Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- sakthipriya
- Date:
- 2015-05-16
- Revision:
- 0:1a04c0beef21
File content as of revision 0:1a04c0beef21:
#include "mbed.h"
#include "rtos.h"
#include "HK.h"
#include "slave.h"
#include "beacon.h"
#include "ACS.h"
#include "fault.h"
#include "slave.h"
#include "mnm.h"
Serial pc(USBTX, USBRX);
InterruptIn interrupt(PIN97); //I2c interrupt from CDMS
DigitalOut data_ready(PIN90); //Sends interrupt to CDMS
Timer t; //To know the time of execution each thread
Timer t1; //To know the time of entering of each thread
Timer t2; //To check the time sync in i2c communication
Timer t3; //To know the time taken by i2c read/write function
Timer i1;
Timer i2;
/*****************************************************************Threads USed***********************************************************************************/
//Thread *ptr_t_hk_acq;
//Thread *ptr_t_acs;
//Thread *ptr_t_bea;
Thread *ptr_t_i2c;
Thread *ptr_t_wdt;
Thread *ptr_t_abh;
/****************************************************************configuring I2c*********************************************************************************/
I2CSlave slave(PIN72,PIN71); //configuring pins p27, p28 as I2Cslave
int i2c_status=0; //read or write mode for i2c 0: write2slave 1: write2master
typedef struct //structure of i2c data
{
char data[25];
int length;
}i2c_data;
//Mail<i2c_data,16> i2c_data_receive;
Mail<i2c_data,16> i2c_data_send;
void F_HK_ACQ();
void F_ACS();
void F_BEA();
//---------------------------------------------------------------------------------------------------------------------------------------
//ACS HK BEACON
//---------------------------------------------------------------------------------------------------------------------------------------
int beacon_sc = 3;
uint16_t tcount=1;
void T_ABH(void const *args)
{
while(1)
{
Thread::signal_wait(0x1);
if(tcount == 65532) //to reset the counter
{
tcount = 0;
}
if(tcount%1==0)
{
F_ACS();
}
if(tcount%2==0)
{
F_HK_ACQ();
}
if(tcount%beacon_sc==0)
{
F_BEA();
}
tcount++;
}
}
//--------------------------------------------------------------------------------------------------------------------------------------------------
//TASK 2 : HK
//--------------------------------------------------------------------------------------------------------------------------------------------------
char hk_data[25];
extern SensorDataQuantised SensorQuantised;
void F_HK_ACQ()
{
SensorQuantised.power_mode='3'; //default power mode(dummy)
printf("\n\rTHIS IS HK %f\n\r",t1.read());
t.start();
FUNC_HK_FAULTS(); // !Actual fault management is not implemented
FUNC_HK_POWER(SensorQuantised.power_mode); // !The power mode algorithm is yet to be obtained
FUNC_HK_MAIN(); //Collecting HK data
FUNC_I2C_IR2CDMS(); //sending HK data to CDMS
t.stop();
printf("The time to execute hk_acq is %f seconds\n\r",t.read());
t.reset();
}
//---------------------------------------------------------------------------------------------------------------------------------------
//TASK 1 : ACS
//---------------------------------------------------------------------------------------------------------------------------------------
int acs_pflag = 1;
void F_ACS()
{
float mag_field[3];
float omega[3];
float *mnm_data;
float mag_field1[3];
float omega1[3];
float tauc1[3];
float moment[3];
printf("\n\rEntered ACS %f\n",t1.read());
t.start();
FUNC_ACS_MAG_EXEC(mag_field);
for(int i=0; i<3; i++)
{
printf("%f\t",mag_field[i]);
}
FUNC_ACS_EXEC_GYR(omega);
acs_pflag =1;
omega[0] = 1.0; //to be removed later
omega[1] = 1.0;
omega[2] = 1.0;
/* mnm_data=EXECUTE_PNI(); //the angular velocity is stored in the first 3 values and magnetic field values in next 3
printf("\n\rmnm gyro values\n"); //printing the angular velocity and magnetic field values
for(int i=0; i<3; i++)
{
printf("%f\t",mnm_data[i]);
}
printf("\n\r mnm mag values\n");
for(int i=3; i<6; i++)
{
printf("%f\t",mnm_data[i]);
}
for(int i = 0 ; i<3;i++)
{
omega1[i] = mnm_data[i];
}
for( int i = 3;i<6;i++)
{
mag_field1[i-3] = mnm_data[i];
}
*/
if(acs_pflag == 1)
{
FUNC_ACS_CNTRLALGO(mag_field,omega,tauc1);
printf("\n\r control algo values ");
for(int i=0; i<3; i++)
{
printf("%f\t",tauc1[i]);
}
moment_calc (tauc1, mag_field,moment);
printf("\n\r moment values ");
for(int i=0; i<3; i++)
{
printf("%f\t",moment[i]);
}
FUNC_ACS_GENPWM(moment);
}
t.reset();
}
//---------------------------------------------------BEACON--------------------------------------------------------------------------------------------
int beac_flag=0; //To receive telecommand from ground.
