Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FreescaleIAP SimpleDMA mbed-rtos mbed
Fork of CDMS_CODE by
cdms_sd.h
00001 //SPI spi(PTE1, PTE3, PTE2); // MOSI,MISO, CLOCK microcontroller(in order) 00002 //DigitalOut cs_sd(PTE22); 00003 00004 //Serial sd1(USBTX,USBRX); 00005 00006 00007 #define SD_COMMAND_TIMEOUT 325 00008 00009 #define SD_DBG 0 00010 00011 #define R1_IDLE_STATE (1 << 0) 00012 #define R1_ERASE_RESET (1 << 1) 00013 #define R1_ILLEGAL_COMMAND (1 << 2) 00014 #define R1_COM_CRC_ERROR (1 << 3) 00015 #define R1_ERASE_SEQUENCE_ERROR (1 << 4) 00016 #define R1_ADDRESS_ERROR (1 << 5) 00017 #define R1_PARAMETER_ERROR (1 << 6) 00018 00019 00020 00021 #define SD_MAX_CYCLES 10000 00022 00023 uint32_t SD_SCP_FIRST=1001; 00024 uint32_t SD_SCP_LAST=2000; 00025 uint32_t SD_SFF_AT_FIRST=2001; 00026 uint32_t SD_SFF_AT_LAST = 3000; 00027 uint32_t SD_SFF_BT_FIRST =3001; 00028 uint32_t SD_SFF_BT_LAST=4000; 00029 uint32_t SD_HK_ARCH_FIRST=4001; 00030 uint32_t SD_HK_ARCH_LAST= 5000; 00031 uint32_t LOG_FIRST =5001; 00032 uint32_t LOG_LAST=6000; 00033 uint32_t SD_MNG_SECT = 8000; 00034 00035 extern uint8_t SD_INIT_FLAGS; 00036 00037 int initialise_card(); 00038 int initialise_card_v1(); 00039 int initialise_card_v2(); 00040 int disk_write(const uint8_t *, uint64_t); 00041 int disk_read(uint8_t *, uint64_t); 00042 int disk_erase(int,int); 00043 int disk_read_statusbits(uint8_t *); 00044 00045 void FCTN_SD_MNGR(); 00046 int INCREMENT_SD_LIB(uint8_t); 00047 00048 00049 int cmd(int, int); 00050 int cmd58(); 00051 int cmdx(int, int); 00052 int cmd8(); 00053 int read(uint8_t*, uint32_t ); 00054 int write(const uint8_t*, uint32_t ); 00055 static uint32_t ext_bits(unsigned char *, int , int ); 00056 int SD_WRITE(uint8_t*,uint32_t,uint8_t); 00057 int FCTN_CDMS_SD_INIT(); 00058 uint8_t SD_READ(uint8_t*,uint32_t,uint8_t); 00059 #define SDCARD_FAIL 4 00060 #define SDCARD_V1 1 00061 #define SDCARD_V2 2 00062 #define SDCARD_V2HC 3 00063 00064 int cdv; 00065 uint64_t sd_sectors(); 00066 uint64_t sectors; 00067 00068 int FCTN_CDMS_SD_INIT() 00069 { 00070 int i = initialise_card(); 00071 if( i == 4) 00072 return 4; 00073 debug_if(SD_DBG, "init card = %d\n", i); 00074 sectors = sd_sectors(); 00075 00076 // Set block length to 512 (CMD16) 00077 if (cmd(16, 512) != 0) { 00078 debug("\rSet 512-byte block timed out\r\n"); 00079 return 1; 00080 } else { 00081 //printf("\rDisk initialization successfull\r\n"); 00082 } 00083 SD_STATUS = DEVICE_POWERED; 00084 spi.frequency(1000000); // Set to 1MHz for data transfer 00085 return 0; 00086 } 00087 00088 void FCTN_SD_MNGR() 00089 { 00090 uint32_t fsc; 00091 uint32_t start_fsc; 00092 uint8_t buffer[512]; 00093 int b; 00094 if(SD_STATUS == DEVICE_POWERED){ 00095 b=disk_read(buffer, SD_MNG_SECT); 