_encode_vcsel_period (uint8_t vcsel_period_pclks)
01203 {   /*! Converts the encoded VCSEL period register value into the real period  in PLL clocks */
01204 
01205     uint8_t vcsel_period_reg = 0;
01206 
01207     vcsel_period_reg = (vcsel_period_pclks >> 1) - 1;
01208 
01209     return vcsel_period_reg;
01210 }
01211 
01212 VL53L0X_Error VL53L0X::wrapped_VL53L0X_set_vcsel_pulse_period(VL53L0X_VcselPeriod vcsel_period_type, uint8_t vcsel_pulse_period_pclk)
01213 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01214     uint8_t vcsel_period_reg;
01215     uint8_t min_pre_vcsel_period_pclk = 12;
01216     uint8_t max_pre_vcsel_period_pclk = 18;
01217     uint8_t min_final_vcsel_period_pclk = 8;
01218     uint8_t max_final_vcsel_period_pclk = 14;
01219     uint32_t measurement_timing_budget_us;
01220     uint32_t final_range_timeout_us;
01221     uint32_t pre_range_timeout_us;
01222     uint32_t msrc_timeout_us;
01223     uint8_t phase_cal_int = 0;
01224 
01225     /* Check if valid clock period requested */
01226 
01227     if ((vcsel_pulse_period_pclk % 2) != 0) {
01228         /* Value must be an even number */
01229         status = VL53L0X_ERROR_INVALID_PARAMS;
01230     } else if (vcsel_period_type == VL53L0X_VCSEL_PERIOD_PRE_RANGE &&
01231                (vcsel_pulse_period_pclk < min_pre_vcsel_period_pclk ||
01232                 vcsel_pulse_period_pclk > max_pre_vcsel_period_pclk)) {
01233         status = VL53L0X_ERROR_INVALID_PARAMS;
01234     } else if (vcsel_period_type == VL53L0X_VCSEL_PERIOD_FINAL_RANGE &&
01235                (vcsel_pulse_period_pclk < min_final_vcsel_period_pclk ||
01236                 vcsel_pulse_period_pclk > max_final_vcsel_period_pclk)) {
01237 
01238         status = VL53L0X_ERROR_INVALID_PARAMS;
01239     }
01240 
01241     /* Apply specific settings for the requested clock period */
01242 
01243     if (status != VL53L0X_ERROR_NONE) { return status; }
01244 
01245     if (vcsel_period_type == VL53L0X_VCSEL_PERIOD_PRE_RANGE) {
01246 
01247         /* Set phase check limits */
01248         if (vcsel_pulse_period_pclk == 12) {
01249 
01250             status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
01251                                         0x18);
01252             status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
01253                                         0x08);
01254         } else if (vcsel_pulse_period_pclk == 14) {
01255 
01256             status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
01257                                         0x30);
01258             status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
01259                                         0x08);
01260         } else if (vcsel_pulse_period_pclk == 16) {
01261 
01262             status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
01263                                         0x40);
01264             status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
01265                                         0x08);
01266         } else if (vcsel_pulse_period_pclk == 18) {
01267 
01268             status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
01269                                         0x50);
01270             status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
01271                                         0x08);
01272         }
01273     } else if (vcsel_period_type == VL53L0X_VCSEL_PERIOD_FINAL_RANGE) {
01274         if (vcsel_pulse_period_pclk == 8) {
01275             status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,0x10);
01276             status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,0x08);
01277             status |= VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
01278             status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
01279             status |= VL53L0X_write_byte( 0xff, 0x01);
01280             status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_LIM,0x30);
01281             status |= VL53L0X_write_byte( 0xff, 0x00);
01282         } else if (vcsel_pulse_period_pclk == 10) {
01283             status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,0x28);
01284             status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,0x08);
01285             status |= VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
01286             status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
01287             status |= VL53L0X_write_byte( 0xff, 0x01);
01288             status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_LIM,0x20);
01289             status |= VL53L0X_write_byte( 0xff, 0x00);
01290         } else if (vcsel_pulse_period_pclk == 12) {
01291             status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38);
01292             status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
01293             status |= VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
01294             status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
01295             status |= VL53L0X_write_byte( 0xff, 0x01);
01296             status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_LIM,0x20);
01297             status |= VL53L0X_write_byte( 0xff, 0x00);
01298         } else if (vcsel_pulse_period_pclk == 14) {
01299             status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,0x048);
01300             status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,0x08);
01301             status |= VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
01302             status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
01303             status |= VL53L0X_write_byte( 0xff, 0x01);
01304             status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_LIM,0x20);
01305             status |= VL53L0X_write_byte( 0xff, 0x00);
01306         }
01307     }
01308 
01309     /* Re-calculate and apply timeouts, in macro periods */
01310 
01311     if (status == VL53L0X_ERROR_NONE) {
01312         vcsel_period_reg = lv53l0x_encode_vcsel_period ((uint8_t) vcsel_pulse_period_pclk);
01313 
01314         /* When the VCSEL period for the pre or final range is changed,
01315         * the corresponding timeout must be read from the device using
01316         * the current VCSEL period, then the new VCSEL period can be
01317         * applied. The timeout then must be written back to the device
01318         * using the new VCSEL period.
01319         *
01320         * For the MSRC timeout, the same applies - this timeout being
01321         * dependant on the pre-range vcsel period.
01322         */
01323         switch (vcsel_period_type) {
01324             case VL53L0X_VCSEL_PERIOD_PRE_RANGE:
01325                 status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,
01326                                                    &pre_range_timeout_us);
01327 
01328                 if (status == VL53L0X_ERROR_NONE)
01329                     status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_MSRC,
01330                                                        &msrc_timeout_us);
01331 
01332                 if (status == VL53L0X_ERROR_NONE)
01333                     status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
01334                                                 vcsel_period_reg);
01335 
01336                 if (status == VL53L0X_ERROR_NONE)
01337                     status = set_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,
01338                                                        pre_range_timeout_us);
01339 
01340                 if (status == VL53L0X_ERROR_NONE)
01341                     status = set_sequence_step_timeout(VL53L0X_SEQUENCESTEP_MSRC,
01342                                                        msrc_timeout_us);
01343 
01344                 Data.PreRangeVcselPulsePeriod = vcsel_pulse_period_pclk;
01345                 break;
01346             case VL53L0X_VCSEL_PERIOD_FINAL_RANGE:
01347                 status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,
01348                                                    &final_range_timeout_us);
01349 
01350                 if (status == VL53L0X_ERROR_NONE)
01351                     status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
01352                                                 vcsel_period_reg);
01353 
01354                 if (status == VL53L0X_ERROR_NONE)
01355                     status = set_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,
01356                                                        final_range_timeout_us);
01357 
01358                 Data.FinalRangeVcselPulsePeriod = vcsel_pulse_period_pclk;
01359                 break;
01360             default:
01361                 status = VL53L0X_ERROR_INVALID_PARAMS;
01362         }
01363     }
01364 
01365     /* Finally, the timing budget must be re-applied */
01366     if (status == VL53L0X_ERROR_NONE) {
01367         measurement_timing_budget_us = CurrentParameters .MeasurementTimingBudget_us  ;
01368         status = VL53L0X_set_measurement_timing_budget_us(measurement_timing_budget_us);
01369     }
01370 
01371     /* Perform the phase calibration. This is needed after changing on
01372      * vcsel period. get_data_enable = 0, restore_config = 1 */
01373     if (status == VL53L0X_ERROR_NONE)
01374         status = VL53L0X_perform_phase_calibration(&phase_cal_int, 0, 1);
01375 
01376     return status;
01377 }
01378 
01379 VL53L0X_Error VL53L0X::VL53L0X_set_vcsel_pulse_period(VL53L0X_VcselPeriod vcsel_period_type, uint8_t vcsel_pulse_period)
01380 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01381 
01382     status = wrapped_VL53L0X_set_vcsel_pulse_period( vcsel_period_type,  vcsel_pulse_period);
01383 
01384     return status;
01385 }
01386 
01387 VL53L0X_Error VL53L0X::VL53L0X_get_vcsel_pulse_period(VL53L0X_VcselPeriod vcsel_period_type, uint8_t *p_vcsel_pulse_period_pclk)
01388 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01389     uint8_t vcsel_period_reg;
01390 
01391     switch (vcsel_period_type) {
01392         case VL53L0X_VCSEL_PERIOD_PRE_RANGE:
01393             status = VL53L0X_read_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
01394                                        &vcsel_period_reg);
01395             break;
01396         case VL53L0X_VCSEL_PERIOD_FINAL_RANGE:
01397             status = VL53L0X_read_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
01398                                        &vcsel_period_reg);
01399             break;
01400         default:
01401             status = VL53L0X_ERROR_INVALID_PARAMS;
01402     }
01403 
01404     if (status == VL53L0X_ERROR_NONE)
01405         *p_vcsel_pulse_period_pclk = VL53L0X_decode_vcsel_period (vcsel_period_reg);
01406 
01407     return status;
01408 }
01409 
01410 uint32_t VL53L0X::VL53L0X_decode_timeout (uint16_t encoded_timeout)
01411 {   /*! Decode 16-bit timeout register value - format (LSByte * 2^MSByte) + 1 */
01412     uint32_t timeout_macro_clks = 0;
01413 
01414     timeout_macro_clks = ((uint32_t)(encoded_timeout & 0x00FF)
01415                           << (uint32_t)((encoded_timeout & 0xFF00) >> 8)) + 1;
01416 
01417     return timeout_macro_clks;
01418 }
01419 
01420 uint32_t VL53L0X::VL53L0X_calc_macro_period_ps( uint8_t vcsel_period_pclks)
01421 {   uint64_t pll_period_ps;
01422     uint32_t macro_period_vclks;
01423     uint32_t macro_period_ps;
01424 
01425     /* The above calculation will produce rounding errors,  therefore set fixed value*/
01426     pll_period_ps = 1655;
01427     macro_period_vclks = 2304;
01428     macro_period_ps = (uint32_t)(macro_period_vclks
01429                                  * vcsel_period_pclks * pll_period_ps);
01430     return macro_period_ps;
01431 }
01432 
01433 /* To convert register value into us */
01434 uint32_t VL53L0X::VL53L0X_calc_timeout_us(uint16_t timeout_period_mclks,
01435         uint8_t vcsel_period_pclks)
01436 {   uint32_t macro_period_ps;
01437     uint32_t macro_period_ns;
01438     uint32_t actual_timeout_period_us = 0;
01439 
01440     macro_period_ps = VL53L0X_calc_macro_period_ps( vcsel_period_pclks);
01441     macro_period_ns = (macro_period_ps + 500) / 1000;
01442 
01443     actual_timeout_period_us =
01444         ((timeout_period_mclks * macro_period_ns) + 500) / 1000;
01445 
01446     return actual_timeout_period_us;
01447 }
01448 
01449 VL53L0X_Error VL53L0X::get_sequence_step_timeout(VL53L0X_SequenceStepId sequence_step_id,
01450         uint32_t *p_time_out_micro_secs)
01451 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01452     uint8_t current_vcsel_pulse_period_p_clk;
01453     uint8_t encoded_time_out_byte = 0;
01454     uint32_t timeout_us = 0;
01455     uint16_t pre_range_encoded_time_out = 0;
01456     uint16_t msrc_time_out_m_clks;
01457     uint16_t pre_range_time_out_m_clks;
01458     uint16_t final_range_time_out_m_clks = 0;
01459     uint16_t final_range_encoded_time_out;
01460     VL53L0X_SchedulerSequenceSteps_t scheduler_sequence_steps;
01461 
01462     if ((sequence_step_id == VL53L0X_SEQUENCESTEP_TCC)   ||
01463             (sequence_step_id == VL53L0X_SEQUENCESTEP_DSS)   ||
01464             (sequence_step_id == VL53L0X_SEQUENCESTEP_MSRC)) {
01465 
01466         status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
01467                                                 &current_vcsel_pulse_period_p_clk);
01468         if (status == VL53L0X_ERROR_NONE) {
01469             status = VL53L0X_read_byte(VL53L0X_REG_MSRC_CONFIG_TIMEOUT_MACROP,
01470                                        &encoded_time_out_byte);
01471         }
01472         msrc_time_out_m_clks = VL53L0X_decode_timeout (encoded_time_out_byte);
01473 
01474         timeout_us = VL53L0X_calc_timeout_us(msrc_time_out_m_clks,
01475                                 current_vcsel_pulse_period_p_clk);
01476     } else if (sequence_step_id == VL53L0X_SEQUENCESTEP_PRE_RANGE) {
01477         /* Retrieve PRE-RANGE VCSEL Period */
01478         status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
01479                                                 &current_vcsel_pulse_period_p_clk);
01480 
01481         /* Retrieve PRE-RANGE Timeout in Macro periods (MCLKS) */
01482         if (status == VL53L0X_ERROR_NONE) {
01483 
01484             /* Retrieve PRE-RANGE VCSEL Period */
01485             status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
01486                                                     &current_vcsel_pulse_period_p_clk);
01487 
01488             if (status == VL53L0X_ERROR_NONE) {
01489                 status = VL53L0X_read_word(VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
01490                                            &pre_range_encoded_time_out);
01491             }
01492 
01493             pre_range_time_out_m_clks = VL53L0X_decode_timeout (pre_range_encoded_time_out);
01494 
01495             timeout_us = VL53L0X_calc_timeout_us(pre_range_time_out_m_clks,
01496                                     current_vcsel_pulse_period_p_clk);
01497         }
01498     } else if (sequence_step_id == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {
01499 
01500         VL53L0X_get_sequence_step_enables( &scheduler_sequence_steps);
01501         pre_range_time_out_m_clks = 0;
01502 
01503         if (scheduler_sequence_steps.PreRangeOn) {
01504             /* Retrieve PRE-RANGE VCSEL Period */
01505             status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
01506                                                     &current_vcsel_pulse_period_p_clk);
01507 
01508             /* Retrieve PRE-RANGE Timeout in Macro periods
01509              * (MCLKS) */
01510             if (status == VL53L0X_ERROR_NONE) {
01511                 status = VL53L0X_read_word(VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
01512                                            &pre_range_encoded_time_out);
01513                 pre_range_time_out_m_clks = VL53L0X_decode_timeout (pre_range_encoded_time_out);
01514             }
01515         }
01516 
01517         if (status == VL53L0X_ERROR_NONE) {
01518             /* Retrieve FINAL-RANGE VCSEL Period */
01519             status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
01520                                                     &current_vcsel_pulse_period_p_clk);
01521         }
01522 
01523         /* Retrieve FINAL-RANGE Timeout in Macro periods (MCLKS) */
01524         if (status == VL53L0X_ERROR_NONE) {
01525             status = VL53L0X_read_word(VL53L0X_REG_FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
01526                                        &final_range_encoded_time_out);
01527             final_range_time_out_m_clks = VL53L0X_decode_timeout (final_range_encoded_time_out);
01528         }
01529 
01530         final_range_time_out_m_clks -= pre_range_time_out_m_clks;
01531         timeout_us = VL53L0X_calc_timeout_us(final_range_time_out_m_clks,
01532                                 current_vcsel_pulse_period_p_clk);
01533     }
01534 
01535     *p_time_out_micro_secs = timeout_us;
01536 
01537     return status;
01538 }
01539 
01540 VL53L0X_Error VL53L0X::VL53L0X_get_measurement_timing_budget_us(uint32_t *p_measurement_timing_budget_us)
01541 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01542     VL53L0X_SchedulerSequenceSteps_t scheduler_sequence_steps;
01543     uint32_t final_range_timeout_us;
01544     uint32_t msrc_dcc_tcc_timeout_us    = 2000;
01545     uint32_t start_overhead_us      = 1910;
01546     uint32_t end_overhead_us        = 960;
01547     uint32_t msrc_overhead_us       = 660;
01548     uint32_t tcc_overhead_us        = 590;
01549     uint32_t dss_overhead_us        = 690;
01550     uint32_t pre_range_overhead_us  = 660;
01551     uint32_t final_range_overhead_us = 550;
01552     uint32_t pre_range_timeout_us   = 0;
01553 
01554     /* Start and end overhead times always present */
01555     *p_measurement_timing_budget_us
01556         = start_overhead_us + end_overhead_us;
01557 
01558     status = VL53L0X_get_sequence_step_enables( &scheduler_sequence_steps);
01559 
01560     if (status != VL53L0X_ERROR_NONE) { return status; }
01561 
01562     if (scheduler_sequence_steps.TccOn  ||
01563             scheduler_sequence_steps.MsrcOn ||
01564             scheduler_sequence_steps.DssOn) {
01565 
01566         status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_MSRC,
01567                                            &msrc_dcc_tcc_timeout_us);
01568 
01569         if (status == VL53L0X_ERROR_NONE) {
01570             if (scheduler_sequence_steps.TccOn) {
01571                 *p_measurement_timing_budget_us +=
01572                     msrc_dcc_tcc_timeout_us +  tcc_overhead_us;
01573             }
01574 
01575             if (scheduler_sequence_steps.DssOn) {
01576                 *p_measurement_timing_budget_us +=
01577                     2 * (msrc_dcc_tcc_timeout_us +  dss_overhead_us);
01578             } else if (scheduler_sequence_steps.MsrcOn) {
01579                 *p_measurement_timing_budget_us +=
01580                     msrc_dcc_tcc_timeout_us + msrc_overhead_us;
01581             }
01582         }
01583     }
01584 
01585     if (status == VL53L0X_ERROR_NONE) {
01586         if (scheduler_sequence_steps.PreRangeOn) {
01587             status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,
01588                                                &pre_range_timeout_us);
01589             *p_measurement_timing_budget_us +=
01590                 pre_range_timeout_us +  pre_range_overhead_us;
01591         }
01592     }
01593 
01594     if (status == VL53L0X_ERROR_NONE) {
01595         if (scheduler_sequence_steps.FinalRangeOn) {
01596             status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,
01597                                                &final_range_timeout_us);
01598             *p_measurement_timing_budget_us +=
01599                 (final_range_timeout_us + final_range_overhead_us);
01600         }
01601     }
01602 
01603     if (status == VL53L0X_ERROR_NONE) {
01604         CurrentParameters .MeasurementTimingBudget_us  = *p_measurement_timing_budget_us;}
01605   
01606     return status;
01607 }
01608 
01609 VL53L0X_Error VL53L0X::VL53L0X_get_device_parameters(VL53L0X_DeviceParameters_t *p_device_parameters)
01610 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01611     int i;
01612 
01613     p_device_parameters->DeviceMode  = CurrentParameters .DeviceMode ;
01614 
01615     if (status == VL53L0X_ERROR_NONE)
01616         status = VL53L0X_get_inter_measurement_period_ms(&(p_device_parameters->InterMeasurementPeriod_ms ));
01617 
01618     if (status == VL53L0X_ERROR_NONE) {
01619         p_device_parameters->XTalkCompensationEnable  = 0;
01620     }
01621 
01622     if (status == VL53L0X_ERROR_NONE)
01623         status = VL53L0X_get_x_talk_compensation_rate_MHz(&(p_device_parameters->XTalkCompensationRate_MHz ));
01624 
01625     if (status == VL53L0X_ERROR_NONE)
01626         status = VL53L0X_get_offset_calibration_data_micro_meter(&(p_device_parameters->RangeOffset_um ));
01627 
01628     if (status == VL53L0X_ERROR_NONE) {
01629         for (i = 0; i < VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS; i++) {
01630             /* get first the values, then the enables.