/*void T_BEA_TELECOMMAND(void const *args)
{
char c = pc.getc();
if(c=='a')
{
printf("Telecommand detected\n\r");
beac_flag=1;
}
}
*/
void F_BEA()
{
printf("\n\rTHIS IS BEACON %f\n\r",t1.read());
t.start();
FUNC_BEA();
if(beac_flag==1)
{
Thread::wait(600000);
beac_flag = 0;
}
printf("The time to execute beacon thread is %f seconds\n\r",t.read());
t.reset();
}
extern SensorDataQuantised SensorQuantised;
/*-------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------WATCHDOG----------------------------------------------------------------------------*/
DigitalOut trigger(PIN63); // has to be changed
void T_WDT(void const * args)
{
trigger = 1;
while(true)
{
Thread::signal_wait(0x5); //signal set from scheduler or sthing. r RTOS timer nce the timing is finalized
printf("\n\rEntered WD\n\r");
trigger = !trigger;
}
}
//---------------------------------------------------------------------------------------------------------------------------------------------------
//TASK 5 : i2c data
//---------------------------------------------------------------------------------------------------------------------------------------------------
void FUNC_I2C_WRITE2CDMS(char *data, int length=1)
{
int slave_status = 1;
int inter_test = interrupt;
int slr = slave.receive();
wait_ms(20);
//printf("\n\r time is %d\n",t2.read_us());
//if(interrupt ==1)
//{
//printf("\n\r slave status %d",slave.receive());
//t2.stop();
if(slave.receive() == 0)
t2.stop();
if( slave.receive()==1)
{
t2.stop();
t3.start();
slave_status=slave.write(data,length);
t3.stop();
}
else if( slave.receive()==3 || slave.receive()==2)
{
t2.stop();
t3.start();
slave_status=slave.read(data,length);
t3.stop();
}
//}
// printf("\n\r time taken to receive intrpt 4m cdms %d",i1.read_us());
//i1.reset();
printf("\n\r slave status %d",slave.receive());
printf("\n\r time taken from interrupt to reach i2c fn %d",t2.read_us());
t2.stop();
t2.reset();
printf("\n\r time to execute i2c function %d",t3.read_us());
t3.reset();
}
char data_send[25],data_receive;
void T_I2C_BAE(void const * args)
{
while(1)
{
Thread::signal_wait(0x4);
int something = interrupt;
// printf("\n\r interrupt %d",interrupt);
if(i2c_status == 0 )
{
// wait_ms(23);
FUNC_I2C_WRITE2CDMS(&data_receive,1);
/*i2c_data * i2c_data_r = i2c_data_receive.alloc();
i2c_data_r->data = data_receive;
i2c_data_r->length = 1;
i2c_data_receive.put(i2c_data_r);*/
printf("\n\r Data received from CDMS is %c \n\r",data_receive);
FUNC_I2C_TC_EXECUTE(data_receive); // This has to be done from a differen thread
}
else if(i2c_status ==1)
{
osEvent evt = i2c_data_send.get();
if (evt.status == osEventMail)
{
i2c_data *i2c_data_s = (i2c_data*)evt.value.p;
strcpy(data_send,i2c_data_s -> data);
//wait_ms(25);
FUNC_I2C_WRITE2CDMS(data_send,25);
printf("\n\rData sent to CDMS is %s\n\r",data_send);
i2c_data_send.free(i2c_data_s);
i2c_status = 0;
}
}
}
}
void FUNC_I2C_INT()
{
//i1.stop();
// t3.start();
ptr_t_i2c->signal_set(0x4);
//printf("\n ceckh\n");
t2.start();
// printf("\n\r time taken from interrupt to reach i2c fn %d",t2.read_us());
}
void FUNC_I2C_IR2CDMS()
{
data_ready=0;
//char data[25];
strcpy(hk_data,"hk_Data");
strcat(hk_data,SensorQuantised.Voltage);
strcat(hk_data,SensorQuantised.Current);
strcat(hk_data,SensorQuantised.Temperature);