00096 00097 fsc=(uint32_t)(buffer[0]<<24)+(uint32_t)(buffer[1]<<16)+(uint32_t)(buffer[2]<<8)+(uint32_t)buffer[3]; 00098 start_fsc=(uint32_t)(buffer[4]<<24)+(uint32_t)(buffer[5]<<16)+(uint32_t)(buffer[6]<<8)+(uint32_t)buffer[7]; 00099 FSC_CURRENT[1] = fsc; 00100 FSC_OLD[1] = start_fsc; 00101 00102 fsc=(uint32_t)(buffer[8]<<24)+(uint32_t)(buffer[9]<<16)+(uint32_t)(buffer[10]<<8)+(uint32_t)buffer[11]; 00103 start_fsc=(uint32_t)(buffer[12]<<24)+(uint32_t)(buffer[13]<<16)+(uint32_t)(buffer[14]<<8)+(uint32_t)buffer[15]; 00104 FSC_CURRENT[2] = fsc; 00105 FSC_OLD[2] = start_fsc; 00106 00107 fsc=(uint32_t)(buffer[16]<<24)+(uint32_t)(buffer[17]<<16)+(uint32_t)(buffer[18]<<8)+(uint32_t)buffer[19]; 00108 start_fsc=(uint32_t)(buffer[20]<<24)+(uint32_t)(buffer[21]<<16)+(uint32_t)(buffer[22]<<8)+(uint32_t)buffer[23]; 00109 FSC_CURRENT[3] = fsc; 00110 FSC_OLD[3] = start_fsc; 00111 00112 fsc=(uint32_t)(buffer[24]<<24)+(uint32_t)(buffer[25]<<16)+(uint32_t)(buffer[26]<<8)+(uint32_t)buffer[27]; 00113 start_fsc=(uint32_t)(buffer[28]<<24)+(uint32_t)(buffer[29]<<16)+(uint32_t)(buffer[30]<<8)+(uint32_t)buffer[31]; 00114 FSC_CURRENT[4] = fsc; 00115 FSC_OLD[4] = start_fsc; 00116 00117 fsc=(uint32_t)(buffer[32]<<24)+(uint32_t)(buffer[33]<<16)+(uint32_t)(buffer[34]<<8)+(uint32_t)buffer[35]; 00118 start_fsc=(uint32_t)(buffer[36]<<24)+(uint32_t)(buffer[37]<<16)+(uint32_t)(buffer[38]<<8)+(uint32_t)buffer[39]; 00119 FSC_CURRENT[5] = fsc; 00120 FSC_OLD[5] = start_fsc; 00121 } 00122 } 00123 00124 int INCREMENT_SD_LIB(uint8_t sid) 00125 { 00126 uint32_t fsc; 00127 uint32_t start_fsc; 00128 int i; 00129 uint8_t buffer[512]; 00130 00131 disk_read(buffer,SD_MNG_SECT); 00132 SD_MNG_SECT += SD_LIB_WRITES/(int)0xFFFF; 00133 if(SD_MNG_SECT != SD_LIB_BLK_CURRENT) 00134 { 00135 SD_LIB_BLK_CURRENT = SD_MNG_SECT; 00136 FCTN_CDMS_WR_FLASH(16,SD_LIB_BLK_CURRENT); 00137 } 00138 SD_LIB_WRITES = SD_LIB_WRITES%(int)0xFFFF; 00139 disk_write(buffer,SD_MNG_SECT); 00140 // gPC.printf("in increment_SD_LIB = %d, %d,%d\n\r", FSC_CURRENT[1],FSC_CURRENT[2],FSC_CURRENT[3]); 00141 // SD_MNG_SECT += SD_LIB_WRITES/(int)0xFFFF; 00142 // SD_LIB_WRITES = SD_LIB_WRITES%(int)0xFFFF; 00143 00144 disk_read(buffer,SD_MNG_SECT); 00145 if(sid==0x01) 00146 { 00147 fsc=(uint32_t)(buffer[0]<<24)+(uint32_t)(buffer[1]<<16)+(uint32_t)(buffer[2]<<8)+(uint32_t)buffer[3]; 00148 start_fsc=(uint32_t)(buffer[4]<<24)+(uint32_t)(buffer[5]<<16)+(uint32_t)(buffer[6]<<8)+(uint32_t)buffer[7]; 00149 fsc++; 00150 buffer[0]=(uint8_t) (fsc>>24 & 0xFF); 00151 buffer[1]=(uint8_t) (fsc>>16 & 0xFF); 00152 buffer[2]=(uint8_t) (fsc>>8 & 0xFF); 00153 buffer[3]=(uint8_t) (fsc & 0xFF); 00154 if(fsc > SD_SCP_LAST-SD_SCP_FIRST+1) 00155 { 00156 start_fsc = start_fsc+1; 00157 buffer[4]=(uint8_t) (start_fsc>>24 & 