01631              * VL53L0X_GetLimitCheckValue will modify the enable
01632              * flags
01633              */
01634             if (status == VL53L0X_ERROR_NONE) {
01635                 status |= VL53L0X_get_limit_check_value( i,
01636                                                         &(p_device_parameters->LimitChecksValue [i]));
01637             } else {
01638                 break;
01639             }
01640             if (status == VL53L0X_ERROR_NONE) {
01641                 status |= VL53L0X_get_limit_check_enable( i,
01642                           &(p_device_parameters->LimitChecksEnable [i]));
01643             } else {
01644                 break;
01645             }
01646         }
01647     }
01648 
01649     if (status == VL53L0X_ERROR_NONE) {
01650         status = VL53L0X_get_wrap_around_check_enable(&(p_device_parameters->WrapAroundCheckEnable ));
01651     }
01652 
01653     /* Need to be done at the end as it uses VCSELPulsePeriod */
01654     if (status == VL53L0X_ERROR_NONE) {
01655         status = VL53L0X_get_measurement_timing_budget_us(&(p_device_parameters->MeasurementTimingBudget_us ));
01656     }
01657 
01658     
01659     return status;
01660 }
01661 
01662 VL53L0X_Error VL53L0X::VL53L0X_set_limit_check_value( uint16_t limit_check_id,
01663         FixPoint1616_t limit_check_value)
01664 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01665     uint8_t temp8;
01666 
01667     temp8 = CurrentParameters .LimitChecksEnable [limit_check_id];
01668 
01669     if (temp8 == 0) { /* disabled write only internal value */
01670         CurrentParameters .LimitChecksValue [limit_check_id] = limit_check_value;
01671     } else {
01672 
01673         switch (limit_check_id) {
01674 
01675             case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:/* internal computation: */
01676                 CurrentParameters .LimitChecksValue [VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE] = limit_check_value;
01677                 break;
01678 
01679             case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
01680                 status = VL53L0X_write_word(VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
01681                                             VL53L0X_FP1616TOFP97(limit_check_value));
01682                 break;
01683 
01684             case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:/* internal computation: */
01685                 CurrentParameters .LimitChecksValue [VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP] = limit_check_value;
01686                 break;
01687 
01688             case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:/* internal computation: */
01689                 CurrentParameters .LimitChecksValue [VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD] = limit_check_value;
01690                 break;
01691 
01692             case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
01693             case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
01694                 status = VL53L0X_write_word(VL53L0X_REG_PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT,
01695                                             VL53L0X_FP1616TOFP97(limit_check_value));
01696                 break;
01697 
01698             default:
01699                 status = VL53L0X_ERROR_INVALID_PARAMS;
01700         }
01701 
01702         if (status == VL53L0X_ERROR_NONE) {
01703             CurrentParameters .LimitChecksValue [limit_check_id] = limit_check_value;
01704         }
01705     }
01706     return status;
01707 }
01708 
01709 // instead of passing VL53L0X_DeviceInfo_t *p_VL53L0X_device_info, directly fill Device_Info
01710 VL53L0X_Error VL53L0X::VL53L0X_get_device_info()
01711 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01712     uint8_t revision_id;
01713     uint8_t revision;
01714     char *product_id_tmp;
01715 
01716     status = VL53L0X_get_info_from_device( 2);
01717 
01718     if (status == VL53L0X_ERROR_NONE) {
01719         if (Data.ModuleId == 0) {
01720             revision = 0;
01721             VL53L0X_COPYSTRING(Device_Info.ProductId , "");
01722         } else {
01723             revision = Data.Revision;
01724             product_id_tmp = Data.ProductId;
01725             VL53L0X_COPYSTRING(Device_Info.ProductId , product_id_tmp);
01726         }
01727     }  
01728 
01729      if (status == VL53L0X_ERROR_NONE) {
01730         if (revision == 0) {
01731             VL53L0X_COPYSTRING(Device_Info.Name ,
01732                                VL53L0X_STRING_DEVICE_INFO_NAME_TS0);
01733         } else if ((revision <= 34) && (revision != 32)) {
01734             VL53L0X_COPYSTRING(Device_Info.Name ,
01735                                VL53L0X_STRING_DEVICE_INFO_NAME_TS1);
01736         } else if (revision < 39) {
01737             VL53L0X_COPYSTRING(Device_Info.Name ,
01738                                VL53L0X_STRING_DEVICE_INFO_NAME_TS2);
01739         } else {VL53L0X_COPYSTRING(Device_Info.Name ,
01740                                VL53L0X_STRING_DEVICE_INFO_NAME_ES1);
01741         }
01742 
01743         VL53L0X_COPYSTRING(Device_Info.Type , VL53L0X_STRING_DEVICE_INFO_TYPE);
01744     }
01745 
01746     if (status == VL53L0X_ERROR_NONE) {
01747         status = VL53L0X_read_byte( VL53L0X_REG_IDENTIFICATION_MODEL_ID,
01748                                    &Device_Info.ProductType );}
01749 
01750     if (status == VL53L0X_ERROR_NONE) {
01751         status = VL53L0X_read_byte(VL53L0X_REG_IDENTIFICATION_REVISION_ID,
01752                                    &revision_id);
01753         Device_Info.ProductRevisionMajor  = 1;
01754         Device_Info.ProductRevisionMinor  =
01755             (revision_id & 0xF0) >> 4;
01756     }
01757     return status;
01758 }
01759 
01760 VL53L0X_Error VL53L0X::VL53L0X_get_interrupt_mask_status(uint32_t *p_interrupt_mask_status)
01761 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01762     uint8_t byte;
01763     
01764     status = VL53L0X_read_byte( VL53L0X_REG_RESULT_INTERRUPT_STATUS, &byte);
01765     *p_interrupt_mask_status = byte & 0x07;
01766 
01767     if (byte & 0x18) { status = VL53L0X_ERROR_RANGE_ERROR;}
01768 
01769     return status;
01770 }
01771 
01772 VL53L0X_Error VL53L0X::VL53L0X_get_measurement_data_ready(uint8_t *p_measurement_data_ready)
01773 {  VL53L0X_Error status = VL53L0X_ERROR_NONE;
01774     uint8_t sys_range_status_register;
01775     uint8_t interrupt_config;
01776     uint32_t interrupt_mask;
01777     
01778     interrupt_config = Data.Pin0GpioFunctionality;
01779 
01780     if (interrupt_config ==
01781             VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY) {
01782         status = VL53L0X_get_interrupt_mask_status( &interrupt_mask);
01783         if (interrupt_mask ==
01784                 VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY) {
01785             *p_measurement_data_ready = 1;
01786         } else {
01787             *p_measurement_data_ready = 0;
01788         }
01789     } else {
01790         status = VL53L0X_read_byte( VL53L0X_REG_RESULT_RANGE_STATUS,
01791                                    &sys_range_status_register);
01792         if (status == VL53L0X_ERROR_NONE) {
01793             if (sys_range_status_register & 0x01) {
01794                 *p_measurement_data_ready = 1;
01795             } else {  *p_measurement_data_ready = 0; }
01796         }
01797     }
01798     
01799     return status;
01800 }
01801 
01802 VL53L0X_Error VL53L0X::VL53L0X_polling_delay(void)
01803 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01804 
01805     // do nothing
01806     VL53L0X_OsDelay();
01807     return status;
01808 }
01809 
01810 VL53L0X_Error VL53L0X::VL53L0X_measurement_poll_for_completion(void)
01811 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01812     uint8_t new_data_ready = 0;
01813     uint32_t loop_nb;
01814 
01815     loop_nb = 0;
01816 
01817     do {
01818         status = VL53L0X_get_measurement_data_ready( &new_data_ready);
01819         if (status != 0) {
01820             break; /* the error is set */
01821         }
01822 
01823         if (new_data_ready == 1) {
01824             break; /* done note that status == 0 */
01825         }
01826 
01827         loop_nb++;
01828         if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
01829             status = VL53L0X_ERROR_TIME_OUT;
01830             break;
01831         }
01832 
01833         VL53L0X_polling_delay();
01834     } while (1);
01835 
01836     return status;
01837 }
01838 
01839 /* Group PAL Interrupt Functions */
01840 VL53L0X_Error VL53L0X::VL53L0X_clear_interrupt_mask( uint32_t interrupt_mask)
01841 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01842     uint8_t loop_count;
01843     uint8_t byte;
01844     
01845     /* clear bit 0 range interrupt, bit 1 error interrupt */
01846     loop_count = 0;
01847     do {
01848         status = VL53L0X_write_byte(VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR, 0x01);
01849         status |= VL53L0X_write_byte(VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR, 0x00);
01850         status |= VL53L0X_read_byte(VL53L0X_REG_RESULT_INTERRUPT_STATUS, &byte);
01851         loop_count++;
01852     } while (((byte & 0x07) != 0x00)
01853              && (loop_count < 3)
01854              && (status == VL53L0X_ERROR_NONE));
01855 
01856     if (loop_count >= 3) {
01857         status = VL53L0X_ERROR_INTERRUPT_NOT_CLEARED;
01858     }
01859 
01860     
01861     return status;
01862 }
01863 
01864 VL53L0X_Error VL53L0X::VL53L0X_perform_single_ref_calibration(uint8_t vhv_init_byte)
01865 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01866 
01867     if (status == VL53L0X_ERROR_NONE) {
01868         status = VL53L0X_write_byte( VL53L0X_REG_SYSRANGE_START,
01869                                     VL53L0X_REG_SYSRANGE_MODE_START_STOP |
01870                                     vhv_init_byte);
01871     }
01872 
01873     if (status == VL53L0X_ERROR_NONE) {
01874         status = VL53L0X_measurement_poll_for_completion();}
01875 
01876     if (status == VL53L0X_ERROR_NONE) {
01877         status = VL53L0X_clear_interrupt_mask( 0);}
01878 
01879     if (status == VL53L0X_ERROR_NONE) {
01880         status = VL53L0X_write_byte( VL53L0X_REG_SYSRANGE_START, 0x00);
01881     }
01882 
01883     return status;
01884 }
01885 
01886 VL53L0X_Error VL53L0X::VL53L0X_ref_calibration_io( uint8_t read_not_write,
01887         uint8_t vhv_settings, uint8_t phase_cal,
01888         uint8_t *p_vhv_settings, uint8_t *p_phase_cal,
01889         const uint8_t vhv_enable, const uint8_t phase_enable)
01890 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01891     uint8_t phase_calint = 0;
01892 
01893     /* Read VHV from device */
01894     status |= VL53L0X_write_byte( 0xFF, 0x01);
01895     status |= VL53L0X_write_byte( 0x00, 0x00);
01896     status |= VL53L0X_write_byte( 0xFF, 0x00);
01897 
01898     if (read_not_write) {
01899         if (vhv_enable) {
01900             status |= VL53L0X_read_byte( 0xCB, p_vhv_settings);}
01901         if (phase_enable) {
01902             status |= VL53L0X_read_byte( 0xEE, &phase_calint);}
01903     } else {
01904         if (vhv_enable) {
01905             status |= VL53L0X_write_byte( 0xCB, vhv_settings);}
01906         if (phase_enable) {
01907             status |= VL53L0X_update_byte( 0xEE, 0x80, phase_cal);}
01908     }
01909 
01910     status |= VL53L0X_write_byte( 0xFF, 0x01);
01911     status |= VL53L0X_write_byte( 0x00, 0x01);
01912     status |= VL53L0X_write_byte( 0xFF, 0x00);
01913 
01914     *p_phase_cal = (uint8_t)(phase_calint & 0xEF);
01915 
01916     return status;
01917 }
01918 
01919 VL53L0X_Error VL53L0X::VL53L0X_perform_vhv_calibration(uint8_t *p_vhv_settings, const uint8_t get_data_enable,
01920         const uint8_t restore_config)
01921 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01922     uint8_t sequence_config = 0;
01923     uint8_t vhv_settings = 0;
01924     uint8_t phase_cal = 0;
01925     uint8_t phase_cal_int = 0;
01926 
01927     /* store the value of the sequence config,
01928      * this will be reset before the end of the function
01929      */
01930 
01931     if (restore_config) {
01932         sequence_config = Data.SequenceConfig;
01933     }
01934 
01935     /* Run VHV */
01936     status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0x01);
01937 
01938     if (status == VL53L0X_ERROR_NONE) {
01939         status = VL53L0X_perform_single_ref_calibration( 0x40);}
01940 
01941     /* Read VHV from device */
01942     if ((status == VL53L0X_ERROR_NONE) && (get_data_enable == 1)) {
01943         status = VL53L0X_ref_calibration_io( 1, vhv_settings, phase_cal, /* Not used here */
01944                                             p_vhv_settings, &phase_cal_int, 1, 0);
01945     } else {*p_vhv_settings = 0; }
01946 
01947     if ((status == VL53L0X_ERROR_NONE) && restore_config) {
01948         /* restore the previous Sequence Config */
01949         status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
01950                                     sequence_config);
01951         if (status == VL53L0X_ERROR_NONE) {
01952             Data.SequenceConfig = sequence_config; }
01953     }
01954 
01955     return status;
01956 }
01957 
01958 VL53L0X_Error VL53L0X::VL53L0X_perform_phase_calibration(uint8_t *p_phase_cal, const uint8_t get_data_enable,
01959         const uint8_t restore_config)
01960 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
01961     uint8_t sequence_config = 0;
01962     uint8_t vhv_settings = 0;
01963     uint8_t phase_cal = 0;
01964     uint8_t vhv_settingsint;
01965 
01966     /* store the value of the sequence config,
01967      * this will be reset before the end of the function */
01968 
01969     if (restore_config) {
01970         sequence_config = Data.SequenceConfig;
01971     }
01972 
01973     /* Run PhaseCal */
01974     status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0x02);
01975 
01976     if (status == VL53L0X_ERROR_NONE) {
01977         status = VL53L0X_perform_single_ref_calibration( 0x0);
01978     }
01979 
01980     /* Read PhaseCal from device */
01981     if ((status == VL53L0X_ERROR_NONE) && (get_data_enable == 1)) {
01982         status = VL53L0X_ref_calibration_io( 1,
01983                                             vhv_settings, phase_cal, /* Not used here */
01984                                             &vhv_settingsint, p_phase_cal,
01985                                             0, 1);
01986     } else {
01987         *p_phase_cal = 0;
01988     }
01989 
01990     if ((status == VL53L0X_ERROR_NONE) && restore_config) {
01991         /* restore the previous Sequence Config */
01992         status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
01993                                     sequence_config);
01994         if (status == VL53L0X_ERROR_NONE) {
01995             Data.SequenceConfig = sequence_config;
01996         }
01997 
01998     }
01999 
02000     return status;
02001 }
02002 
02003 VL53L0X_Error VL53L0X::VL53L0X_perform_ref_calibration(uint8_t *p_vhv_settings, uint8_t *p_phase_cal, uint8_t get_data_enable)
02004 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
02005     uint8_t sequence_config = 0;
02006 
02007     /* store the value of the sequence config,
02008      * this will be reset before the end of the function */
02009 
02010     sequence_config = Data.SequenceConfig;
02011 
02012     /* In the following function we don't save the config to optimize
02013      * writes on device. Config is saved and restored only once. */
02014     status = VL53L0X_perform_vhv_calibration(p_vhv_settings, get_data_enable, 0);
02015 
02016     if (status == VL53L0X_ERROR_NONE) {
02017         status = VL53L0X_perform_phase_calibration(p_phase_cal, get_data_enable, 0); }
02018 
02019     if (status == VL53L0X_ERROR_NONE) {
02020         /* restore the previous Sequence Config */
02021         status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
02022                                     sequence_config);
02023         if (status == VL53L0X_ERROR_NONE) {
02024             Data.SequenceConfig = sequence_config; }
02025     }
02026 
02027     return status;
02028 }
02029 
02030 void VL53L0X::get_next_good_spad(uint8_t good_spad_array[], uint32_t size,
02031                                  uint32_t curr, int32_t *p_next)
02032 {   uint32_t start_index;
02033     uint32_t fine_offset;
02034     uint32_t c_spads_per_byte = 8;
02035     uint32_t coarse_index;
02036     uint32_t fine_index;
02037     uint8_t data_byte;
02038     uint8_t success = 0;
02039 
02040     /* Starting with the current good spad, loop through the array to find
02041      * the next. i.e. the next bit set in the sequence.