strcat(hk_data,SensorQuantised.PanelTemperature);
strcat(hk_data,SensorQuantised.AngularSpeed);
strcat(hk_data,SensorQuantised.Bnewvalue);
char fdata[5] = {SensorQuantised.BatteryTemperature,SensorQuantised.faultpoll,SensorQuantised.faultir,SensorQuantised.power_mode};
/*strcat(hk_data,sfaultpoll);
strcat(hk_data,sfaultir);
strcat(hk_data,spower_mode);*/
strcat(hk_data,fdata);
printf("\n\r hk data being sent %s ",hk_data);
//for(int i=0;i<100000000000;i++)
//;
/*for(int d=0;d<23;d++) //was written just to check hk data
{
if(hk_data[d]>10)
printf("\n\rhk data : %d\n\r",hk_data[d]);
} */
//data = pcslave.getc();
i2c_status=1;
i2c_data * i2c_data_s = i2c_data_send.alloc();
strcpy(i2c_data_s->data,hk_data);
i2c_data_s->length = 25;
i2c_data_send.put(i2c_data_s);
data_ready=1;
// i1.start();
//temp = i2c_status;
}
//------------------------------------------------------------------------------------------------------------------------------------------------
//TELECOMMAND
//------------------------------------------------------------------------------------------------------------------------------------------------
void FUNC_I2C_TC_EXECUTE (char command)
{ switch(command)
{ case '0' : printf("command 0 executed");
break;
case '1' : printf("command 1 executed");
break;
case '2' : printf("command 2 executed");
break;
case '3' : printf("command 3 executed");
}
}
//------------------------------------------------------------------------------------------------------------------------------------------------
//SCHEDULER
//------------------------------------------------------------------------------------------------------------------------------------------------
void T_SC(void const *args)
{
ptr_t_abh -> signal_set(0x1);
ptr_t_wdt -> signal_set(0x5);
}
//---------------------------------------------------------------------------------------------------------------------------------------------
int main()
{
t1.start();
printf("\n\rIITMSAT BAE Activated \n");
//INIT_PNI(); // Initializing mnm blue
//FUNC_ACS_MAG_INIT(); // Initializing magnetometer
//FUNC_ACS_INIT_GYR(); // Initializing Gyroscope
slave.address(0x20); // setting slave address for BAE for I2C communication
//init_beacon();
ptr_t_abh = new Thread(T_ABH);
ptr_t_i2c = new Thread(T_I2C_BAE);
//ptr_t_sc = new Thread(T_SC);
ptr_t_wdt = new Thread(T_WDT);
interrupt_fault(); // Dummy function called when a fault interrupt is detected
ptr_t_abh->set_priority(osPriorityAboveNormal);
ptr_t_i2c->set_priority(osPriorityHigh);
//ptr_t_hk_acq->set_priority(osPriorityAboveNormal);
//ptr_t_bea->set_priority(osPriorityAboveNormal);
//ptr_t_sc->set_priority(osPriorityAboveNormal);
ptr_t_wdt -> set_priority(osPriorityIdle);
// ----------------------------------------------------------------------------------------------
printf("\n\r T_ABH priority is %d",ptr_t_abh->get_priority());
//printf("\n\r T_I2C priority is %d",ptr_t_hk_acq->get_priority());
//printf("\n\r T_WDT priority is %d",ptr_t_bea->get_priority());
RtosTimer t_sc_timer(T_SC,osTimerPeriodic);
t_sc_timer.start(10000);
printf("\n\r%f\n\r",t1.read());
interrupt.rise(&FUNC_I2C_INT); //interrupt received from CDMS
while(1) //required to prevent main from terminating
{
Thread::wait(5000);
}
}