0xFF); 00158 buffer[5]=(uint8_t) (start_fsc>>16 & 0xFF); 00159 buffer[6]=(uint8_t) (start_fsc>>8 & 0xFF); 00160 buffer[7]=(uint8_t) (start_fsc & 0xFF); 00161 } 00162 00163 i = disk_write(buffer,SD_MNG_SECT); 00164 if(i == 0) 00165 { 00166 FSC_CURRENT[1] = fsc; 00167 FSC_OLD[1] = start_fsc; 00168 return i; 00169 } 00170 } 00171 if(sid==0x02) 00172 { 00173 fsc=(uint32_t)(buffer[8]<<24)+(uint32_t)(buffer[9]<<16)+(uint32_t)(buffer[10]<<8)+(uint32_t)buffer[11]; 00174 start_fsc=(uint32_t)(buffer[12]<<24)+(uint32_t)(buffer[13]<<16)+(uint32_t)(buffer[14]<<8)+(uint32_t)buffer[15]; 00175 fsc++; 00176 buffer[8]=(uint8_t) (fsc>>24 & 0xFF); 00177 buffer[9]=(uint8_t) (fsc>>16 & 0xFF); 00178 buffer[10]=(uint8_t) (fsc>>8 & 0xFF); 00179 buffer[11]=(uint8_t) (fsc & 0xFF); 00180 if(fsc > SD_SFF_AT_LAST-SD_SFF_AT_FIRST+1) 00181 { 00182 start_fsc = start_fsc+1; 00183 buffer[12]=(uint8_t) (start_fsc>>24 & 0xFF); 00184 buffer[13]=(uint8_t) (start_fsc>>16 & 0xFF); 00185 buffer[14]=(uint8_t) (start_fsc>>8 & 0xFF); 00186 buffer[15]=(uint8_t) (start_fsc & 0xFF); 00187 } 00188 i = disk_write(buffer,SD_MNG_SECT); 00189 if(i == 0) 00190 { 00191 FSC_CURRENT[2] = fsc; 00192 FSC_OLD[2] = start_fsc; 00193 return i; 00194 } 00195 } 00196 if(sid==0x03) 00197 { 00198 fsc=(uint32_t)(buffer[16]<<24)+(uint32_t)(buffer[17]<<16)+(uint32_t)(buffer[18]<<8)+(uint32_t)buffer[19]; 00199 start_fsc=(uint32_t)(buffer[20]<<24)+(uint32_t)(buffer[21]<<16)+(uint32_t)(buffer[22]<<8)+(uint32_t)buffer[23]; 00200 fsc++; 00201 buffer[16]=(uint8_t) (fsc>>24 & 0xFF); 00202 buffer[17]=(uint8_t) (fsc>>16 & 0xFF); 00203 buffer[18]=(uint8_t) (fsc>>8 & 0xFF); 00204 buffer[19]=(uint8_t) (fsc & 0xFF); 00205 if(fsc > SD_SFF_BT_LAST-SD_SFF_BT_FIRST+1) 00206 { 00207 start_fsc = start_fsc+1; 00208 buffer[20]=(uint8_t) (start_fsc>>24 & 0xFF); 00209 buffer[21]=(uint8_t) (start_fsc>>16 & 0xFF); 00210 buffer[22]=(uint8_t) (start_fsc>>8 & 0xFF); 00211 buffer[23]=(uint8_t) (start_fsc & 0xFF); 00212 } 00213 i = disk_write(buffer,SD_MNG_SECT); 00214 if(i == 0) 00215 { 00216 FSC_CURRENT[3] = fsc; 00217 FSC_OLD[3] = start_fsc; 00218 return i; 00219 } 00220 } 00221 if(sid==0x04) 00222 { 00223 fsc=(uint32_t)(buffer[24]<<24)+(uint32_t)(buffer[25]<<16)+(uint32_t)(buffer[26]<<8)+(uint32_t)buffer[27]; 00224 start_fsc=(uint32_t)(buffer[28]<<24)+(uint32_t)(buffer[29]<<16)+(uint32_t)(buffer[30]<<8)+(uint32_t)buffer[31]; 00225 fsc++; 00226 buffer[24]=(uint8_t) (fsc>>24 & 0xFF); 00227 buffer[25]=(uint8_t) (fsc>>16 & 0xFF); 00228 buffer[26]=(uint8_t) (fsc>>8 & 0xFF); 00229 buffer[27]=(uint8_t) (fsc & 0xFF); 00230 if(fsc > SD_HK_ARCH_LAST-SD_HK_ARCH_FIRST+1) 00231 { 00232 start_fsc = start_fsc+1; 00233 buffer[28]=(uint8_t) (start_fsc>>24 & 0xFF); 00234 buffer[29]=(uint8_t) (start_fsc>>16 & 0xFF); 00235 