02042      *
02043      * The coarse index is the byte index of the array and the fine index is
02044      * the index of the bit within each byte. */
02045 
02046     *p_next = -1;
02047 
02048     start_index = curr / c_spads_per_byte;
02049     fine_offset = curr % c_spads_per_byte;
02050 
02051     for (coarse_index = start_index; ((coarse_index < size) && !success);
02052             coarse_index++) {
02053         fine_index = 0;
02054         data_byte = good_spad_array[coarse_index];
02055 
02056         if (coarse_index == start_index) {
02057             /* locate the bit position of the provided current
02058              * spad bit before iterating */
02059             data_byte >>= fine_offset;
02060             fine_index = fine_offset;
02061         }
02062 
02063         while (fine_index < c_spads_per_byte) {
02064             if ((data_byte & 0x1) == 1) {
02065                 success = 1;
02066                 *p_next = coarse_index * c_spads_per_byte + fine_index;
02067                 break;
02068             }
02069             data_byte >>= 1;
02070             fine_index++;
02071         }
02072     }
02073 }
02074 
02075 uint8_t VL53L0X::is_aperture(uint32_t spad_index)
02076 {   /* This function reports if a given spad index is an aperture SPAD by
02077      * deriving the quadrant.*/
02078     uint32_t quadrant;
02079     uint8_t is_aperture = 1;
02080     quadrant = spad_index >> 6;
02081     if (refArrayQuadrants[quadrant] == REF_ARRAY_SPAD_0) {
02082         is_aperture = 0;
02083     }
02084 
02085     return is_aperture;
02086 }
02087 
02088 VL53L0X_Error VL53L0X::enable_spad_bit(uint8_t spad_array[], uint32_t size,
02089                                        uint32_t spad_index)
02090 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
02091     uint32_t c_spads_per_byte = 8;
02092     uint32_t coarse_index;
02093     uint32_t fine_index;
02094 
02095     coarse_index = spad_index / c_spads_per_byte;
02096     fine_index = spad_index % c_spads_per_byte;
02097     if (coarse_index >= size) {
02098         status = VL53L0X_ERROR_REF_SPAD_INIT;
02099     } else {
02100         spad_array[coarse_index] |= (1 << fine_index);
02101     }
02102 
02103     return status;
02104 }
02105 
02106 VL53L0X_Error VL53L0X::set_ref_spad_map( uint8_t *p_ref_spad_array)
02107 {   VL53L0X_Error status = VL53L0X_i2c_write(VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0,
02108                            p_ref_spad_array, 6);
02109 
02110     return status;
02111 }
02112 
02113 VL53L0X_Error VL53L0X::get_ref_spad_map( uint8_t *p_ref_spad_array)
02114 {   VL53L0X_Error status = VL53L0X_read_multi(VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0,
02115                            p_ref_spad_array,
02116                            6);
02117 //  VL53L0X_Error status = VL53L0X_ERROR_NONE;
02118 //  uint8_t count=0;
02119 
02120 //  for (count = 0; count < 6; count++)
02121 //        status = VL53L0X_RdByte( (VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0 + count), &refSpadArray[count]);
02122     return status;
02123 }
02124 
02125 VL53L0X_Error VL53L0X::enable_ref_spads(uint8_t aperture_spads,
02126                                         uint8_t good_spad_array[],
02127                                         uint8_t spad_array[],
02128                                         uint32_t size,
02129                                         uint32_t start,
02130                                         uint32_t offset,
02131                                         uint32_t spad_count,
02132                                         uint32_t *p_last_spad)
02133 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
02134     uint32_t index;
02135     uint32_t i;
02136     int32_t next_good_spad = offset;
02137     uint32_t current_spad;
02138     uint8_t check_spad_array[6];
02139 
02140     /*
02141      * This function takes in a spad array which may or may not have SPADS
02142      * already enabled and appends from a given offset a requested number
02143      * of new SPAD enables. The 'good spad map' is applied to
02144      * determine the next SPADs to enable.
02145      *
02146      * This function applies to only aperture or only non-aperture spads.
02147      * Checks are performed to ensure this.
02148      */
02149 
02150     current_spad = offset;
02151     for (index = 0; index < spad_count; index++) {
02152         get_next_good_spad(good_spad_array, size, current_spad,
02153                            &next_good_spad);
02154 
02155         if (next_good_spad == -1) {
02156             status = VL53L0X_ERROR_REF_SPAD_INIT;
02157             break;
02158         }
02159 
02160         /* Confirm that the next good SPAD is non-aperture */
02161         if (is_aperture(start + next_good_spad) != aperture_spads) {
02162             /* if we can't get the required number of good aperture
02163              * spads from the current quadrant then this is an error
02164              */
02165             status = VL53L0X_ERROR_REF_SPAD_INIT;
02166             break;
02167         }
02168         current_spad = (uint32_t)next_good_spad;
02169         enable_spad_bit(spad_array, size, current_spad);
02170         current_spad++;
02171     }
02172     *p_last_spad = current_spad;
02173 
02174     if (status == VL53L0X_ERROR_NONE) {
02175         status = set_ref_spad_map( spad_array);
02176     }
02177 
02178     if (status == VL53L0X_ERROR_NONE) {
02179         status = get_ref_spad_map( check_spad_array);
02180 
02181         i = 0;
02182 
02183         /* Compare spad maps. If not equal report error. */
02184         while (i < size) {
02185             if (spad_array[i] != check_spad_array[i]) {
02186                 status = VL53L0X_ERROR_REF_SPAD_INIT;
02187                 break;
02188             }
02189             i++;
02190         }
02191     }
02192     return status;
02193 }
02194 
02195 VL53L0X_Error VL53L0X::VL53L0X_set_device_mode( VL53L0X_DeviceModes device_mode)
02196 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
02197 
02198     switch (device_mode) {
02199         case VL53L0X_DEVICEMODE_SINGLE_RANGING:
02200         case VL53L0X_DEVICEMODE_CONTINUOUS_RANGING:
02201         case VL53L0X_DEVICEMODE_CONTINUOUS_TIMED_RANGING:
02202         case VL53L0X_DEVICEMODE_GPIO_DRIVE:
02203         case VL53L0X_DEVICEMODE_GPIO_OSC:
02204             /* Supported modes */
02205             CurrentParameters .DeviceMode  = device_mode;
02206             break;
02207         default:
02208             /* Unsupported mode */
02209             status = VL53L0X_ERROR_MODE_NOT_SUPPORTED;
02210     }
02211 
02212     
02213     return status;
02214 }
02215 
02216 VL53L0X_Error VL53L0X::VL53L0X_set_interrupt_thresholds(VL53L0X_DeviceModes device_mode, FixPoint1616_t threshold_low,
02217         FixPoint1616_t threshold_high)
02218 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
02219     uint16_t threshold16;
02220     
02221 
02222     /* no dependency on DeviceMode for Ewok */
02223     /* Need to divide by 2 because the FW will apply a x2 */
02224     threshold16 = (uint16_t)((threshold_low >> 17) & 0x00fff);
02225     status = VL53L0X_write_word( VL53L0X_REG_SYSTEM_THRESH_LOW, threshold16);
02226 
02227     if (status == VL53L0X_ERROR_NONE) {
02228         /* Need to divide by 2 because the FW will apply a x2 */
02229         threshold16 = (uint16_t)((threshold_high >> 17) & 0x00fff);
02230         status = VL53L0X_write_word( VL53L0X_REG_SYSTEM_THRESH_HIGH,
02231                                     threshold16);
02232     }
02233 
02234     
02235     return status;
02236 }
02237 
02238 VL53L0X_Error VL53L0X::VL53L0X_get_interrupt_thresholds(VL53L0X_DeviceModes device_mode, FixPoint1616_t *p_threshold_low,
02239         FixPoint1616_t *p_threshold_high)
02240 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
02241     uint16_t threshold16;
02242     
02243 
02244     /* no dependency on DeviceMode for Ewok */
02245 
02246     status = VL53L0X_read_word( VL53L0X_REG_SYSTEM_THRESH_LOW, &threshold16);
02247     /* Need to multiply by 2 because the FW will apply a x2 */
02248     *p_threshold_low = (FixPoint1616_t)((0x00fff & threshold16) << 17);
02249 
02250     if (status == VL53L0X_ERROR_NONE) {
02251         status = VL53L0X_read_word( VL53L0X_REG_SYSTEM_THRESH_HIGH,
02252                                    &threshold16);
02253         /* Need to multiply by 2 because the FW will apply a x2 */
02254         *p_threshold_high =
02255             (FixPoint1616_t)((0x00fff & threshold16) << 17);
02256     }
02257 
02258     
02259     return status;
02260 }
02261 
02262 VL53L0X_Error VL53L0X::VL53L0X_load_tuning_settings(uint8_t *p_tuning_setting_buffer)
02263 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
02264     int i;
02265     int index;
02266     uint8_t msb;
02267     uint8_t lsb;
02268     uint8_t select_param;
02269     uint16_t number_of_writes;
02270     uint8_t address;
02271     uint8_t local_buffer[4]; /* max */
02272     uint16_t temp16;
02273  
02274     index = 0;
02275 
02276     while ((*(p_tuning_setting_buffer + index) != 0) &&
02277             (status == VL53L0X_ERROR_NONE)) {
02278         number_of_writes = *(p_tuning_setting_buffer + index);
02279         index++;
02280         if (number_of_writes == 0xFF) {
02281             /* internal parameters */
02282             select_param = *(p_tuning_setting_buffer + index);
02283             index++;
02284             switch (select_param) {
02285                 case 0: /* uint16_t SigmaEstRefArray -> 2 bytes */
02286                     msb = *(p_tuning_setting_buffer + index);
02287                     index++;
02288                     lsb = *(p_tuning_setting_buffer + index);
02289                     index++;
02290                     temp16 = VL53L0X_MAKEUINT16(lsb, msb);
02291                     Data.SigmaEstRefArray = temp16;
02292                     break;
02293                 case 1: /* uint16_t SigmaEstEffPulseWidth -> 2 bytes */
02294                     msb = *(p_tuning_setting_buffer + index);
02295                     index++;
02296                     lsb = *(p_tuning_setting_buffer + index);
02297                     index++;
02298                     temp16 = VL53L0X_MAKEUINT16(lsb, msb);
02299                     Data.SigmaEstEffPulseWidth = temp16;
02300                     break;
02301                 case 2: /* uint16_t SigmaEstEffAmbWidth -> 2 bytes */
02302                     msb = *(p_tuning_setting_buffer + index);
02303                     index++;
02304                     lsb = *(p_tuning_setting_buffer + index);
02305                     index++;
02306                     temp16 = VL53L0X_MAKEUINT16(lsb, msb);
02307                     Data.SigmaEstEffAmbWidth = temp16;
02308                     break;
02309                 case 3: /* uint16_t targetRefRate -> 2 bytes */
02310                     msb = *(p_tuning_setting_buffer + index);
02311                     index++;
02312                     lsb = *(p_tuning_setting_buffer + index);
02313                     index++;
02314                     temp16 = VL53L0X_MAKEUINT16(lsb, msb);
02315                     Data.targetRefRate = temp16;
02316                     break;
02317                 default: /* invalid parameter */
02318                     status = VL53L0X_ERROR_INVALID_PARAMS;
02319             }
02320 
02321         } else if (number_of_writes <= 4) {
02322             address = *(p_tuning_setting_buffer + index);
02323             index++;
02324 
02325             for (i = 0; i < number_of_writes; i++) {
02326                 local_buffer[i] = *(p_tuning_setting_buffer +
02327                                     index);
02328                 index++;
02329             }
02330 
02331             status = VL53L0X_i2c_write( address, local_buffer, number_of_writes);
02332 
02333         } else { status = VL53L0X_ERROR_INVALID_PARAMS;  }
02334     }
02335     return status;
02336 }
02337 
02338 VL53L0X_Error VL53L0X::VL53L0X_check_and_load_interrupt_settings(uint8_t start_not_stopflag)
02339 {   uint8_t interrupt_config;
02340     FixPoint1616_t threshold_low;
02341     FixPoint1616_t threshold_high;
02342     VL53L0X_Error status = VL53L0X_ERROR_NONE;
02343 
02344     interrupt_config = Data.Pin0GpioFunctionality;
02345 
02346     if ((interrupt_config ==
02347             VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_LOW) ||
02348             (interrupt_config ==
02349              VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_HIGH) ||
02350             (interrupt_config ==
02351              VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_OUT)) {
02352 
02353         status = VL53L0X_get_interrupt_thresholds(VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
02354                  &threshold_low, &threshold_high);
02355 
02356         if (((threshold_low > 255 * 65536) ||
02357                 (threshold_high > 255 * 65536)) &&
02358                 (status == VL53L0X_ERROR_NONE)) {
02359 
02360             if (start_not_stopflag != 0) {
02361                 status = VL53L0X_load_tuning_settings(InterruptThresholdSettings);
02362             } else {
02363                 status |= VL53L0X_write_byte( 0xFF, 0x04);
02364                 status |= VL53L0X_write_byte( 0x70, 0x00);
02365                 status |= VL53L0X_write_byte( 0xFF, 0x00);
02366                 status |= VL53L0X_write_byte( 0x80, 0x00);
02367             }
02368         }
02369     }
02370     return status;
02371 }
02372 
02373 VL53L0X_Error VL53L0X::VL53L0X_start_measurement(void)
02374 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
02375     VL53L0X_DeviceModes device_mode;
02376     uint8_t byte;
02377     uint8_t start_stop_byte = VL53L0X_REG_SYSRANGE_MODE_START_STOP;
02378     uint32_t loop_nb;
02379     
02380 
02381     /* Get Current DeviceMode */
02382     device_mode = CurrentParameters .DeviceMode ;
02383 
02384     status = VL53L0X_write_byte( 0x80, 0x01);
02385     status = VL53L0X_write_byte( 0xFF, 0x01);
02386     status = VL53L0X_write_byte( 0x00, 0x00);
02387     status = VL53L0X_write_byte( 0x91, Data.StopVariable);
02388     status = VL53L0X_write_byte( 0x00, 0x01);
02389     status = VL53L0X_write_byte( 0xFF, 0x00);
02390     status = VL53L0X_write_byte( 0x80, 0x00);
02391 
02392     switch (device_mode) {
02393         case VL53L0X_DEVICEMODE_SINGLE_RANGING:
02394             status = VL53L0X_write_byte( VL53L0X_REG_SYSRANGE_START, 0x01);
02395 
02396             byte = start_stop_byte;
02397             if (status == VL53L0X_ERROR_NONE) {
02398                 /* Wait until start bit has been cleared */
02399                 loop_nb = 0;
02400                 do {
02401                     if (loop_nb > 0)
02402                         status = VL53L0X_read_byte(VL53L0X_REG_SYSRANGE_START, &byte);
02403                     loop_nb = loop_nb + 1;
02404                 } while (((byte & start_stop_byte) == start_stop_byte)
02405                          && (status == VL53L0X_ERROR_NONE)
02406                          && (loop_nb < VL53L0X_DEFAULT_MAX_LOOP));
02407 
02408                 if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
02409                     status = VL53L0X_ERROR_TIME_OUT;
02410                 }
02411             }
02412 
02413             break;
02414         case VL53L0X_DEVICEMODE_CONTINUOUS_RANGING:  /* Back-to-back mode */
02415 
02416             /* Check if need to apply interrupt settings */
02417             if (status == VL53L0X_ERROR_NONE) 
02418                 {  status = VL53L0X_check_and_load_interrupt_settings( 1); }
02419 
02420             status = VL53L0X_write_byte(VL53L0X_REG_SYSRANGE_START,
02421                                         VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK);
02422             if (status == VL53L0X_ERROR_NONE) {
02423                 /* Set PAL State to Running */
02424                 Data.PalState = VL53L0X_STATE_RUNNING;
02425             }
02426             break;
02427         case VL53L0X_DEVICEMODE_CONTINUOUS_TIMED_RANGING:
02428             /* Continuous mode */
02429             /* Check if need to apply interrupt settings */
02430             if (status == VL53L0X_ERROR_NONE) {
02431                 status = VL53L0X_check_and_load_interrupt_settings( 1);
02432             }
02433 
02434             status = VL53L0X_write_byte(VL53L0X_REG_SYSRANGE_START,
02435                                         VL53L0X_REG_SYSRANGE_MODE_TIMED);
02436 
02437             if (status == VL53L0X_ERROR_NONE)/* Set PAL State to Running */
02438                   {   Data.PalState = VL53L0X_STATE_RUNNING;  }
02439             break;
02440         default:
02441             /* Selected mode not supported */
02442             status = VL53L0X_ERROR_MODE_NOT_SUPPORTED;
02443     }
02444   
02445     return status;
02446 }
02447 
02448 /* Group PAL Measurement Functions */
02449 VL53L0X_Error VL53L0X::VL53L0X_perform_single_measurement(void)
02450 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
02451     VL53L0X_DeviceModes device_mode;  
02452 
02453     /* Get Current DeviceMode */
02454     device_mode = CurrentParameters .DeviceMode ;
02455 
02456     /* Start immediately to run a single ranging measurement in case of
02457      * single ranging or single histogram */
02458     if (status == VL53L0X_ERROR_NONE  && device_mode == VL53L0X_DEVICEMODE_SINGLE_RANGING) {
02459         status = VL53L0X_start_measurement(); }
02460 
02461     if (status == VL53L0X_ERROR_NONE) {
02462         status = VL53L0X_measurement_poll_for_completion();  }
02463 
02464     /* Change PAL State in case of single ranging or single histogram */
02465     if (status == VL53L0X_ERROR_NONE && device_mode == VL53L0X_DEVICEMODE_SINGLE_RANGING) {
02466         Data.PalState = VL53L0X_STATE_IDLE; }
02467 
02468     return status;
02469 }
02470 
02471 VL53L0X_Error VL53L0X::VL53L0X_get_x_talk_compensation_enable(uint8_t *p_x_talk_compensation_enable)
02472 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
02473     uint8_t temp8;
02474 
02475     temp8 = CurrentParameters .XTalkCompensationEnable  ;
02476     *p_x_talk_compensation_enable = temp8;
02477 
02478     return status;
02479 }
02480 
02481 VL53L0X_Error VL53L0X::VL53L0X_get_total_xtalk_rate(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data,
02482         FixPoint1616_t *p_total_xtalk_rate_MHz)
02483 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
02484 
02485     uint8_t xtalk_comp_enable;
02486     FixPoint1616_t total_xtalk_MHz;
02487     FixPoint1616_t xtalk_per_spad_MHz;
02488 
02489     *p_total_xtalk_rate_MHz = 0;
02490 
02491     status = VL53L0X_get_x_talk_compensation_enable( &xtalk_comp_enable);
02492     if (status == VL53L0X_ERROR_NONE) {
02493 
02494         if (xtalk_comp_enable) {
02495 
02496             xtalk_per_spad_MHz = CurrentParameters .XTalkCompensationRate_MHz  ;
02497 
02498             /* FixPoint1616 * FixPoint 8:8 = FixPoint0824 */
02499             total_xtalk_MHz =
02500                 p_ranging_measurement_data->EffectiveSpadRtnCount *
02501                 xtalk_per_spad_MHz;
02502 
02503             /* FixPoint0824 >> 8 = FixPoint1616 */
02504             *p_total_xtalk_rate_MHz =
02505                 (total_xtalk_MHz + 0x80) >> 8;
02506         }
02507     }
02508     return status;
02509 }
02510 
02511 VL53L0X_Error VL53L0X::VL53L0X_get_total_signal_rate(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data,
02512         FixPoint1616_t *p_total_signal_rate_MHz)
02513 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
02514     FixPoint1616_t total_xtalk_MHz;
02515 
02516     *p_total_signal_rate_MHz =
02517         p_ranging_measurement_data->SignalRateRtn_MHz;
02518 
02519     status = VL53L0X_get_total_xtalk_rate(p_ranging_measurement_data, &total_xtalk_MHz);
02520 
02521     if (status == VL53L0X_ERROR_NONE) {
02522         *p_total_signal_rate_MHz += total_xtalk_MHz; }
02523 
02524     return status;
02525 }
02526 
02527 /* To convert ms into register value */
02528 uint32_t VL53L0X::VL53L0X_calc_timeout_mclks(uint32_t timeout_period_us,
02529         uint8_t vcsel_period_pclks)
02530 {   uint32_t macro_period_ps;
02531     uint32_t macro_period_ns;
02532     uint32_t timeout_period_mclks = 0;
02533 
02534     macro_period_ps = VL53L0X_calc_macro_period_ps( vcsel_period_pclks);
02535     macro_period_ns = (macro_period_ps + 500) / 1000;
02536 
02537     timeout_period_mclks =  (uint32_t)(((timeout_period_us * 1000)
02538                     + (macro_period_ns / 2)) / macro_period_ns);
02539 
02540     return timeout_period_mclks;
02541 }
02542 
02543 uint32_t VL53L0X::VL53L0X_isqrt(uint32_t num)
02544 {   /* Implements an integer square root
02545      * From: http://en.wikipedia.org/wiki/Methods_of_computing_square_roots  */
02546 
02547     uint32_t  res = 0;
02548     uint32_t  bit = 1 << 30;
02549     /* The second-to-top bit is set:  1 << 14 for 16-bits, 1 << 30 for 32 bits */
02550 
02551     /* "bit" starts at the highest power of four <= the argument. */
02552     while (bit > num) {  bit >>= 2;  }
02553 
02554     while (bit != 0) {
02555         if (num >= res + bit) {
02556             num -= res + bit;
02557             res = (res >> 1) + bit;
02558              } 
02559         else {  res >>= 1; }
02560         bit >>= 2;
02561     }
02562     return res;
02563 }
02564 
02565 VL53L0X_Error VL53L0X::VL53L0X_calc_dmax(FixPoint1616_t total_signal_rate_MHz,
02566     FixPoint1616_t total_corr_signal_rate_MHz,
02567     FixPoint1616_t pw_mult,
02568     uint32_t sigma_estimate_p1,
02569     FixPoint1616_t sigma_estimate_p2,
02570     uint32_t peak_vcsel_duration_us,
02571     uint32_t *pd_max_mm)
02572 {   const uint32_t c_sigma_limit        = 18;
02573     const FixPoint1616_t c_signal_limit = 0x4000; /* 0.25 */
02574     const FixPoint1616_t c_sigma_est_ref    = 0x00000042; /* 0.001 */
02575     const uint32_t c_amb_eff_width_sigma_est_ns = 6;
02576     const uint32_t c_amb_eff_width_d_max_ns    = 7;
02577     uint32_t dmax_cal_range_mm;
02578     FixPoint1616_t dmax_cal_signal_rate_rtn_MHz;
02579     FixPoint1616_t min_signal_needed;
02580     FixPoint1616_t min_signal_needed_p1;
02581     FixPoint1616_t min_signal_needed_p2;
02582     FixPoint1616_t min_signal_needed_p3;
02583     FixPoint1616_t min_signal_needed_p4;
02584     FixPoint1616_t sigma_limit_tmp;
02585     FixPoint1616_t sigma_est_sq_tmp;
02586     FixPoint1616_t signal_limit_tmp;
02587     FixPoint1616_t signal_at0_mm;
02588     FixPoint1616_t dmax_dark;
02589     FixPoint1616_t dmax_ambient;
02590     FixPoint1616_t dmax_dark_tmp;
02591     FixPoint1616_t sigma_est_p2_tmp;
02592     uint32_t signal_rate_temp_MHz;
02593 
02594     VL53L0X_Error status = VL53L0X_ERROR_NONE;
02595 
02596     dmax_cal_range_mm =  Data.DmaxCalRange_mm;
02597 
02598     dmax_cal_signal_rate_rtn_MHz =  Data.DmaxCalSignalRateRtn_MHz;
02599 
02600     /* uint32 * FixPoint1616 = FixPoint1616 */
02601     signal_at0_mm = dmax_cal_range_mm * dmax_cal_signal_rate_rtn_MHz;
02602 
02603     /* FixPoint1616 >> 8 = FixPoint2408 */
02604     signal_at0_mm = (signal_at0_mm + 0x80) >> 8;
02605     signal_at0_mm *= dmax_cal_range_mm;
02606 
02607     min_signal_needed_p1 = 0;
02608     if (total_corr_signal_rate_MHz > 0) {
02609 
02610         /* Shift by 10 bits to increase resolution prior to the division */
02611         signal_rate_temp_MHz = total_signal_rate_MHz << 10;
02612 
02613         /* Add rounding value prior to division */
02614         min_signal_needed_p1 = signal_rate_temp_MHz +
02615                                (total_corr_signal_rate_MHz / 2);
02616 
02617         /* FixPoint0626/FixPoint1616 = FixPoint2210 */
02618         min_signal_needed_p1 /= total_corr_signal_rate_MHz;
02619 
02620         /* Apply a factored version of the speed of light.
02621          Correction to be applied at the end */
02622         min_signal_needed_p1 *= 3;
02623 
02624         /* FixPoint2210 * FixPoint2210 = FixPoint1220 */
02625         min_signal_needed_p1 *= min_signal_needed_p1;
02626 
02627         /* FixPoint1220 >> 16 = FixPoint2804 */
02628         min_signal_needed_p1 = (min_signal_needed_p1 + 0x8000) >> 16;
02629     }
02630     min_signal_needed_p2 = pw_mult * sigma_estimate_p1;
02631 
02632     /* FixPoint1616 >> 16 =  uint32 */
02633     min_signal_needed_p2 = (min_signal_needed_p2 + 0x8000) >> 16;
02634 
02635     /* uint32 * uint32  =  uint32 */
02636     min_signal_needed_p2 *= min_signal_needed_p2;
02637 
02638     /* Check sigmaEstimateP2
02639      * If this value is too high there is not enough signal rate
02640      * to calculate dmax value so set a suitable value to ensure
02641      * a very small dmax.  */
02642     sigma_est_p2_tmp = (sigma_estimate_p2 + 0x8000) >> 16;
02643     sigma_est_p2_tmp = (sigma_est_p2_tmp + c_amb_eff_width_sigma_est_ns / 2) /
02644                        c_amb_eff_width_sigma_est_ns;
02645     sigma_est_p2_tmp *= c_amb_eff_width_d_max_ns;
02646 
02647     if (sigma_est_p2_tmp > 0xffff) {
02648         min_signal_needed_p3 = 0xfff00000;
02649     } else {
02650         /* DMAX uses a different ambient width from sigma, so apply correction.
02651          * Perform division before multiplication to prevent overflow. */
02652         sigma_estimate_p2 = (sigma_estimate_p2 + c_amb_eff_width_sigma_est_ns / 2) /
02653                             c_amb_eff_width_sigma_est_ns;
02654         sigma_estimate_p2 *= c_amb_eff_width_d_max_ns;
02655 
02656         /* FixPoint1616 >> 16 = uint32 */
02657         min_signal_needed_p3 = (sigma_estimate_p2 + 0x8000) >> 16;
02658         min_signal_needed_p3 *= min_signal_needed_p3;
02659     }
02660 
02661     /* FixPoint1814 / uint32 = FixPoint1814 */
02662     sigma_limit_tmp = ((c_sigma_limit << 14) + 500) / 1000;
02663 
02664     /* FixPoint1814 * FixPoint1814 = FixPoint3628 := FixPoint0428 */
02665     sigma_limit_tmp *= sigma_limit_tmp;
02666 
02667     /* FixPoint1616 * FixPoint1616 = FixPoint3232 */
02668     sigma_est_sq_tmp = c_sigma_est_ref * c_sigma_est_ref;
02669 
02670     /* FixPoint3232 >> 4 = FixPoint0428 */
02671     sigma_est_sq_tmp = (sigma_est_sq_tmp + 0x08) >> 4;
02672 
02673     /* FixPoint0428 - FixPoint0428  = FixPoint0428 */
02674     sigma_limit_tmp -=  sigma_est_sq_tmp;
02675 
02676     /* uint32_t * FixPoint0428 = FixPoint0428 */
02677     min_signal_needed_p4 = 4 * 12 * sigma_limit_tmp;
02678 
02679     /* FixPoint0428 >> 14 = FixPoint1814 */
02680     min_signal_needed_p4 = (min_signal_needed_p4 + 0x2000) >> 14;
02681 
02682     /* uint32 + uint32 = uint32 */
02683     min_signal_needed = (min_signal_needed_p2 + min_signal_needed_p3);
02684 
02685     /* uint32 / uint32 = uint32 */
02686     min_signal_needed += (peak_vcsel_duration_us / 2);
02687     min_signal_needed /= peak_vcsel_duration_us;
02688 
02689     /* uint32 << 14 = FixPoint1814 */
02690     min_signal_needed <<= 14;
02691 
02692     /* FixPoint1814 / FixPoint1814 = uint32 */
02693     min_signal_needed += (min_signal_needed_p4 / 2);
02694     min_signal_needed /= min_signal_needed_p4;
02695 
02696     /* FixPoint3200 * FixPoint2804 := FixPoint2804*/
02697     min_signal_needed *= min_signal_needed_p1;
02698 
02699     /* Apply correction by dividing by 1000000.
02700      * This assumes 10E16 on the numerator of the equation
02701      * and 10E-22 on the denominator.
02702      * We do this because 32bit fix point calculation can't
02703      * handle the larger and smaller elements of this equation,
02704      * i.e. speed of light and pulse widths.
02705      */
02706     min_signal_needed = (min_signal_needed + 500) / 1000;
02707     min_signal_needed <<= 4;
02708 
02709     min_signal_needed = (min_signal_needed + 500) / 1000;
02710 
02711     /* FixPoint1616 >> 8 = FixPoint2408 */
02712     signal_limit_tmp = (c_signal_limit + 0x80) >> 8;
02713 
02714     /* FixPoint2408/FixPoint2408 = uint32 */
02715     if (signal_limit_tmp != 0) {
02716         dmax_dark_tmp = (signal_at0_mm + (signal_limit_tmp / 2))
02717                         / signal_limit_tmp;
02718     } else {  dmax_dark_tmp = 0;   }
02719 
02720     dmax_dark = VL53L0X_isqrt(dmax_dark_tmp);
02721 
02722     /* FixPoint2408/FixPoint2408 = uint32 */
02723     if (min_signal_needed != 0) {
02724         dmax_ambient = (signal_at0_mm + min_signal_needed / 2)
02725                        / min_signal_needed;
02726     } else {   dmax_ambient = 0;  }
02727 
02728     dmax_ambient = VL53L0X_isqrt(dmax_ambient);
02729 
02730     *pd_max_mm = dmax_dark;
02731     if (dmax_dark > dmax_ambient) {  *pd_max_mm = dmax_ambient; }
02732 
02733     return status;
02734 }
02735 
02736 VL53L0X_Error VL53L0X::VL53L0X_calc_sigma_estimate(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data,
02737         FixPoint1616_t *p_sigma_estimate,  uint32_t *p_dmax_mm)
02738 {   /* Expressed in 100ths of a ns, i.e. centi-ns */
02739     const uint32_t c_pulse_effective_width_centi_ns   = 800;
02740     /* Expressed in 100ths of a ns, i.e. centi-ns */
02741     const uint32_t c_ambient_effective_width_centi_ns = 600;
02742     const FixPoint1616_t c_dflt_final_range_integration_time_milli_secs = 0x00190000; /* 25ms */
02743     const uint32_t c_vcsel_pulse_width_ps   = 4700; /* pico secs */
02744     const FixPoint1616_t c_sigma_est_max    = 0x028F87AE;
02745     const FixPoint1616_t c_sigma_est_rtn_max    = 0xF000;
02746     const FixPoint1616_t c_amb_to_signal_ratio_max = 0xF0000000 /
02747             c_ambient_effective_width_centi_ns;
02748     /* Time Of Flight per mm (6.6 pico secs) */
02749     const FixPoint1616_t c_tof_per_mm_ps        = 0x0006999A;
02750     const uint32_t c_16bit_rounding_param       = 0x00008000;
02751     const FixPoint1616_t c_max_x_talk_kcps      = 0x00320000;
02752     const uint32_t c_pll_period_ps          = 1655;
02753 
02754     uint32_t vcsel_total_events_rtn;
02755     uint32_t final_range_timeout_micro_secs;
02756     uint32_t pre_range_timeout_micro_secs;
02757     uint32_t final_range_integration_time_milli_secs;
02758     FixPoint1616_t sigma_estimate_p1;
02759     FixPoint1616_t sigma_estimate_p2;
02760     FixPoint1616_t sigma_estimate_p3;
02761     FixPoint1616_t delta_t_ps;
02762     FixPoint1616_t pw_mult;
02763     FixPoint1616_t sigma_est_rtn;
02764     FixPoint1616_t sigma_estimate;
02765     FixPoint1616_t x_talk_correction;
02766     FixPoint1616_t ambient_rate_kcps;
02767     FixPoint1616_t peak_signal_rate_kcps;
02768     FixPoint1616_t x_talk_comp_rate_MHz;
02769     uint32_t x_talk_comp_rate_kcps;
02770     VL53L0X_Error status = VL53L0X_ERROR_NONE;
02771     FixPoint1616_t diff1_MHz;
02772     FixPoint1616_t diff2_MHz;
02773     FixPoint1616_t sqr1;
02774     FixPoint1616_t sqr2;
02775     FixPoint1616_t sqr_sum;
02776     FixPoint1616_t sqrt_result_centi_ns;
02777     FixPoint1616_t sqrt_result;
02778     FixPoint1616_t total_signal_rate_MHz;
02779     FixPoint1616_t corrected_signal_rate_MHz;
02780     FixPoint1616_t sigma_est_ref;
02781     uint32_t vcsel_width;
02782     uint32_t final_range_macro_pclks;
02783     uint32_t pre_range_macro_pclks;
02784     uint32_t peak_vcsel_duration_us;
02785     uint8_t final_range_vcsel_pclks;
02786     uint8_t pre_range_vcsel_pclks;
02787     /*! \addtogroup calc_sigma_estimate
02788      * @{
02789      *
02790      * Estimates the range sigma
02791      */
02792 
02793     x_talk_comp_rate_MHz = CurrentParameters .XTalkCompensationRate_MHz  ;
02794 
02795     /*
02796      * We work in kcps rather than MHz as this helps keep within the
02797      * confines of the 32 Fix1616 type.
02798      */
02799 
02800     ambient_rate_kcps =  (p_ranging_measurement_data->AmbientRateRtn_MHz * 1000) >> 16;
02801 
02802     corrected_signal_rate_MHz = p_ranging_measurement_data->SignalRateRtn_MHz;
02803 
02804     status = VL53L0X_get_total_signal_rate(p_ranging_measurement_data, &total_signal_rate_MHz);
02805     status = VL53L0X_get_total_xtalk_rate(p_ranging_measurement_data, &x_talk_comp_rate_MHz);
02806 
02807     /* Signal rate measurement provided by device is the
02808      * peak signal rate, not average.
02809      */
02810     peak_signal_rate_kcps = (total_signal_rate_MHz * 1000);
02811     peak_signal_rate_kcps = (peak_signal_rate_kcps + 0x8000) >> 16;
02812 
02813     x_talk_comp_rate_kcps = x_talk_comp_rate_MHz * 1000;
02814 
02815     if (x_talk_comp_rate_kcps > c_max_x_talk_kcps) {
02816         x_talk_comp_rate_kcps = c_max_x_talk_kcps;
02817     }
02818 
02819     if (status == VL53L0X_ERROR_NONE) {
02820 
02821         /* Calculate final range macro periods */
02822         final_range_timeout_micro_secs = Data.FinalRangeTimeout_us;
02823         final_range_vcsel_pclks = Data.FinalRangeVcselPulsePeriod;
02824         final_range_macro_pclks = VL53L0X_calc_timeout_mclks( final_range_timeout_micro_secs, final_range_vcsel_pclks);
02825         
02826         /* Calculate pre-range macro periods */
02827         pre_range_timeout_micro_secs = Data.PreRangeTimeout_us;
02828         pre_range_vcsel_pclks = Data.PreRangeVcselPulsePeriod;
02829 
02830         pre_range_macro_pclks = VL53L0X_calc_timeout_mclks(pre_range_timeout_micro_secs, pre_range_vcsel_pclks);
02831 
02832         vcsel_width = 3;
02833         if (final_range_vcsel_pclks == 8) {
02834             vcsel_width = 2;
02835         }
02836 
02837         peak_vcsel_duration_us = vcsel_width * 2048 *
02838                                  (pre_range_macro_pclks + final_range_macro_pclks);
02839         peak_vcsel_duration_us = (peak_vcsel_duration_us + 500) / 1000;
02840         peak_vcsel_duration_us *= c_pll_period_ps;
02841         peak_vcsel_duration_us = (peak_vcsel_duration_us + 500) / 1000;
02842 
02843         /* Fix1616 >> 8 = Fix2408 */
02844         total_signal_rate_MHz = (total_signal_rate_MHz + 0x80) >> 8;
02845 
02846         /* Fix2408 * uint32 = Fix2408 */
02847         vcsel_total_events_rtn = total_signal_rate_MHz *
02848                                  peak_vcsel_duration_us;
02849 
02850         /* Fix2408 >> 8 = uint32 */
02851         vcsel_total_events_rtn = (vcsel_total_events_rtn + 0x80) >> 8;
02852 
02853         /* Fix2408 << 8 = Fix1616 = */
02854         total_signal_rate_MHz <<= 8;
02855     }
02856 
02857     if (status != VL53L0X_ERROR_NONE) { return status; }
02858 
02859     if (peak_signal_rate_kcps == 0) {
02860         *p_sigma_estimate = c_sigma_est_max;
02861         p_ranging_measurement_data->SigmaEstimate = c_sigma_est_max;
02862         *p_dmax_mm = 0;
02863     } else {
02864         if (vcsel_total_events_rtn < 1) { vcsel_total_events_rtn = 1; }
02865 
02866         sigma_estimate_p1 = c_pulse_effective_width_centi_ns;
02867 
02868         /* ((FixPoint1616 << 16)* uint32)/uint32 = FixPoint1616 */
02869         sigma_estimate_p2 = (ambient_rate_kcps << 16) / peak_signal_rate_kcps;
02870         if (sigma_estimate_p2 > c_amb_to_signal_ratio_max) {
02871             /* Clip to prevent overflow. Will ensure safe
02872              * max result. */
02873             sigma_estimate_p2 = c_amb_to_signal_ratio_max;
02874         }
02875         sigma_estimate_p2 *= c_ambient_effective_width_centi_ns;
02876 
02877         sigma_estimate_p3 = 2 * VL53L0X_isqrt(vcsel_total_events_rtn * 12);
02878 
02879         /* uint32 * FixPoint1616 = FixPoint1616 */
02880         delta_t_ps = p_ranging_measurement_data->Range_mm *  c_tof_per_mm_ps;
02881 
02882         /* vcselRate - xtalkCompRate
02883          * (uint32 << 16) - FixPoint1616 = FixPoint1616.