buffer[30]=(uint8_t) (start_fsc>>8 & 0xFF); 00236 buffer[31]=(uint8_t) (start_fsc & 0xFF); 00237 } 00238 i = disk_write(buffer,SD_MNG_SECT); 00239 if(i == 0) 00240 { 00241 FSC_CURRENT[4] = fsc; 00242 FSC_OLD[4] = start_fsc; 00243 return i; 00244 } 00245 } 00246 if(sid==0x05) 00247 { 00248 fsc=(uint32_t)(buffer[32]<<24)+(uint32_t)(buffer[33]<<16)+(uint32_t)(buffer[34]<<8)+(uint32_t)buffer[35]; 00249 start_fsc=(uint32_t)(buffer[36]<<24)+(uint32_t)(buffer[37]<<16)+(uint32_t)(buffer[38]<<8)+(uint32_t)buffer[39]; 00250 fsc++; 00251 buffer[32]=(uint8_t) (fsc>>24 & 0xFF); 00252 buffer[33]=(uint8_t) (fsc>>16 & 0xFF); 00253 buffer[34]=(uint8_t) (fsc>>8 & 0xFF); 00254 buffer[35]=(uint8_t) (fsc & 0xFF); 00255 if(fsc > LOG_LAST-LOG_FIRST+1) 00256 { 00257 start_fsc = start_fsc+1; 00258 buffer[36]=(uint8_t) (start_fsc>>24 & 0xFF); 00259 buffer[37]=(uint8_t) (start_fsc>>16 & 0xFF); 00260 buffer[38]=(uint8_t) (start_fsc>>8 & 0xFF); 00261 buffer[39]=(uint8_t) (start_fsc & 0xFF); 00262 } 00263 i = disk_write(buffer,SD_MNG_SECT); 00264 if(i == 0) 00265 { 00266 FSC_CURRENT[5] = fsc; 00267 FSC_OLD[5] = start_fsc; 00268 return i; 00269 } 00270 } 00271 return -1; 00272 } 00273 00274 00275 int SD_WRITE(uint8_t* buffer,uint32_t fsc,uint8_t sid) 00276 { 00277 uint32_t block_number; 00278 int result = 10; 00279 if(SD_STATUS == DEVICE_POWERED){ 00280 if(sid==0x01) 00281 { 00282 block_number=SD_SCP_FIRST+(fsc%(SD_SCP_LAST-SD_SCP_FIRST+1))-1; 00283 //block_number=SD_SCP_FIRST+fsc; 00284 result= disk_write(buffer,block_number); 00285 if(result == 0) 00286 { 00287 if(INCREMENT_SD_LIB(sid) == 0) 00288 SD_LIB_WRITES++; 00289 } 00290 return result; 00291 } 00292 if(sid==0x02) 00293 { 00294 block_number= SD_SFF_AT_FIRST+(fsc%(SD_SFF_AT_LAST - SD_SFF_AT_FIRST+1))-1; 00295 //block_number= SD_SFF_AT_FIRST+fsc; 00296 result= disk_write(buffer,block_number); 00297 if(result == 0) 00298 { 00299 if(INCREMENT_SD_LIB(sid) == 0) 00300 SD_LIB_WRITES++; 00301 } 00302 return result; 00303 } 00304 if(sid==0x03) 00305 { 00306 block_number= SD_SFF_BT_FIRST +(fsc%(SD_SFF_BT_LAST - SD_SFF_BT_FIRST +1))-1; 00307 //block_number= SD_SFF_BT_FIRST +fsc; 00308 result= disk_write(buffer,block_number); 00309 if(result == 0) 00310 { 00311 if(INCREMENT_SD_LIB(sid) == 0) 00312 SD_LIB_WRITES++; 00313 } 00314 return result; 00315 } 00316 if(sid==0x04) 00317 { 00318 block_number=SD_HK_ARCH_FIRST +(fsc%(SD_HK_ARCH_LAST - SD_HK_ARCH_FIRST +1))-1; 00319 //block_number=SD_HK_ARCH_FIRST +fsc; 00320 result= disk_write(buffer,block_number); 00321 if(result == 0) 00322 { 00323 if(INCREMENT_SD_LIB(sid) == 0) 00324 SD_LIB_WRITES++; 00325 } 00326 return result; 00327 } 00328 if(sid==0x05) 00329 { 00330 block_number= LOG_FIRST +(fsc%(LOG_FIRST - LOG_FIRST +1))-1; 00331 //block_number= LOG_FIRST +fsc; 00332 result= disk_write(buffer,block_number); 00333 if(result == 0) 00334 { 00335 if(INCREMENT_SD_LIB(sid) == 0) 00336 SD_LIB_WRITES++; 00337 } 00338 return result; 00339 } 00340 } 00341 // return 1; 00342 } 00343 00344 uint8_t SD_READ(uint8_t* buffer,uint32_t fsc,uint8_t sid) 00345 { 00346 FCTN_SD_MNGR(); 00347 uint32_t block_number; 00348 int result; 00349 //if(SD_SW_EN_DS == 1) 00350 // return 0x89; 00351 if(sid==0x01) 00352 { 00353 if(!(FSC_OLD[1]<=fsc && fsc<=FSC_CURRENT[1])){ 00354 return 0x86; 00355 } 00356 block_number=SD_SCP_FIRST+(fsc%(SD_SCP_LAST-SD_SCP_FIRST+1))-1; 00357 result= disk_read(buffer,block_number); 00358 } 00359 else if(sid==0x02) 00360 { 00361 if(!(FSC_OLD[2]<=fsc && fsc<=FSC_CURRENT[2])){ 00362 return 0x86; 00363 } 00364 block_number= SD_SFF_AT_FIRST+(fsc%(SD_SFF_AT_LAST - SD_SFF_AT_FIRST+1))-1; 00365 result= disk_read(buffer,block_number); 00366 } 00367 else if(sid==0x03) 00368 { 00369 if(!(FSC_OLD[3]<=fsc && fsc<=FSC_CURRENT[3])){ 00370 return 0x86; 00371 } 00372 block_number= SD_SFF_BT_FIRST +(fsc%(SD_SFF_BT_LAST - SD_SFF_BT_FIRST +1))-1; 00373 result= disk_read(buffer,block_number); 00374 } 00375 else if(sid==0x04) 00376 { 00377 if(!(FSC_OLD[4]<=fsc && fsc<=FSC_CURRENT[4])){ 00378 return 0x86; 00379 } 00380 block_number=SD_HK_ARCH_FIRST +(fsc%(SD_HK_ARCH_LAST - SD_HK_ARCH_FIRST +1))-1; 00381 result= disk_read(buffer,block_number); 00382 } 00383 else if(sid==0x05) 00384 { 00385 if(!(FSC_OLD[5]<=fsc && fsc<=FSC_CURRENT[5])){ 00386 return 0x86; 00387 } 00388 block_number= LOG_FIRST +(fsc%(LOG_FIRST - LOG_FIRST +1))-1; 00389 result= disk_read(buffer,block_number); 00390 } 00391 else 00392 { 00393 return 0x02; 00394 } 00395 if(result == 0) 00396 return 0xA0; 00397 else 00398 return 0x88; 00399 return 0xA0; 00400 } 00401 00402 00403 int initialise_card() 00404 { 00405 // Set to 100kHz for initialisation, and clock card with cs_sd = 1 00406 spi.frequency(100000); // changed on 31 12 2015 to 1 MHz 00407 cs_sd = 1; 00408 for (int i = 0; i < 16; i++) { 00409 spi.write(0xFF); 00410 } 00411 uint8_t R1_response = cmd(0,0); 00412 gPC.printf("0x%02X",R1_response); 00413 // send CMD0, should return with all zeros except IDLE STATE set (bit 0) 00414 if (R1_response != R1_IDLE_STATE) { 00415 debug("No disk, or could not put SD card in to spi idle state\r\n"); 00416 return SDCARD_FAIL; 00417 } 00418 else 00419 gPC.puts("SD Card is in IDLE state\n\r"); 00420 00421 // send CMD8 to determine whther it is ver 2.x 00422 int r = cmd8(); 00423 if (r == R1_IDLE_STATE) { 00424 gPC.puts("Entering V2\r"); 00425 int q = initialise_card_v2(); 00426 return q; 00427 00428 } else if (r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) { 00429 gPC.puts("Entering V1"); 00430 return initialise_card_v1(); 00431 00432 } else { 00433 debug("\rNot in idle state after sending CMD8 (not an SD card?)\r\n"); 00434 return SDCARD_FAIL; 00435 } 00436 } 00437 00438 int initialise_card_v1() 00439 { 00440 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00441 cmd(55, 0); 00442 if (cmd(41, 0) == 0) { 00443 gPC.puts("\rv1 initialization successfull\r\n"); 00444 cdv = 512; 00445 debug_if(SD_DBG, "\n\rInit: SEDCARD_V1\n\r"); 00446 return SDCARD_V1; 00447 } 00448 } 00449 00450 debug("\rTimeout waiting for v1.x card\r\n"); 00451 return SDCARD_FAIL; 00452 } 00453 00454 00455 int initialise_card_v2() 00456 { 00457 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00458 wait_ms(50); 00459 cmd58(); 00460 cmd(55, 0); 00461 if (cmd(41, 0x40000000) == 0) { 00462 if (DEBUG) 00463 gPC.puts("\rv2 initialization successfull\r\n"); 00464 cmd58(); 00465 debug_if(SD_DBG, "\n\rInit: SDCARD_V2\n\r"); 00466 cdv = 1; 00467 FCTN_SD_MNGR(); 00468 return SDCARD_V2; 00469 } 00470 } 00471 00472 debug("\rTimeout waiting for v2.x card\r\n"); 00473 return SDCARD_FAIL; 00474 } 00475 00476 int cmd(int cmd, int arg) 00477 { 00478 cs_sd = 0; 00479 00480 // send a command 00481 spi.write(0x40 | cmd); 00482 spi.write(arg >> 24); 00483 spi.write(arg >> 16); 00484 spi.write(arg >> 8); 00485 spi.write(arg >> 0); 00486 spi.write(0x95); 00487 00488 // wait for the repsonse (response[7] == 0) 00489 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00490 int response = spi.write(0xFF); 00491 if (!(response & 0x80)) { 00492 cs_sd = 1; 00493 spi.write(0xFF); 00494 return response; 00495 } 00496 } 00497 cs_sd = 1; 00498 spi.write(0xFF); 00499 return -1; // timeout 00500 } 00501 00502 00503 int cmd58() 00504 { 00505 cs_sd = 0; 00506 int arg = 0; 00507 00508 // send a command 00509 spi.write(0x40 | 58); 00510 spi.write(arg >> 24); 00511 spi.write(arg >> 16); 00512 spi.write(arg >> 8); 00513 spi.write(arg >> 0); 00514 spi.write(0x95); 00515 00516 // wait for the repsonse (response[7] == 0) 00517 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00518 int response = spi.write(0xFF); 00519 if (!(response & 0x80)) { 00520 int ocr = spi.write(0xFF) << 24; 00521 ocr |= spi.write(0xFF) << 16; 00522 ocr |= spi.write(0xFF) << 8; 00523 ocr |= spi.write(0xFF) << 0; 00524 cs_sd = 1; 00525 spi.write(0xFF); 00526 return response; 00527 } 00528 } 00529 cs_sd = 1; 00530 spi.write(0xFF); 00531 return -1; // timeout 00532 } 00533 00534 00535 int cmd8() 00536 { 00537 cs_sd = 0; 00538 00539 // send a command 00540 spi.write(0x40 | 8); // CMD8 00541 spi.write(0x00); // reserved 00542 spi.write(0x00); // reserved 00543 spi.write(0x01); // 3.3v 00544 spi.write(0xAA); // check pattern 00545 spi.write(0x87); // crc 00546 00547 // wait for the repsonse (response[7] == 0) 00548 for (int i = 0; i < SD_COMMAND_TIMEOUT * 1000; i++) { 00549 char response[5]; 00550 response[0] = spi.write(0xFF); 00551 if (!