02884          * Divide result by 1000 to convert to MHz.
02885          * 500 is added to ensure rounding when integer division truncates. */
02886         diff1_MHz = (((peak_signal_rate_kcps << 16) -
02887                        2 * x_talk_comp_rate_kcps) + 500) / 1000;
02888 
02889         /* vcselRate + xtalkCompRate */
02890         diff2_MHz = ((peak_signal_rate_kcps << 16) + 500) / 1000;
02891 
02892         /* Shift by 8 bits to increase resolution prior to the division */
02893         diff1_MHz <<= 8;
02894 
02895         /* FixPoint0824/FixPoint1616 = FixPoint2408 */
02896         x_talk_correction    = diff1_MHz / diff2_MHz;
02897 
02898         /* FixPoint2408 << 8 = FixPoint1616 */
02899         x_talk_correction <<= 8;
02900 
02901         if (p_ranging_measurement_data->RangeStatus != 0) {
02902             pw_mult = 1 << 16;
02903         } else {
02904             /* FixPoint1616/uint32 = FixPoint1616 */
02905             pw_mult = delta_t_ps / c_vcsel_pulse_width_ps; /* smaller than 1.0f */
02906 
02907             /* FixPoint1616 * FixPoint1616 = FixPoint3232, however both
02908              * values are small enough such that32 bits will not be exceeded. */
02909             pw_mult *= ((1 << 16) - x_talk_correction);
02910 
02911             /* (FixPoint3232 >> 16) = FixPoint1616 */
02912             pw_mult = (pw_mult + c_16bit_rounding_param) >> 16;
02913 
02914             /* FixPoint1616 + FixPoint1616 = FixPoint1616 */
02915             pw_mult += (1 << 16);
02916 
02917             /* At this point the value will be 1.xx, therefore if we square
02918              * the value this will exceed 32 bits. To address this perform
02919              * a single shift to the right before the multiplication. */
02920             pw_mult >>= 1;
02921             /* FixPoint1715 * FixPoint1715 = FixPoint3430 */
02922             pw_mult = pw_mult * pw_mult;
02923 
02924             /* (FixPoint3430 >> 14) = Fix1616 */
02925             pw_mult >>= 14;
02926         }
02927 
02928         /* FixPoint1616 * uint32 = FixPoint1616 */
02929         sqr1 = pw_mult * sigma_estimate_p1;
02930 
02931         /* (FixPoint1616 >> 16) = FixPoint3200 */
02932         sqr1 = (sqr1 + 0x8000) >> 16;
02933 
02934         /* FixPoint3200 * FixPoint3200 = FixPoint6400 */
02935         sqr1 *= sqr1;
02936 
02937         sqr2 = sigma_estimate_p2;
02938 
02939         /* (FixPoint1616 >> 16) = FixPoint3200 */
02940         sqr2 = (sqr2 + 0x8000) >> 16;
02941 
02942         /* FixPoint3200 * FixPoint3200 = FixPoint6400 */
02943         sqr2 *= sqr2;
02944 
02945         /* FixPoint64000 + FixPoint6400 = FixPoint6400 */
02946         sqr_sum = sqr1 + sqr2;
02947 
02948         /* SQRT(FixPoin6400) = FixPoint3200 */
02949         sqrt_result_centi_ns = VL53L0X_isqrt(sqr_sum);
02950 
02951         /* (FixPoint3200 << 16) = FixPoint1616 */
02952         sqrt_result_centi_ns <<= 16;
02953 
02954         /* Note that the Speed Of Light is expressed in um per 1E-10
02955          * seconds (2997) Therefore to get mm/ns we have to divide by
02956          * 10000
02957          */
02958         sigma_est_rtn = (((sqrt_result_centi_ns + 50) / 100) /
02959                          sigma_estimate_p3);
02960         sigma_est_rtn        *= VL53L0X_SPEED_OF_LIGHT_IN_AIR;
02961 
02962         /* Add 5000 before dividing by 10000 to ensure rounding. */
02963         sigma_est_rtn        += 5000;
02964         sigma_est_rtn        /= 10000;
02965 
02966         if (sigma_est_rtn > c_sigma_est_rtn_max) {
02967             /* Clip to prevent overflow. Will ensure safe
02968              * max result. */
02969             sigma_est_rtn = c_sigma_est_rtn_max;
02970         }
02971         final_range_integration_time_milli_secs =
02972             (final_range_timeout_micro_secs + pre_range_timeout_micro_secs + 500) / 1000;
02973 
02974         /* sigmaEstRef = 1mm * 25ms/final range integration time (inc pre-range)
02975          * sqrt(FixPoint1616/int) = FixPoint2408)
02976          */
02977         sigma_est_ref =
02978             VL53L0X_isqrt((c_dflt_final_range_integration_time_milli_secs +
02979                            final_range_integration_time_milli_secs / 2) /
02980                           final_range_integration_time_milli_secs);
02981 
02982         /* FixPoint2408 << 8 = FixPoint1616 */
02983         sigma_est_ref <<= 8;
02984         sigma_est_ref = (sigma_est_ref + 500) / 1000;
02985 
02986         /* FixPoint1616 * FixPoint1616 = FixPoint3232 */
02987         sqr1 = sigma_est_rtn * sigma_est_rtn;
02988         /* FixPoint1616 * FixPoint1616 = FixPoint3232 */
02989         sqr2 = sigma_est_ref * sigma_est_ref;
02990 
02991         /* sqrt(FixPoint3232) = FixPoint1616 */
02992         sqrt_result = VL53L0X_isqrt((sqr1 + sqr2));
02993         /*
02994          * Note that the Shift by 4 bits increases resolution prior to
02995          * the sqrt, therefore the result must be shifted by 2 bits to
02996          * the right to revert back to the FixPoint1616 format.
02997          */
02998 
02999         sigma_estimate   = 1000 * sqrt_result;
03000 
03001         if ((peak_signal_rate_kcps < 1) || (vcsel_total_events_rtn < 1) ||
03002                 (sigma_estimate > c_sigma_est_max)) {
03003             sigma_estimate = c_sigma_est_max;
03004         }
03005 
03006         *p_sigma_estimate = (uint32_t)(sigma_estimate);
03007         p_ranging_measurement_data->SigmaEstimate = *p_sigma_estimate;
03008         status = VL53L0X_calc_dmax(total_signal_rate_MHz,
03009                      corrected_signal_rate_MHz,
03010                      pw_mult,
03011                      sigma_estimate_p1,
03012                      sigma_estimate_p2,
03013                      peak_vcsel_duration_us,
03014                      p_dmax_mm);
03015     }
03016 
03017     return status;
03018 }
03019 
03020 VL53L0X_Error VL53L0X::VL53L0X_get_pal_range_status(uint8_t device_range_status,
03021         FixPoint1616_t signal_rate,
03022         uint16_t effective_spad_rtn_count,
03023         VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data,
03024         uint8_t *p_pal_range_status)
03025 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
03026     uint8_t none_flag;
03027     uint8_t sigma_limitflag = 0;
03028     uint8_t signal_ref_clipflag = 0;
03029     uint8_t range_ignore_thresholdflag = 0;
03030     uint8_t sigma_limit_check_enable = 0;
03031     uint8_t signal_rate_final_range_limit_check_enable = 0;
03032     uint8_t signal_ref_clip_limit_check_enable = 0;
03033     uint8_t range_ignore_threshold_limit_check_enable = 0;
03034     FixPoint1616_t sigma_estimate;
03035     FixPoint1616_t sigma_limit_value;
03036     FixPoint1616_t signal_ref_clip_value;
03037     FixPoint1616_t range_ignore_threshold_value;
03038     FixPoint1616_t signal_rate_per_spad;
03039     uint8_t device_range_status_internal = 0;
03040     uint16_t tmp_word = 0;
03041     uint8_t temp8;
03042     uint32_t dmax_mm = 0;
03043     FixPoint1616_t last_signal_ref_MHz;
03044    
03045     /* VL53L0X has a good ranging when the value of the
03046      * DeviceRangeStatus = 11. This function will replace the value 0 with
03047      * the value 11 in the DeviceRangeStatus.
03048      * In addition, the SigmaEstimator is not included in the VL53L0X
03049      * DeviceRangeStatus, this will be added in the PalRangeStatus. */
03050 
03051     device_range_status_internal = ((device_range_status & 0x78) >> 3);
03052 
03053     if (device_range_status_internal == 0 ||
03054             device_range_status_internal == 5 ||
03055             device_range_status_internal == 7 ||
03056             device_range_status_internal == 12 ||
03057             device_range_status_internal == 13 ||
03058             device_range_status_internal == 14 ||
03059             device_range_status_internal == 15
03060        ) {
03061         none_flag = 1;
03062     } else {
03063         none_flag = 0;
03064     }
03065 
03066     /* Check if Sigma limit is enabled, if yes then do comparison with limit
03067      * value and put the result back into pPalRangeStatus.  */
03068     if (status == VL53L0X_ERROR_NONE) {
03069         status =  VL53L0X_get_limit_check_enable(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
03070                   &sigma_limit_check_enable);
03071     }
03072 
03073     if ((sigma_limit_check_enable != 0) && (status == VL53L0X_ERROR_NONE)) {
03074         /*  compute the Sigma and check with limit */
03075         status = VL53L0X_calc_sigma_estimate(p_ranging_measurement_data, &sigma_estimate, &dmax_mm);
03076         if (status == VL53L0X_ERROR_NONE) {  p_ranging_measurement_data->RangeDMax_mm = dmax_mm;  }
03077 
03078         if (status == VL53L0X_ERROR_NONE) {
03079             status = VL53L0X_get_limit_check_value(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
03080                                                    &sigma_limit_value);
03081 
03082             if ((sigma_limit_value > 0) && (sigma_estimate > sigma_limit_value)) 
03083                {  sigma_limitflag = 1; } /* Limit Fail */
03084         }
03085     }
03086 
03087     /* Check if Signal ref clip limit is enabled, if yes then do comparison
03088      * with limit value and put the result back into pPalRangeStatus.  */
03089     if (status == VL53L0X_ERROR_NONE) {
03090         status =  VL53L0X_get_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
03091                   &signal_ref_clip_limit_check_enable);
03092     }
03093 
03094     if ((signal_ref_clip_limit_check_enable != 0) &&
03095             (status == VL53L0X_ERROR_NONE)) {
03096 
03097         status = VL53L0X_get_limit_check_value(VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
03098                                                &signal_ref_clip_value);
03099 
03100         /* Read LastSignalRef_MHz from device */
03101         if (status == VL53L0X_ERROR_NONE) {
03102             status = VL53L0X_write_byte( 0xFF, 0x01);
03103         }
03104 
03105         if (status == VL53L0X_ERROR_NONE) {
03106             status = VL53L0X_read_word(VL53L0X_REG_RESULT_PEAK_SIGNAL_RATE_REF,
03107                                        &tmp_word);
03108         }
03109 
03110         if (status == VL53L0X_ERROR_NONE) {
03111             status = VL53L0X_write_byte( 0xFF, 0x00);
03112         }
03113 
03114         last_signal_ref_MHz = VL53L0X_FP97TOFP1616(tmp_word);
03115         Data.LastSignalRef_MHz = last_signal_ref_MHz;
03116 
03117         if ((signal_ref_clip_value > 0) &&
03118                 (last_signal_ref_MHz > signal_ref_clip_value)) {
03119             /* Limit Fail */
03120             signal_ref_clipflag = 1;
03121         }
03122     }
03123 
03124     /*
03125      * Check if Signal ref clip limit is enabled, if yes then do comparison
03126      * with limit value and put the result back into pPalRangeStatus.
03127      * EffectiveSpadRtnCount has a format 8.8
03128      * If (Return signal rate < (1.5 x Xtalk x number of Spads)) : FAIL
03129      */
03130     if (status == VL53L0X_ERROR_NONE) {
03131         status =  VL53L0X_get_limit_check_enable(VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
03132                   &range_ignore_threshold_limit_check_enable);
03133     }
03134 
03135     if ((range_ignore_threshold_limit_check_enable != 0) &&
03136             (status == VL53L0X_ERROR_NONE)) {
03137 
03138         /* Compute the signal rate per spad */
03139         if (effective_spad_rtn_count == 0) {
03140             signal_rate_per_spad = 0;
03141         } else {
03142             signal_rate_per_spad = (FixPoint1616_t)((256 * signal_rate)
03143                                                     / effective_spad_rtn_count);
03144         }
03145 
03146         status = VL53L0X_get_limit_check_value(VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
03147                                                &range_ignore_threshold_value);
03148 
03149         if ((range_ignore_threshold_value > 0) &&
03150                 (signal_rate_per_spad < range_ignore_threshold_value)) {
03151             /* Limit Fail add 2^6 to range status */
03152             range_ignore_thresholdflag = 1;
03153         }
03154     }
03155 
03156     if (status == VL53L0X_ERROR_NONE) {
03157         if (none_flag == 1) {
03158             *p_pal_range_status = 255;   /* NONE */
03159         } else if (device_range_status_internal == 1 ||
03160                    device_range_status_internal == 2 ||
03161                    device_range_status_internal == 3) {
03162             *p_pal_range_status = 5; /* HW fail */
03163         } else if (device_range_status_internal == 6 ||
03164                    device_range_status_internal == 9) {
03165             *p_pal_range_status = 4;  /* Phase fail */
03166         } else if (device_range_status_internal == 8 ||
03167                    device_range_status_internal == 10 ||
03168                    signal_ref_clipflag == 1) {
03169             *p_pal_range_status = 3;  /* Min range */
03170         } else if (device_range_status_internal == 4 ||
03171                    range_ignore_thresholdflag == 1) {
03172             *p_pal_range_status = 2;  /* Signal Fail */
03173         } else if (sigma_limitflag == 1) {
03174             *p_pal_range_status = 1;  /* Sigma   Fail */
03175         } else {
03176             *p_pal_range_status = 0; /* Range Valid */
03177         }
03178     }
03179 
03180     /* DMAX only relevant during range error */
03181     if (*p_pal_range_status == 0) {
03182         p_ranging_measurement_data->RangeDMax_mm = 0;
03183     }
03184 
03185     /* fill the Limit Check Status */
03186 
03187     status =  VL53L0X_get_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
03188               &signal_rate_final_range_limit_check_enable);
03189 
03190     if (status == VL53L0X_ERROR_NONE) {
03191         if ((sigma_limit_check_enable == 0) || (sigma_limitflag == 1)) {
03192             temp8 = 1;
03193         } else {
03194             temp8 = 0;
03195         }
03196         CurrentParameters .LimitChecksStatus [VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE] = temp8;
03197 
03198         if ((device_range_status_internal == 4) ||
03199                 (signal_rate_final_range_limit_check_enable == 0)) {
03200             temp8 = 1;
03201         } else {
03202             temp8 = 0;
03203         }
03204         CurrentParameters .LimitChecksStatus [VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE] = temp8;
03205 
03206         if ((signal_ref_clip_limit_check_enable == 0) ||
03207                 (signal_ref_clipflag == 1)) {
03208             temp8 = 1;
03209         } else {
03210             temp8 = 0;
03211         }
03212 
03213         CurrentParameters .LimitChecksStatus [VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP] = temp8;
03214 
03215         if ((range_ignore_threshold_limit_check_enable == 0) ||
03216                 (range_ignore_thresholdflag == 1)) {
03217             temp8 = 1;
03218         } else {
03219             temp8 = 0;
03220         }
03221 
03222         CurrentParameters .LimitChecksStatus [VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD] = temp8;
03223     }
03224     
03225     return status;
03226 }
03227 
03228 VL53L0X_Error VL53L0X::VL53L0X_get_ranging_measurement_data(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data)
03229 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
03230     uint8_t device_range_status;
03231     uint8_t range_fractional_enable;
03232     uint8_t pal_range_status;
03233     uint8_t x_talk_compensation_enable;
03234     uint16_t ambient_rate;
03235     FixPoint1616_t signal_rate;
03236     uint16_t x_talk_compensation_rate_MHz;
03237     uint16_t effective_spad_rtn_count;
03238     uint16_t tmpuint16;
03239     uint16_t xtalk_range_milli_meter;
03240     uint16_t linearity_corrective_gain;
03241     uint8_t localBuffer[12];
03242  
03243     /* use multi read even if some registers are not useful, result will
03244      * be more efficient start reading at 0x14 dec20
03245      * end reading at 0x21 dec33 total 14 bytes to read */
03246     status = VL53L0X_read_multi( 0x14, localBuffer, 12);
03247 
03248     if (status == VL53L0X_ERROR_NONE) {
03249 
03250         tmpuint16 = VL53L0X_MAKEUINT16(localBuffer[11], localBuffer[10]);
03251         /* cut1.1 if SYSTEM__RANGE_CONFIG if 1 range is 2bits fractional
03252          *(format 11.2) else no fractional  */
03253 
03254         signal_rate = VL53L0X_FP97TOFP1616(VL53L0X_MAKEUINT16(localBuffer[7], localBuffer[6]));
03255         /* peak_signal_count_rate_rtn_MHz */
03256         p_ranging_measurement_data->SignalRateRtn_MHz = signal_rate;
03257 
03258         ambient_rate = VL53L0X_MAKEUINT16(localBuffer[9], localBuffer[8]);
03259         p_ranging_measurement_data->AmbientRateRtn_MHz =
03260             VL53L0X_FP97TOFP1616(ambient_rate);
03261 
03262         effective_spad_rtn_count = VL53L0X_MAKEUINT16(localBuffer[3],
03263                                    localBuffer[2]);
03264         /* EffectiveSpadRtnCount is 8.8 format */
03265         p_ranging_measurement_data->EffectiveSpadRtnCount =
03266             effective_spad_rtn_count;
03267 
03268         device_range_status = localBuffer[0];
03269 
03270         /* Get Linearity Corrective Gain */
03271         linearity_corrective_gain = Data.LinearityCorrectiveGain;
03272 
03273         /* Get ranging configuration */
03274         range_fractional_enable = Data.RangeFractionalEnable;
03275 
03276         if (linearity_corrective_gain != 1000) {
03277 
03278             tmpuint16 = (uint16_t)((linearity_corrective_gain  * tmpuint16 + 500) / 1000);
03279 
03280             /* Implement Xtalk */
03281             x_talk_compensation_rate_MHz = CurrentParameters .XTalkCompensationRate_MHz  ;
03282             x_talk_compensation_enable = CurrentParameters .XTalkCompensationEnable  ;
03283 
03284             if (x_talk_compensation_enable) {
03285 
03286                 if ((signal_rate
03287                         - ((x_talk_compensation_rate_MHz
03288                             * effective_spad_rtn_count) >> 8))
03289                         <= 0) {
03290                     if (range_fractional_enable) {
03291                         xtalk_range_milli_meter = 8888;
03292                     } else {
03293                         xtalk_range_milli_meter = 8888 << 2;
03294                     }
03295                 } else {
03296                     xtalk_range_milli_meter =
03297                         (tmpuint16 * signal_rate)
03298                         / (signal_rate
03299                            - ((x_talk_compensation_rate_MHz
03300                                * effective_spad_rtn_count)
03301                               >> 8));
03302                 }
03303                 tmpuint16 = xtalk_range_milli_meter;
03304             }
03305         }
03306 
03307         if (range_fractional_enable) {
03308             p_ranging_measurement_data->Range_mm =
03309                 (uint16_t)((tmpuint16) >> 2);
03310             p_ranging_measurement_data->RangeFractionalPart =
03311                 (uint8_t)((tmpuint16 & 0x03) << 6);
03312         } else {
03313             p_ranging_measurement_data->Range_mm = tmpuint16;
03314             p_ranging_measurement_data->RangeFractionalPart = 0;
03315         }
03316 
03317         /* For a standard definition of RangeStatus, this should
03318          * return 0 in case of good result after a ranging
03319          * The range status depends on the device so call a device
03320          * specific function to obtain the right Status.
03321          */
03322         status |= VL53L0X_get_pal_range_status( device_range_status,
03323                                                signal_rate, effective_spad_rtn_count,
03324                                                p_ranging_measurement_data, &pal_range_status);
03325 
03326         if (status == VL53L0X_ERROR_NONE) {
03327             p_ranging_measurement_data->RangeStatus = pal_range_status;}
03328 
03329     }
03330 
03331     if (status == VL53L0X_ERROR_NONE) { /* Copy last read data into Device buffer */
03332         LastRangeMeasure .Range_mm               = p_ranging_measurement_data->Range_mm;
03333         LastRangeMeasure .RangeFractionalPart    = p_ranging_measurement_data->RangeFractionalPart;
03334         LastRangeMeasure .RangeDMax_mm           = p_ranging_measurement_data->RangeDMax_mm;
03335         LastRangeMeasure .SignalRateRtn_MHz      = p_ranging_measurement_data->SignalRateRtn_MHz;
03336         LastRangeMeasure .AmbientRateRtn_MHz     = p_ranging_measurement_data->AmbientRateRtn_MHz;
03337         LastRangeMeasure .EffectiveSpadRtnCount  = p_ranging_measurement_data->EffectiveSpadRtnCount;
03338         LastRangeMeasure .RangeStatus            = p_ranging_measurement_data->RangeStatus;
03339     }
03340   
03341     return status;
03342 }
03343 
03344 VL53L0X_Error VL53L0X::VL53L0X_perform_single_ranging_measurement(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data)
03345 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
03346 
03347     /* This function will do a complete single ranging
03348      * Here we fix the mode! */
03349     CurrentParameters .DeviceMode  = VL53L0X_DEVICEMODE_SINGLE_RANGING;
03350 
03351     if (status == VL53L0X_ERROR_NONE) {
03352         status = VL53L0X_perform_single_measurement();  }
03353 
03354     if (status == VL53L0X_ERROR_NONE) {
03355         status = VL53L0X_get_ranging_measurement_data(p_ranging_measurement_data); }
03356 
03357     if (status == VL53L0X_ERROR_NONE) {
03358         status = VL53L0X_clear_interrupt_mask( 0);}
03359  
03360     return status;
03361 }
03362 
03363 VL53L0X_Error VL53L0X::perform_ref_signal_measurement(uint16_t *p_ref_signal_rate)
03364 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
03365     VL53L0X_RangingMeasurementData_t ranging_measurement_data;
03366 
03367     uint8_t sequence_config = 0;
03368 
03369     /* store the value of the sequence config,
03370      * this will be reset before the end of the function*/
03371     sequence_config = Data.SequenceConfig;
03372 
03373     /*
03374      * This function performs a reference signal rate measurement.
03375      */
03376     if (status == VL53L0X_ERROR_NONE) {
03377         status = VL53L0X_write_byte(VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0xC0);}
03378 
03379     if (status == VL53L0X_ERROR_NONE) {
03380         status = VL53L0X_perform_single_ranging_measurement(&ranging_measurement_data); }
03381 
03382     if (status == VL53L0X_ERROR_NONE) {
03383         status = VL53L0X_write_byte( 0xFF, 0x01); }
03384 
03385     if (status == VL53L0X_ERROR_NONE) {
03386         status = VL53L0X_read_word(VL53L0X_REG_RESULT_PEAK_SIGNAL_RATE_REF,
03387                                    p_ref_signal_rate);}
03388 
03389     if (status == VL53L0X_ERROR_NONE) {
03390         status = VL53L0X_write_byte( 0xFF, 0x00);}
03391 
03392     if (status == VL53L0X_ERROR_NONE) {
03393         /* restore the previous Sequence Config */
03394         status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
03395                                     sequence_config);
03396         if (status == VL53L0X_ERROR_NONE) {
03397             Data.SequenceConfig = sequence_config;
03398         }
03399     }
03400     return status;
03401 }
03402 
03403 VL53L0X_Error VL53L0X::wrapped_VL53L0X_perform_ref_spad_management(uint32_t *ref_spad_count,
03404         uint8_t *is_aperture_spads)
03405 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
03406     uint8_t last_spad_array[6];
03407     uint8_t start_select = 0xB4;
03408     uint32_t minimum_spad_count = 3;
03409     uint32_t max_spad_count = 44;
03410     uint32_t current_spad_index = 0;
03411     uint32_t last_spad_index = 0;
03412     int32_t next_good_spad = 0;
03413     uint16_t target_ref_rate = 0x0A00; /* 20 MHz in 9:7 format */
03414     uint16_t peak_signal_rate_ref;
03415     uint32_t need_apt_spads = 0;
03416     uint32_t index = 0;
03417     uint32_t spad_array_size = 6;
03418     uint32_t signal_rate_diff = 0;
03419     uint32_t last_signal_rate_diff = 0;
03420     uint8_t complete = 0;
03421     uint8_t vhv_settings = 0;
03422     uint8_t phase_cal = 0;
03423     uint32_t ref_spad_count_int = 0;
03424     uint8_t  is_aperture_spads_int = 0;
03425 
03426     /*
03427      * The reference SPAD initialization procedure determines the minimum
03428      * amount of reference spads to be enables to achieve a target reference
03429      * signal rate and should be performed once during initialization.
03430      *
03431      * Either aperture or non-aperture spads are applied but never both.
03432      * Firstly non-aperture spads are set, begining with 5 spads, and
03433      * increased one spad at a time until the closest measurement to the
03434      * target rate is achieved.
03435      *
03436      * If the target rate is exceeded when 5 non-aperture spads are enabled,
03437      * initialization is performed instead with aperture spads.
03438      *
03439      * When setting spads, a 'Good Spad Map' is applied.
03440      *
03441      * This procedure operates within a SPAD window of interest of a maximum
03442      * 44 spads.
03443      * The start point is currently fixed to 180, which lies towards the end
03444      * of the non-aperture quadrant and runs in to the adjacent aperture
03445      * quadrant.
03446      */
03447     target_ref_rate = Data.targetRefRate;
03448 
03449     /*
03450      * Initialize Spad arrays.
03451      * Currently the good spad map is initialised to 'All good'.
03452      * This is a short term implementation. The good spad map will be
03453      * provided as an input.
03454      * Note that there are 6 bytes. Only the first 44 bits will be used to
03455      * represent spads.
03456      */
03457     for (index = 0; index < spad_array_size; index++) {
03458         Data.RefSpadEnables[index] = 0;
03459     }
03460 
03461     status = VL53L0X_write_byte( 0xFF, 0x01);
03462 
03463     if (status == VL53L0X_ERROR_NONE) {
03464         status = VL53L0X_write_byte(VL53L0X_REG_DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
03465     }
03466 
03467     if (status == VL53L0X_ERROR_NONE) {
03468         status = VL53L0X_write_byte(VL53L0X_REG_DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
03469     }
03470 
03471     if (status == VL53L0X_ERROR_NONE) {
03472         status = VL53L0X_write_byte( 0xFF, 0x00);
03473     }
03474 
03475     if (status == VL53L0X_ERROR_NONE) {
03476         status = VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_REF_EN_START_SELECT,
03477                                     start_select);
03478     }
03479 
03480     if (status == VL53L0X_ERROR_NONE) {
03481         status = VL53L0X_write_byte(VL53L0X_REG_POWER_MANAGEMENT_GO1_POWER_FORCE, 0);
03482     }
03483 
03484     /* Perform ref calibration */
03485     if (status == VL53L0X_ERROR_NONE) {
03486         status = VL53L0X_perform_ref_calibration( &vhv_settings,
03487                  &phase_cal, 0);
03488     }
03489 
03490     if (status == VL53L0X_ERROR_NONE) {
03491         /* Enable Minimum NON-APERTURE Spads */
03492         current_spad_index = 0;
03493         last_spad_index = current_spad_index;
03494         need_apt_spads = 0;
03495         status = enable_ref_spads(need_apt_spads,
03496                                   Data.RefGoodSpadMap,
03497                                   Data.RefSpadEnables,
03498                                   spad_array_size,
03499                                   start_select,
03500                                   current_spad_index,
03501                                   minimum_spad_count,
03502                                   &last_spad_index);
03503     }
03504 
03505     if (status == VL53L0X_ERROR_NONE) {
03506         current_spad_index = last_spad_index;
03507 
03508         status = perform_ref_signal_measurement(&peak_signal_rate_ref);
03509         if ((status == VL53L0X_ERROR_NONE) &&
03510                 (peak_signal_rate_ref > target_ref_rate)) {
03511             /* Signal rate measurement too high,
03512              * switch to APERTURE SPADs */
03513 
03514             for (index = 0; index < spad_array_size; index++) {
03515                 Data.RefSpadEnables[index] = 0;
03516             }
03517 
03518             /* Increment to the first APERTURE spad */
03519             while ((is_aperture(start_select + current_spad_index)
03520                     == 0) && (current_spad_index < max_spad_count)) {
03521                 current_spad_index++;
03522             }
03523 
03524             need_apt_spads = 1;
03525 
03526             status = enable_ref_spads(need_apt_spads,
03527                                       Data.RefGoodSpadMap,
03528                                       Data.RefSpadEnables,
03529                                       spad_array_size,
03530                                       start_select,
03531                                       current_spad_index,
03532                                       minimum_spad_count,
03533                                       &last_spad_index);
03534 
03535             if (status == VL53L0X_ERROR_NONE) {
03536                 current_spad_index = last_spad_index;
03537                 status = perform_ref_signal_measurement(&peak_signal_rate_ref);
03538 
03539                 if ((status == VL53L0X_ERROR_NONE) &&
03540                         (peak_signal_rate_ref > target_ref_rate)) {
03541                     /* Signal rate still too high after
03542                      * setting the minimum number of
03543                      * APERTURE spads. Can do no more
03544                      * therefore set the min number of
03545                      * aperture spads as the result.
03546                      */
03547                     is_aperture_spads_int = 1;
03548                     ref_spad_count_int = minimum_spad_count;
03549                 }
03550             }
03551         } else {
03552             need_apt_spads = 0;
03553         }
03554     }
03555 
03556     if ((status == VL53L0X_ERROR_NONE) &&
03557             (peak_signal_rate_ref < target_ref_rate)) {
03558         /* At this point, the minimum number of either aperture
03559          * or non-aperture spads have been set. Proceed to add
03560          * spads and perform measurements until the target
03561          * reference is reached.
03562          */
03563         is_aperture_spads_int = need_apt_spads;
03564         ref_spad_count_int  = minimum_spad_count;
03565 
03566         memcpy(last_spad_array, Data.RefSpadEnables,
03567                spad_array_size);
03568         last_signal_rate_diff = abs(peak_signal_rate_ref -
03569                                     target_ref_rate);
03570         complete = 0;
03571 
03572         while (!complete) {
03573             get_next_good_spad(Data.RefGoodSpadMap,
03574                 spad_array_size, current_spad_index,
03575                 &next_good_spad);
03576 
03577             if (next_good_spad == -1) {
03578                 status = VL53L0X_ERROR_REF_SPAD_INIT;
03579                 break;
03580             }
03581 
03582             /* Cannot combine Aperture and Non-Aperture spads, so
03583              * ensure the current spad is of the correct type.
03584              */
03585             if (is_aperture((uint32_t)start_select + next_good_spad) !=
03586                     need_apt_spads) {
03587                 /* At this point we have enabled the maximum
03588                  * number of Aperture spads.
03589                  */
03590                 complete = 1;
03591                 break;
03592             }
03593 
03594             (ref_spad_count_int)++;
03595 
03596             current_spad_index = next_good_spad;
03597             status = enable_spad_bit(Data.RefSpadEnables,
03598                          spad_array_size, current_spad_index);
03599 
03600             if (status == VL53L0X_ERROR_NONE) {
03601                 current_spad_index++;
03602                 /* Proceed to apply the additional spad and
03603                  * perform measurement. */
03604                 status = set_ref_spad_map(Data.RefSpadEnables);
03605             }
03606 
03607             if (status != VL53L0X_ERROR_NONE) {
03608                 break;
03609             }
03610 
03611             status = perform_ref_signal_measurement(&peak_signal_rate_ref);
03612 
03613             if (status != VL53L0X_ERROR_NONE) {
03614                 break;
03615             }
03616 
03617             signal_rate_diff = abs(peak_signal_rate_ref - target_ref_rate);
03618 
03619             if (peak_signal_rate_ref > target_ref_rate) {
03620                 /* Select the spad map that provides the
03621                  * measurement closest to the target rate,
03622                  * either above or below it.
03623                  */
03624                 if (signal_rate_diff > last_signal_rate_diff) {
03625                     /* Previous spad map produced a closer
03626                      * measurement, so choose this. */
03627                     status = set_ref_spad_map(last_spad_array);
03628                     memcpy(Data.RefSpadEnables,
03629                         last_spad_array, spad_array_size);
03630                     (ref_spad_count_int)--;
03631                 }
03632                 complete = 1;
03633             } else {
03634                 /* Continue to add spads */
03635                 last_signal_rate_diff = signal_rate_diff;
03636                 memcpy(last_spad_array,
03637                        Data.RefSpadEnables,
03638                        spad_array_size);
03639             }
03640 
03641         } /* while */
03642     }
03643 
03644     if (status == VL53L0X_ERROR_NONE) {
03645         *ref_spad_count = ref_spad_count_int;
03646         *is_aperture_spads = is_aperture_spads_int;
03647         Data.RefSpadsInitialised = 1;
03648         Data.ReferenceSpadCount = (uint8_t)(*ref_spad_count);
03649         Data.ReferenceSpadType = *is_aperture_spads;
03650     }
03651 
03652     return status;
03653 }
03654 
03655 VL53L0X_Error VL53L0X::VL53L0X_set_reference_spads(uint32_t count, uint8_t is_aperture_spads)
03656 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
03657     uint32_t current_spad_index = 0;
03658     uint8_t start_select = 0xB4;
03659     uint32_t spad_array_size = 6;
03660     uint32_t max_spad_count = 44;
03661     uint32_t last_spad_index;
03662     uint32_t index;
03663 
03664     /*
03665      * This function applies a requested number of reference spads, either
03666      * aperture or
03667      * non-aperture, as requested.
03668      * The good spad map will be applied.