(response[0] & 0x80)) { 00552 for (int j = 1; j < 5; j++) { 00553 response[i] = spi.write(0xFF); 00554 } 00555 cs_sd = 1; 00556 spi.write(0xFF); 00557 return response[0]; 00558 } 00559 } 00560 cs_sd = 1; 00561 spi.write(0xFF); 00562 return -1; // timeout 00563 } 00564 00565 uint64_t sd_sectors() 00566 { 00567 uint32_t c_size, c_size_mult, read_bl_len; 00568 uint32_t block_len, mult, blocknr, capacity; 00569 uint32_t hc_c_size; 00570 uint64_t blocks; 00571 00572 // CMD9, Response R2 (R1 byte + 16-byte block read) 00573 if (cmdx(9, 0) != 0) { 00574 debug("\rDidn't get a response from the disk\n"); 00575 return 0; 00576 } 00577 00578 uint8_t cs_sdd[16]; 00579 if (read(cs_sdd, 16) != 0) { 00580 debug("\rCouldn't read cs_sdd response from disk\n"); 00581 return 0; 00582 } 00583 00584 // cs_sdd_structure : cs_sdd[127:126] 00585 // c_size : cs_sdd[73:62] 00586 // c_size_mult : cs_sdd[49:47] 00587 // read_bl_len : cs_sdd[83:80] - the *maximum* read block length 00588 00589 int cs_sdd_structure = ext_bits(cs_sdd, 127, 126); 00590 00591 switch (cs_sdd_structure) { 00592 case 0: 00593 cdv = 512; 00594 c_size = ext_bits(cs_sdd, 73, 62); 00595 c_size_mult = ext_bits(cs_sdd, 49, 47); 00596 read_bl_len = ext_bits(cs_sdd, 83, 80); 00597 00598 block_len = 1 << read_bl_len; 00599 mult = 1 << (c_size_mult + 2); 00600 blocknr = (c_size + 1) * mult; 00601 capacity = blocknr * block_len; 00602 blocks = capacity / 512; 00603 debug_if(SD_DBG, "\n\rSDCard\n\rc_size: %d \n\rcapacity: %ld \n\rsectors: %lld\n\r", c_size, capacity, blocks); 00604 break; 00605 00606 case 1: 00607 cdv = 1; 00608 hc_c_size = ext_bits(cs_sdd, 63, 48); 00609 blocks = (hc_c_size+1)*1024; 00610 debug_if(SD_DBG, "\n\rSDHC Card \n\rhc_c_size: %d\n\rcapacity: %lld \n\rsectors: %lld\n\r", hc_c_size, blocks*512, blocks); 00611 break; 00612 00613 default: 00614 debug("cs_sdD struct unsupported\r\n"); 00615 return 0; 00616 }; 00617 return blocks; 00618 } 00619 00620 int cmdx(int cmd, int arg) 00621 { 00622 cs_sd = 0; 00623 00624 // send a command 00625 spi.write(0x40 | cmd); 00626 spi.write(arg >> 24); 00627 spi.write(arg >> 16); 00628 spi.write(arg >> 8); 00629 spi.write(arg >> 0); 00630 spi.write(0x95); 00631 00632 // wait for the repsonse (response[7] == 0) 00633 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00634 int response = spi.write(0xFF); 00635 if (!(response & 0x80)) { 00636 return response; 00637 } 00638 } 00639 cs_sd = 1; 00640 spi.write(0xFF); 00641 return 1; // timeout 00642 } 00643 00644 static uint32_t ext_bits(unsigned char *data, int msb, int lsb) 00645 { 00646 uint32_t bits = 0; 00647 uint32_t size = 1 + msb - lsb; 00648 for (int i = 0; i < size; i++) { 00649 uint32_t position = lsb + i; 00650 uint32_t byte = 15 - (position >> 3); 00651 uint32_t bit = position & 0x7; 00652 uint32_t value = (data[byte] >> bit) & 1; 00653 bits |= value << i; 00654 } 00655 return bits; 00656 } 00657 00658 int disk_write(const uint8_t *buffer, uint64_t block_number) 00659 00660 { 00661 // set write address for single block (CMD24) 00662 if (cmd(24, block_number * cdv) != 0) { 00663 CDMS_WR_SD_FAULT_COUNTER++; 00664 return 1; 00665 } 00666 00667 uint64_t temp; 00668 int r = write(buffer, 512); 00669 if(r == 0 ){ 00670 temp = FCTN_CDMS_RD_RTC(); 00671 TIME_LATEST_SD_WR = temp >> 7; //corrected by samp:TIME_LATEST_SD_WRD = temp >> 7; 00672 } 00673 return r; 00674 } 00675 00676 int write(const uint8_t*buffer, uint32_t length) 00677 { 00678 cs_sd = 0; 00679 00680 // indicate start of block 00681 spi.write(0xFE); 00682 00683 // write the data 00684 for (int i = 0; i < length; i++) { 00685 spi.write(buffer[i]); 00686 } 00687 00688 // write the checksum 00689 spi.write(0xFF); 00690 spi.write(0xFF); 00691 00692 // check the response token 00693 if ((spi.write(0xFF) & 0x1F) != 0x05) { 00694 cs_sd = 1; 00695 spi.write(0xFF); 00696 CDMS_WR_SD_FAULT_COUNTER++; 00697 return 1; 00698 } 00699 00700 // wait for write to finish 00701 while (spi.write(0xFF) == 0); 00702 00703 cs_sd = 1; 00704 spi.write(0xFF); 00705 return 0; 00706 } 00707 00708 int disk_read(uint8_t *buffer, uint64_t block_number) 00709 { 00710 // set read address for single block (CMD17) 00711 if (cmd(17, block_number * cdv) != 0) { 00712 SD_RD_ERROR = 1; 00713 return 1; 00714 } 00715 00716 // receive the data 00717 read(buffer, 512); 00718 uint64_t temp = FCTN_CDMS_RD_RTC(); 00719 TIME_LATEST_SD_RD = temp >> 7; 00720 return 0; 00721 } 00722 00723 int read(uint8_t *buffer, uint32_t length) 00724 { 00725 cs_sd = 0; 00726 00727 // read until start byte (0xFF) 00728 while (spi.write(0xFF) != 0xFE); 00729 00730 // read data 00731 for (int i = 0; i < length; i++) { 00732 buffer[i] = spi.write(0xFF); 00733 } 00734 spi.write(0xFF); // checksum 00735 spi.write(0xFF); 00736 00737 cs_sd = 1; 00738 spi.write(0xFF); 00739 return 0; 00740 } 00741 00742 int disk_erase(int startBlock, int totalBlocks) 00743 { 00744 if(cmd(32, startBlock * cdv) != 0) { 00745 return 1; 00746 } 00747 if (cmd(33, (startBlock+totalBlocks-1) * cdv) != 0) { 00748 return 1; 00749 } 00750 if (cmd(38,0) != 0) { 00751 return 1; 00752 } 00753 00754 return 0; //normal return 00755 } 00756 00757 int disk_read_statusbits(uint8_t *buffer) 00758 { 00759 if (cmd(17, 0) != 0) { 00760 SD_RD_ERROR = 1; 00761 return -1; 00762 } 00763 00764 // receive the data 00765 return read(buffer,64); 00766 }
Generated on Tue Jul 26 2022 00:15:16 by