03669      */
03670 
03671     status = VL53L0X_write_byte( 0xFF, 0x01);
03672 
03673     if (status == VL53L0X_ERROR_NONE) {
03674         status = VL53L0X_write_byte(VL53L0X_REG_DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
03675     }
03676 
03677     if (status == VL53L0X_ERROR_NONE) {
03678         status = VL53L0X_write_byte( VL53L0X_REG_DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
03679     }
03680 
03681     if (status == VL53L0X_ERROR_NONE) {
03682         status = VL53L0X_write_byte( 0xFF, 0x00);
03683     }
03684 
03685     if (status == VL53L0X_ERROR_NONE) {
03686         status = VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_REF_EN_START_SELECT,
03687                                     start_select);
03688     }
03689 
03690     for (index = 0; index < spad_array_size; index++) {
03691         Data.RefSpadEnables[index] = 0;
03692     }
03693 
03694     if (is_aperture_spads) {
03695         /* Increment to the first APERTURE spad */
03696         while ((is_aperture(start_select + current_spad_index) == 0) &&
03697                 (current_spad_index < max_spad_count)) {
03698             current_spad_index++;
03699         }
03700     }
03701     status = enable_ref_spads(is_aperture_spads,
03702                               Data.RefGoodSpadMap,
03703                               Data.RefSpadEnables,
03704                               spad_array_size,
03705                               start_select,
03706                               current_spad_index,
03707                               count,
03708                               &last_spad_index);
03709 
03710     if (status == VL53L0X_ERROR_NONE) {
03711         Data.RefSpadsInitialised = 1;
03712         Data.ReferenceSpadCount = (uint8_t)(count);
03713         Data.ReferenceSpadType = is_aperture_spads;
03714     }
03715 
03716     return status;
03717 }
03718 
03719 VL53L0X_Error VL53L0X::VL53L0X_perform_ref_calibration( uint8_t *p_vhv_settings,
03720         uint8_t *p_phase_cal)
03721 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
03722     
03723     status = VL53L0X_perform_ref_calibration( p_vhv_settings, p_phase_cal, 1);
03724     
03725     return status;
03726 }
03727 
03728 VL53L0X_Error VL53L0X::VL53L0X_perform_ref_spad_management(uint32_t *ref_spad_count, uint8_t *is_aperture_spads)
03729 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
03730     
03731     status = wrapped_VL53L0X_perform_ref_spad_management( ref_spad_count,
03732              is_aperture_spads);
03733 
03734     return status;
03735 }
03736 
03737 /* Group PAL Init Functions */
03738 VL53L0X_Error VL53L0X::VL53L0X_set_device_address( uint8_t device_address)
03739 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
03740     
03741     status = VL53L0X_write_byte( VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS,
03742                                 device_address / 2);
03743     return status;
03744 }
03745 
03746 VL53L0X_Error VL53L0X::VL53L0X_set_gpio_config( uint8_t pin,
03747         VL53L0X_DeviceModes device_mode, VL53L0X_GpioFunctionality functionality,
03748         VL53L0X_InterruptPolarity polarity)
03749 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
03750     uint8_t data;
03751 
03752     if (pin != 0) {
03753         status = VL53L0X_ERROR_GPIO_NOT_EXISTING;
03754     } else if (device_mode == VL53L0X_DEVICEMODE_GPIO_DRIVE) {
03755         if (polarity == VL53L0X_INTERRUPTPOLARITY_LOW) {
03756             data = 0x10;
03757         } else {data = 1;}
03758 
03759         status = VL53L0X_write_byte(VL53L0X_REG_GPIO_HV_MUX_ACTIVE_HIGH, data);
03760 
03761     } else {
03762         if (device_mode == VL53L0X_DEVICEMODE_GPIO_OSC) {
03763 
03764             status |= VL53L0X_write_byte( 0xff, 0x01);
03765             status |= VL53L0X_write_byte( 0x00, 0x00);
03766             status |= VL53L0X_write_byte( 0xff, 0x00);
03767             status |= VL53L0X_write_byte( 0x80, 0x01);
03768             status |= VL53L0X_write_byte( 0x85, 0x02);
03769             status |= VL53L0X_write_byte( 0xff, 0x04);
03770             status |= VL53L0X_write_byte( 0xcd, 0x00);
03771             status |= VL53L0X_write_byte( 0xcc, 0x11);
03772             status |= VL53L0X_write_byte( 0xff, 0x07);
03773             status |= VL53L0X_write_byte( 0xbe, 0x00);
03774             status |= VL53L0X_write_byte( 0xff, 0x06);
03775             status |= VL53L0X_write_byte( 0xcc, 0x09);
03776             status |= VL53L0X_write_byte( 0xff, 0x00);
03777             status |= VL53L0X_write_byte( 0xff, 0x01);
03778             status |= VL53L0X_write_byte( 0x00, 0x00);
03779 
03780         } else {
03781 
03782             if (status == VL53L0X_ERROR_NONE) {
03783                 switch (functionality) {
03784                     case VL53L0X_GPIOFUNCTIONALITY_OFF:
03785                         data = 0x00;
03786                         break;
03787                     case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_LOW:
03788                         data = 0x01;
03789                         break;
03790                     case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_HIGH:
03791                         data = 0x02;
03792                         break;
03793                     case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_OUT:
03794                         data = 0x03;
03795                         break;
03796                     case VL53L0X_GPIOFUNCTIONALITY_NEW_MEASURE_READY:
03797                         data = 0x04;
03798                         break;
03799                     default:
03800                         status = VL53L0X_ERROR_GPIO_FUNCTIONALITY_NOT_SUPPORTED;
03801                 }
03802             }
03803 
03804             if (status == VL53L0X_ERROR_NONE) {
03805                 status = VL53L0X_write_byte(VL53L0X_REG_SYSTEM_INTERRUPT_CONFIG_GPIO, data);
03806             }
03807 
03808             if (status == VL53L0X_ERROR_NONE) {
03809                 if (polarity == VL53L0X_INTERRUPTPOLARITY_LOW) {
03810                     data = 0;
03811                 } else { data = (uint8_t)(1 << 4); }
03812                 status = VL53L0X_update_byte(VL53L0X_REG_GPIO_HV_MUX_ACTIVE_HIGH, 0xEF, data);
03813             }
03814 
03815             if (status == VL53L0X_ERROR_NONE) {
03816                 Data.Pin0GpioFunctionality = functionality;  }
03817 
03818             if (status == VL53L0X_ERROR_NONE) { status = VL53L0X_clear_interrupt_mask( 0); }
03819         }
03820     }
03821     return status;
03822 }
03823 
03824 VL53L0X_Error VL53L0X::VL53L0X_get_fraction_enable( uint8_t *p_enabled)
03825 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
03826     status = VL53L0X_read_byte( VL53L0X_REG_SYSTEM_RANGE_CONFIG, p_enabled);
03827     if (status == VL53L0X_ERROR_NONE) { *p_enabled = (*p_enabled & 1); }
03828     return status;
03829 }
03830 
03831 uint16_t VL53L0X::VL53L0X_encode_timeout (uint32_t timeout_macro_clks)
03832 { /*!Encode timeout in macro periods in (LSByte * 2^MSByte) + 1 format*/
03833 
03834     uint16_t encoded_timeout = 0;
03835     uint32_t ls_byte = 0;
03836     uint16_t ms_byte = 0;
03837 
03838     if (timeout_macro_clks > 0) {
03839         ls_byte = timeout_macro_clks - 1;
03840 
03841         while ((ls_byte & 0xFFFFFF00) > 0) {
03842             ls_byte = ls_byte >> 1;
03843             ms_byte++;
03844         }
03845         encoded_timeout = (ms_byte << 8) + (uint16_t)(ls_byte & 0x000000FF);
03846     }
03847     return encoded_timeout;
03848 }
03849 
03850 VL53L0X_Error VL53L0X::set_sequence_step_timeout(VL53L0X_SequenceStepId sequence_step_id,
03851         uint32_t timeout_micro_secs)
03852 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
03853     uint8_t current_vcsel_pulse_period_p_clk;
03854     uint8_t msrc_encoded_time_out;
03855     uint16_t pre_range_encoded_time_out;
03856     uint16_t pre_range_time_out_m_clks;
03857     uint16_t msrc_range_time_out_m_clks;
03858     uint32_t final_range_time_out_m_clks;
03859     uint16_t final_range_encoded_time_out;
03860     VL53L0X_SchedulerSequenceSteps_t scheduler_sequence_steps;
03861 
03862     if ((sequence_step_id == VL53L0X_SEQUENCESTEP_TCC)   ||
03863             (sequence_step_id == VL53L0X_SEQUENCESTEP_DSS)   ||
03864             (sequence_step_id == VL53L0X_SEQUENCESTEP_MSRC)) {
03865 
03866         status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
03867                                                 &current_vcsel_pulse_period_p_clk);
03868 
03869         if (status == VL53L0X_ERROR_NONE) {
03870             msrc_range_time_out_m_clks = VL53L0X_calc_timeout_mclks(timeout_micro_secs,
03871                                          (uint8_t)current_vcsel_pulse_period_p_clk);
03872 
03873             if (msrc_range_time_out_m_clks > 256) {
03874                 msrc_encoded_time_out = 255;
03875             } else {
03876                 msrc_encoded_time_out =
03877                     (uint8_t)msrc_range_time_out_m_clks - 1;
03878             }
03879             Data.LastEncodedTimeout = msrc_encoded_time_out;
03880         }
03881 
03882         if (status == VL53L0X_ERROR_NONE) {
03883             status = VL53L0X_write_byte(VL53L0X_REG_MSRC_CONFIG_TIMEOUT_MACROP,
03884                                         msrc_encoded_time_out);
03885         }
03886     } else {
03887 
03888         if (sequence_step_id == VL53L0X_SEQUENCESTEP_PRE_RANGE) {
03889 
03890             if (status == VL53L0X_ERROR_NONE) {
03891                 status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
03892                                                         &current_vcsel_pulse_period_p_clk);
03893                 pre_range_time_out_m_clks =
03894                     VL53L0X_calc_timeout_mclks(timeout_micro_secs,
03895                                                (uint8_t)current_vcsel_pulse_period_p_clk);
03896                 pre_range_encoded_time_out = VL53L0X_encode_timeout (pre_range_time_out_m_clks);
03897                 Data.LastEncodedTimeout = pre_range_encoded_time_out;
03898             }
03899 
03900             if (status == VL53L0X_ERROR_NONE) {
03901                 status = VL53L0X_write_word(VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
03902                                             pre_range_encoded_time_out);
03903             }
03904 
03905             if (status == VL53L0X_ERROR_NONE) {
03906                 Data.PreRangeTimeout_us = timeout_micro_secs;
03907             }
03908         } else if (sequence_step_id == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {
03909 
03910             /* For the final range timeout, the pre-range timeout
03911              * must be added. To do this both final and pre-range
03912              * timeouts must be expressed in macro periods MClks
03913              * because they have different vcsel periods. */
03914 
03915             VL53L0X_get_sequence_step_enables(&scheduler_sequence_steps);
03916             pre_range_time_out_m_clks = 0;
03917             if (scheduler_sequence_steps.PreRangeOn) {
03918 
03919                 /* Retrieve PRE-RANGE VCSEL Period */
03920                 status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
03921                                                         &current_vcsel_pulse_period_p_clk);
03922 
03923                 /* Retrieve PRE-RANGE Timeout in Macro periods
03924                  * (MCLKS) */
03925                 if (status == VL53L0X_ERROR_NONE) {
03926                     status = VL53L0X_read_word( 0x51, &pre_range_encoded_time_out);
03927                     pre_range_time_out_m_clks =
03928                         VL53L0X_decode_timeout ( pre_range_encoded_time_out);
03929                 }
03930             }
03931 
03932             /* Calculate FINAL RANGE Timeout in Macro Periods
03933              * (MCLKS) and add PRE-RANGE value
03934              */
03935             if (status == VL53L0X_ERROR_NONE) {
03936                 status = VL53L0X_get_vcsel_pulse_period( VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
03937                                                         &current_vcsel_pulse_period_p_clk);
03938             }
03939             if (status == VL53L0X_ERROR_NONE) {
03940                 final_range_time_out_m_clks =
03941                     VL53L0X_calc_timeout_mclks( timeout_micro_secs,
03942                                                (uint8_t) current_vcsel_pulse_period_p_clk);
03943 
03944                 final_range_time_out_m_clks += pre_range_time_out_m_clks;
03945                 final_range_encoded_time_out =
03946                     VL53L0X_encode_timeout (final_range_time_out_m_clks);
03947 
03948                 if (status == VL53L0X_ERROR_NONE) {
03949                     status = VL53L0X_write_word( 0x71, final_range_encoded_time_out);
03950                 }
03951 
03952                 if (status == VL53L0X_ERROR_NONE) {
03953                     Data.FinalRangeTimeout_us = timeout_micro_secs;
03954                 }
03955             }
03956         } else {
03957             status = VL53L0X_ERROR_INVALID_PARAMS;
03958         }
03959     }
03960     return status;
03961 }
03962 
03963 VL53L0X_Error VL53L0X::wrapped_VL53L0X_set_measurement_timing_budget_us(uint32_t measurement_timing_budget_us)
03964 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
03965     uint32_t final_range_timing_budget_us;
03966     VL53L0X_SchedulerSequenceSteps_t scheduler_sequence_steps;
03967     uint32_t msrc_dcc_tcc_timeout_us    = 2000;
03968     uint32_t start_overhead_us      = 1910;
03969     uint32_t end_overhead_us        = 960;
03970     uint32_t msrc_overhead_us       = 660;
03971     uint32_t tcc_overhead_us        = 590;
03972     uint32_t dss_overhead_us        = 690;
03973     uint32_t pre_range_overhead_us  = 660;
03974     uint32_t final_range_overhead_us = 550;
03975     uint32_t pre_range_timeout_us   = 0;
03976     uint32_t c_min_timing_budget_us = 20000;
03977     uint32_t sub_timeout = 0;
03978 
03979     if (measurement_timing_budget_us < c_min_timing_budget_us) 
03980         { status = VL53L0X_ERROR_INVALID_PARAMS;
03981           return status; 
03982         }
03983 
03984     final_range_timing_budget_us =
03985         measurement_timing_budget_us - (start_overhead_us + end_overhead_us);
03986 
03987     status = VL53L0X_get_sequence_step_enables( &scheduler_sequence_steps);
03988 
03989     if (status == VL53L0X_ERROR_NONE &&
03990             (scheduler_sequence_steps.TccOn  ||
03991              scheduler_sequence_steps.MsrcOn ||
03992              scheduler_sequence_steps.DssOn)) {
03993 
03994         /* TCC, MSRC and DSS all share the same timeout */
03995         status = get_sequence_step_timeout( VL53L0X_SEQUENCESTEP_MSRC,
03996                                            &msrc_dcc_tcc_timeout_us);
03997 
03998         /* Subtract the TCC, MSRC and DSS timeouts if they are
03999          * enabled. */
04000 
04001         if (status != VL53L0X_ERROR_NONE) {
04002             return status;
04003         }
04004 
04005         /* TCC */
04006         if (scheduler_sequence_steps.TccOn) {
04007 
04008             sub_timeout = msrc_dcc_tcc_timeout_us
04009                           + tcc_overhead_us;
04010 
04011             if (sub_timeout <
04012                     final_range_timing_budget_us) {
04013                 final_range_timing_budget_us -=
04014                     sub_timeout;
04015             } else {
04016                 /* Requested timeout too big. */
04017                 status = VL53L0X_ERROR_INVALID_PARAMS;
04018             }
04019         }
04020 
04021         if (status != VL53L0X_ERROR_NONE) {return status;}
04022 
04023         /* DSS */
04024         if (scheduler_sequence_steps.DssOn) {
04025 
04026             sub_timeout = 2 * (msrc_dcc_tcc_timeout_us +
04027                                dss_overhead_us);
04028 
04029             if (sub_timeout < final_range_timing_budget_us) {
04030                 final_range_timing_budget_us
04031                 -= sub_timeout;
04032             } else {
04033                 /* Requested timeout too big. */
04034                 status = VL53L0X_ERROR_INVALID_PARAMS;
04035             }
04036         } else if (scheduler_sequence_steps.MsrcOn) {
04037             /* MSRC */
04038             sub_timeout = msrc_dcc_tcc_timeout_us +
04039                           msrc_overhead_us;
04040 
04041             if (sub_timeout < final_range_timing_budget_us) {
04042                 final_range_timing_budget_us
04043                 -= sub_timeout;
04044             } else {
04045                 /* Requested timeout too big. */
04046                 status = VL53L0X_ERROR_INVALID_PARAMS;
04047             }
04048         }
04049     }
04050 
04051     if (status != VL53L0X_ERROR_NONE) { return status; }
04052 
04053     if (scheduler_sequence_steps.PreRangeOn) {
04054 
04055         /* Subtract the Pre-range timeout if enabled. */
04056 
04057         status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,
04058                                            &pre_range_timeout_us);
04059 
04060         sub_timeout = pre_range_timeout_us +
04061                       pre_range_overhead_us;
04062 
04063         if (sub_timeout < final_range_timing_budget_us) {
04064             final_range_timing_budget_us -= sub_timeout;
04065         } else {
04066             /* Requested timeout too big. */
04067             status = VL53L0X_ERROR_INVALID_PARAMS;
04068         }
04069     }
04070 
04071     if (status == VL53L0X_ERROR_NONE &&
04072             scheduler_sequence_steps.FinalRangeOn) {
04073 
04074         final_range_timing_budget_us -=
04075             final_range_overhead_us;
04076 
04077         /* Final Range Timeout
04078          * Note that the final range timeout is determined by the timing
04079          * budget and the sum of all other timeouts within the sequence.
04080          * If there is no room for the final range timeout, then an error
04081          * will be set. Otherwise the remaining time will be applied to
04082          * the final range.
04083          */
04084         status = set_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,
04085                                            final_range_timing_budget_us);
04086         CurrentParameters .MeasurementTimingBudget_us  = measurement_timing_budget_us;
04087     }
04088 
04089     return status;
04090 }
04091 
04092 VL53L0X_Error VL53L0X::VL53L0X_set_measurement_timing_budget_us(uint32_t measurement_timing_budget_us)
04093 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
04094     status = wrapped_VL53L0X_set_measurement_timing_budget_us(measurement_timing_budget_us);
04095     return status;
04096 }
04097 
04098 VL53L0X_Error VL53L0X::VL53L0X_set_sequence_step_enable(VL53L0X_SequenceStepId sequence_step_id, uint8_t sequence_step_enabled)
04099 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
04100     uint8_t sequence_config = 0;
04101     uint8_t sequence_config_new = 0;
04102     uint32_t measurement_timing_budget_us;
04103     
04104     status = VL53L0X_read_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &sequence_config);
04105 
04106     sequence_config_new = sequence_config;
04107 
04108     if (status == VL53L0X_ERROR_NONE) {
04109         if (sequence_step_enabled == 1) {
04110 
04111             /* Enable requested sequence step
04112              */
04113             switch (sequence_step_id) {
04114                 case VL53L0X_SEQUENCESTEP_TCC:
04115                     sequence_config_new |= 0x10;
04116                     break;
04117                 case VL53L0X_SEQUENCESTEP_DSS:
04118                     sequence_config_new |= 0x28;
04119                     break;
04120                 case VL53L0X_SEQUENCESTEP_MSRC:
04121                     sequence_config_new |= 0x04;
04122                     break;
04123                 case VL53L0X_SEQUENCESTEP_PRE_RANGE:
04124                     sequence_config_new |= 0x40;
04125                     break;
04126                 case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
04127                     sequence_config_new |= 0x80;
04128                     break;
04129                 default:
04130                     status = VL53L0X_ERROR_INVALID_PARAMS;
04131             }
04132         } else {
04133             /* Disable requested sequence step */
04134             switch (sequence_step_id) {
04135                 case VL53L0X_SEQUENCESTEP_TCC:
04136                     sequence_config_new &= 0xef;
04137                     break;
04138                 case VL53L0X_SEQUENCESTEP_DSS:
04139                     sequence_config_new &= 0xd7;
04140                     break;
04141                 case VL53L0X_SEQUENCESTEP_MSRC:
04142                     sequence_config_new &= 0xfb;
04143                     break;
04144                 case VL53L0X_SEQUENCESTEP_PRE_RANGE:
04145                     sequence_config_new &= 0xbf;
04146                     break;
04147                 case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
04148                     sequence_config_new &= 0x7f;
04149                     break;
04150                 default:
04151                     status = VL53L0X_ERROR_INVALID_PARAMS;
04152             }
04153         }
04154     }
04155 
04156     if (sequence_config_new != sequence_config) {
04157         /* Apply New Setting */
04158         if (status == VL53L0X_ERROR_NONE) {
04159             status = VL53L0X_write_byte(VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, sequence_config_new);
04160         }
04161         if (status == VL53L0X_ERROR_NONE) {
04162             Data.SequenceConfig = sequence_config_new;}
04163 
04164         /* Recalculate timing budget */
04165         if (status == VL53L0X_ERROR_NONE) {
04166             measurement_timing_budget_us = CurrentParameters .MeasurementTimingBudget_us  ;
04167             VL53L0X_set_measurement_timing_budget_us(measurement_timing_budget_us);
04168         }
04169     }
04170 
04171     return status;
04172 }
04173 
04174 VL53L0X_Error VL53L0X::VL53L0X_set_limit_check_enable( uint16_t limit_check_id,
04175         uint8_t limit_check_enable)
04176 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
04177     FixPoint1616_t temp_fix1616 = 0;
04178     uint8_t limit_check_enable_int = 0;
04179     uint8_t limit_check_disable = 0;
04180     uint8_t temp8;
04181 
04182     if (limit_check_id >= VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS) {
04183         status = VL53L0X_ERROR_INVALID_PARAMS;
04184     } else {
04185         if (limit_check_enable == 0) {
04186             temp_fix1616 = 0;
04187             limit_check_enable_int = 0;
04188             limit_check_disable = 1;
04189         } else {
04190             temp_fix1616 = CurrentParameters .LimitChecksValue [limit_check_id];
04191             limit_check_disable = 0;
04192             /* this to be sure to have either 0 or 1 */
04193             limit_check_enable_int = 1;
04194         }
04195 
04196         switch (limit_check_id) {
04197 
04198             case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
04199                 /* internal computation: */
04200                 CurrentParameters .LimitChecksEnable [VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE] = limit_check_enable_int;
04201                 break;
04202 
04203             case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
04204                 status = VL53L0X_write_word( VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
04205                                             VL53L0X_FP1616TOFP97(temp_fix1616));
04206                 break;
04207 
04208             case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:/* internal computation: */
04209                 CurrentParameters .LimitChecksEnable [VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP] = limit_check_enable_int;
04210                 break;
04211 
04212             case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:/* internal computation: */
04213                 CurrentParameters .LimitChecksEnable [VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD] = limit_check_enable_int;
04214                 break;
04215 
04216             case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
04217                 temp8 = (uint8_t)(limit_check_disable << 1);
04218                 status = VL53L0X_update_byte(VL53L0X_REG_MSRC_CONFIG_CONTROL,
04219                                              0xFE, temp8);
04220                 break;
04221 
04222             case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
04223 
04224                 temp8 = (uint8_t)(limit_check_disable << 4);
04225                 status = VL53L0X_update_byte(VL53L0X_REG_MSRC_CONFIG_CONTROL,
04226                                              0xEF, temp8);
04227                 break;
04228 
04229             default:
04230                 status = VL53L0X_ERROR_INVALID_PARAMS;
04231         }
04232     }
04233 
04234     if (status == VL53L0X_ERROR_NONE) {
04235         if (limit_check_enable == 0) {
04236             CurrentParameters .LimitChecksEnable [limit_check_id] = 0;
04237         } else {
04238             CurrentParameters .LimitChecksEnable [limit_check_id] = 1;
04239         }
04240     }
04241     return status;
04242 }
04243 
04244 VL53L0X_Error VL53L0X::VL53L0X_static_init(void)
04245 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
04246     VL53L0X_DeviceParameters_t current_parameters = {0};
04247     uint8_t *p_tuning_setting_buffer;
04248     uint16_t tempword = 0;
04249     uint8_t tempbyte = 0;
04250     uint8_t use_internal_tuning_settings = 0;
04251     uint32_t count = 0;
04252     uint8_t is_aperture_spads = 0;
04253     uint32_t ref_spad_count = 0;
04254     uint8_t aperture_spads = 0;
04255     uint8_t vcsel_pulse_period_pclk;
04256     uint32_t seq_timeout_micro_secs;
04257 
04258     status = VL53L0X_get_info_from_device( 1);
04259 
04260     /* set the ref spad from NVM */
04261     count   = (uint32_t)Data.ReferenceSpadCount;
04262     aperture_spads = Data.ReferenceSpadType;
04263 
04264     /* NVM value invalid */
04265     if ((aperture_spads > 1) ||
04266             ((aperture_spads == 1) && (count > 32)) ||
04267             ((aperture_spads == 0) && (count > 12))) {
04268         status = wrapped_VL53L0X_perform_ref_spad_management( &ref_spad_count,
04269                  &is_aperture_spads);
04270     } else {
04271         status = VL53L0X_set_reference_spads( count, aperture_spads);
04272     }
04273 
04274     /* Initialize tuning settings buffer to prevent compiler warning. */
04275     p_tuning_setting_buffer = DefaultTuningSettings;
04276 
04277     if (status == VL53L0X_ERROR_NONE) {
04278         use_internal_tuning_settings = Data.UseInternalTuningSettings;
04279 
04280         if (use_internal_tuning_settings == 0) {
04281             p_tuning_setting_buffer = Data.pTuningSettingsPointer; }
04282          else { p_tuning_setting_buffer = DefaultTuningSettings; }
04283 
04284     }
04285 
04286     if (status == VL53L0X_ERROR_NONE) {
04287         status = VL53L0X_load_tuning_settings( p_tuning_setting_buffer); }
04288 
04289     /* Set interrupt config to new sample ready */
04290     if (status == VL53L0X_ERROR_NONE) {
04291         status = VL53L0X_set_gpio_config( 0, 0,
04292                                          VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY,
04293                                          VL53L0X_INTERRUPTPOLARITY_LOW);
04294     }
04295 
04296     if (status == VL53L0X_ERROR_NONE) {
04297         status  = VL53L0X_write_byte( 0xFF, 0x01);
04298         status |= VL53L0X_read_word ( 0x84, &tempword);
04299         status |= VL53L0X_write_byte( 0xFF, 0x00);
04300     }
04301 
04302     if (status == VL53L0X_ERROR_NONE) {
04303          Data.OscFrequency_MHz = VL53L0X_FP412TOFP1616(tempword) ;
04304     }
04305 
04306     /* After static init, some device parameters may be changed,
04307      * so update them */
04308     if (status == VL53L0X_ERROR_NONE) {
04309         status = VL53L0X_get_device_parameters( &current_parameters);
04310     }
04311 
04312     if (status == VL53L0X_ERROR_NONE) {
04313         status = VL53L0X_get_fraction_enable( &tempbyte);
04314         if (status == VL53L0X_ERROR_NONE) {
04315             Data.RangeFractionalEnable = tempbyte;
04316         }
04317     }
04318 
04319     if (status == VL53L0X_ERROR_NONE) {
04320         CurrentParameters  = current_parameters;
04321     }
04322 
04323     /* read the sequence config and save it */
04324     if (status == VL53L0X_ERROR_NONE) {
04325         status = VL53L0X_read_byte(VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &tempbyte);
04326         if (status == VL53L0X_ERROR_NONE) {
04327             Data.SequenceConfig = tempbyte;
04328         }
04329     }
04330 
04331     /* Disable MSRC and TCC by default */
04332     if (status == VL53L0X_ERROR_NONE) {
04333         status = VL53L0X_set_sequence_step_enable(VL53L0X_SEQUENCESTEP_TCC, 0);
04334     }
04335 
04336     if (status == VL53L0X_ERROR_NONE) {
04337         status = VL53L0X_set_sequence_step_enable(VL53L0X_SEQUENCESTEP_MSRC, 0);
04338     }
04339 
04340     /* Set PAL State to standby */
04341     if (status == VL53L0X_ERROR_NONE) {
04342         Data.PalState = VL53L0X_STATE_IDLE;
04343     }
04344 
04345     /* Store pre-range vcsel period */
04346     if (status == VL53L0X_ERROR_NONE) {
04347         status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,&vcsel_pulse_period_pclk);
04348     }
04349 
04350     if (status == VL53L0X_ERROR_NONE) {
04351         Data.PreRangeVcselPulsePeriod = vcsel_pulse_period_pclk;
04352     }
04353 
04354     /* Store final-range vcsel period */
04355     if (status == VL53L0X_ERROR_NONE) {
04356         status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
04357                      &vcsel_pulse_period_pclk);
04358     }
04359 
04360     if (status == VL53L0X_ERROR_NONE) {
04361         Data.FinalRangeVcselPulsePeriod = vcsel_pulse_period_pclk;
04362     }
04363 
04364     /* Store pre-range timeout */
04365     if (status == VL53L0X_ERROR_NONE) {
04366         status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,&seq_timeout_micro_secs);
04367     }
04368 
04369     if (status == VL53L0X_ERROR_NONE) {
04370         Data.PreRangeTimeout_us = seq_timeout_micro_secs;
04371     }
04372 
04373     /* Store final-range timeout */
04374     if (status == VL53L0X_ERROR_NONE) {
04375         status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,&seq_timeout_micro_secs);
04376     }
04377 
04378     if (status == VL53L0X_ERROR_NONE) {
04379         Data.FinalRangeTimeout_us = seq_timeout_micro_secs;
04380     }
04381     return status;
04382 }
04383 
04384 VL53L0X_Error VL53L0X::VL53L0X_stop_measurement(void)
04385 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
04386 
04387     status = VL53L0X_write_byte( VL53L0X_REG_SYSRANGE_START,
04388                                 VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT);
04389     status = VL53L0X_write_byte( 0xFF, 0x01);
04390     status = VL53L0X_write_byte( 0x00, 0x00);
04391     status = VL53L0X_write_byte( 0x91, 0x00);
04392     status = VL53L0X_write_byte( 0x00, 0x01);
04393     status = VL53L0X_write_byte( 0xFF, 0x00);
04394 
04395     if (status == VL53L0X_ERROR_NONE) {
04396         /* Set PAL State to Idle */
04397         Data.PalState = VL53L0X_STATE_IDLE;
04398     }
04399 
04400     /* Check if need to apply interrupt settings */
04401     if (status == VL53L0X_ERROR_NONE) {
04402         status = VL53L0X_check_and_load_interrupt_settings( 0);
04403     }
04404     return status;
04405 }
04406 
04407 VL53L0X_Error VL53L0X::VL53L0X_get_stop_completed_status(uint32_t *p_stop_status)
04408 {   VL53L0X_Error status = VL53L0X_ERROR_NONE;
04409     uint8_t byte = 0;
04410     
04411 
04412     status = VL53L0X_write_byte( 0xFF, 0x01);
04413 
04414     if (status == VL53L0X_ERROR_NONE) {
04415         status = VL53L0X_read_byte( 0x04, &byte);}
04416 
04417     if (status == VL53L0X_ERROR_NONE) {
04418         status = VL53L0X_write_byte( 0xFF, 0x0); }
04419 
04420     *p_stop_status = byte;
04421 
04422     if (byte == 0) {
04423         status = VL53L0X_write_byte( 0x80, 0x01);
04424         status = VL53L0X_write_byte( 0xFF, 0x01);
04425         status = VL53L0X_write_byte( 0x00, 0x00);
04426         status = VL53L0X_write_byte( 0x91,Data.StopVariable);
04427         status = VL53L0X_write_byte( 0x00, 0x01);
04428         status = VL53L0X_write_byte( 0xFF, 0x00);
04429         status = VL53L0X_write_byte( 0x80, 0x00);
04430     }
04431     return status;
04432 }
04433 
04434 /******************************************************************************/
04435 
04436 /****************** Write and read functions from I2C *************************/
04437 
04438 VL53L0X_Error VL53L0X::VL53L0X_read_multi( uint8_t index, uint8_t *p_data, uint32_t count)
04439 {   if (count >= VL53L0X_MAX_I2C_XFER_SIZE) {
04440         return VL53L0X_ERROR_INVALID_PARAMS;}
04441     else { return VL53L0X_i2c_read(index, p_data, (uint16_t)count); }
04442 }
04443 
04444 VL53L0X_Error VL53L0X::VL53L0X_write_byte( uint8_t index, uint8_t data)
04445 {   return VL53L0X_i2c_write(index, &data, 1);
04446 }
04447 
04448 VL53L0X_Error VL53L0X::VL53L0X_write_word( uint8_t index, uint16_t data)
04449 {   int  status;
04450     uint8_t buffer[2];
04451 
04452     buffer[0] = data >> 8;
04453     buffer[1] = data & 0x00FF;
04454     status = VL53L0X_i2c_write(index, (uint8_t *)buffer, 2);
04455     return status;
04456 }
04457 
04458 VL53L0X_Error VL53L0X::VL53L0X_write_dword( uint8_t index, uint32_t data)
04459 {   int  status;
04460     uint8_t buffer[4];
04461 
04462     buffer[0] = (data >> 24) & 0xFF;
04463     buffer[1] = (data >> 16) & 0xFF;
04464     buffer[2] = (data >>  8) & 0xFF;
04465     buffer[3] = (data >>  0) & 0xFF;
04466     status = VL53L0X_i2c_write(index, (uint8_t *)buffer, 4);
04467     return status;
04468 }
04469 
04470 VL53L0X_Error VL53L0X::VL53L0X_read_byte( uint8_t index, uint8_t *p_data)
04471 {   return VL53L0X_i2c_read(index, p_data, 1); }
04472 
04473 VL53L0X_Error VL53L0X::VL53L0X_read_word( uint8_t index, uint16_t *p_data)
04474 {   int  status;
04475     uint8_t buffer[2] = {0, 0};
04476 
04477     status = VL53L0X_i2c_read(index, buffer, 2);
04478     if (!status) {*p_data = (buffer[0] << 8) + buffer[1];}
04479     return status;
04480 }
04481 
04482 VL53L0X_Error VL53L0X::VL53L0X_read_dword( uint8_t index, uint32_t *p_data)
04483 {   int status;
04484     uint8_t buffer[4] = {0, 0, 0, 0};
04485 
04486     status = VL53L0X_i2c_read(index, buffer, 4);
04487     if (!status) { *p_data = (buffer[0] << 24) + (buffer[1] << 16) + (buffer[2] << 8) + buffer[3]; }
04488     return status;
04489 }
04490 
04491 VL53L0X_Error VL53L0X::VL53L0X_update_byte( uint8_t index, uint8_t and_data, uint8_t or_data)
04492 {   int  status;
04493     uint8_t buffer = 0;
04494 
04495     /* read data direct onto buffer */
04496     status = VL53L0X_i2c_read(index, &buffer, 1);
04497     if (!status) {
04498         buffer = (buffer & and_data) | or_data;
04499         status = VL53L0X_i2c_write(index, &buffer, (uint8_t)1);
04500     }
04501     return status;
04502 }
04503 
04504 VL53L0X_Error VL53L0X::VL53L0X_i2c_write(uint8_t RegisterAddr, uint8_t *p_data,
04505         uint16_t NumByteToWrite)
04506 {   /** Writes a buffer towards the I2C peripheral device.  */
04507     static  uint8_t tmp[VL53L0X_MAX_I2C_XFER_SIZE];
04508 
04509     if(NumByteToWrite >= VL53L0X_MAX_I2C_XFER_SIZE) return -2;
04510 
04511     /* First, send device address. Then, send data and STOP condition */
04512     tmp[0] = RegisterAddr;
04513     memcpy(tmp+1, p_data, NumByteToWrite);
04514 
04515     if (_dev_i2c->write(I2cDevAddr , (const char*)tmp, NumByteToWrite+1, false) != 0 ) 
04516         {  return -1;  }
04517     return 0;
04518 }
04519 
04520 VL53L0X_Error VL53L0X::VL53L0X_i2c_read(uint8_t RegisterAddr, uint8_t *p_data, uint16_t NumByteToRead)
04521 {   /** Reads a buffer from the I2C peripheral device.  */
04522 
04523     /* First Send device address, with no STOP condition */
04524     int ret = _dev_i2c->write(I2cDevAddr , (const char*)&RegisterAddr, 1, true);
04525 
04526     /* all ok ? then Read data, with STOP condition  */
04527     if (ret == 0) { ret = _dev_i2c->read(I2cDevAddr , (char*)p_data, NumByteToRead, false); }
04528     
04529     if (ret != 0 ){ return -1; }
04530     return 0;
04531 }
04532